A Special Issue of Intelligent Automation and Soft Computing

GUEST EDITORIAL

WIRELESS NETWORK AND COMMUNICATION SIGNAL PROCESSING

BY

LIZHONG XU, XIAOFANG LI
College of Computer and Information Engineering
Hohai University
Nanjing, China

SIMON X. YANG
Advanced Robotics and Intelligent Systems Laboratory
School of Engineering
University of Guelph
Guelph, Canada

The topics of this special issue are mainly devoted to the most recent research, development and applications in the field of wireless ad-hoc networks, multimedia networks, communication signal processing. Among all the submitted manuscripts, 15 papers were selected and included in this special. Creative thoughts and interesting inspirations will be presented, discussed and disseminated in this issue.

There are five papers concerned with wireless ad-hoc networks. Y. Mao et al. proposed an effective data gathering scheme for heterogeneous energy wireless sensor networks; J. J. Gui et al. gave a mathematic approach to model the vulnerabilities from the Sybil attack for ad-hoc routing protocol. X. Yan et al. designed a new STAR MAC protocol to reduce the energy consumption in the traditional sensor network. H. Chen et al. proposed a novel trust routing scheme based on node behavior evaluation to enhance the security of the ad-hoc network. S. Shuo et al. in their paper proposed a weighted trilateral position algorithm to improve the position accuracy, and meanwhile, indoor field tests were also designed and carried out to verify their newly proposed algorithm.

As to multimedia networks, three papers were selected in this issue. F. Wang et al. studied the problem of reliable multi-path routing with bandwidth and delay constraints. The authors first proposed a heuristic algorithm as the benchmark, and then presented a polynomial time approximation to obtain a \((1+\varepsilon)\)-approximation solution. P. Zeng et al. proposed two different...
network coding schemes combined with scalable video coding technology to solve the problems of huge bandwidth consumption, less effective in heterogeneous environment, etc. W. Shen et al. proposed a three-layer streaming media network architecture based on the fusion of P2P and CDN. It used P2P network as the backbone, and selected the nodes with high performance, high bandwidth and stable online time as the CDN edge servers, and provided mobile devices with streaming media services under the schedule of the load-balancing servers.

Three papers are about communication signal processing. In order to overcome the channel capacity decrement flaw of uniform linear array, Y. Li et al. proposed a novel 4-element square antenna array with space symmetric structure to improve the channel capacity stability of compact MIMO systems. Three-dimensional capacity matrix eigenvalue distribution and generalized condition number (GCN) were also developed in the paper to analyze the capacity stability of 4-element compact MIMO systems. H. Wang et al. investigated a back-off algorithm to deal with the unfairness problem by changing the contention window size based on analyzing the connectivity of local topology and the polymerization degrees of the nodes. The algorithm can improve the throughput and real-time efficiency. E. Ding et al. proposed a novel ray-tracing based radio wave propagation (RTRWP) law to evaluate the wireless signal propagation characteristics in underground tunnel. Field test results show that the transmission loss caused by the hydraulic supports in tunnel could be effectively avoided by RTRWP.

The last four papers are about remote-sensed image processing, embedded systems, processor optimization algorithms, and particle swarm optimization (PSO) and neural network based soft sensor models. A. Shi et al. in their paper proposed an SRR method using the combined hyperacuity mechanism with half quadratic Markov random field (MRF) in the frame of maximum a posteriori (MAP). Steepest-descent optimization algorithm is also used to find the high resolution image. G. Hu et al. designed an embedded real-time Java processor for real-time applications. Based on the proposed automatic memory management (AMM) mechanism, the runtime efficiency of the embedded real-time processor was enhanced and the predictability of the worst-case execution time was also promoted. X. Yuan et al. studies the affine partition algorithm for automatic parallelization of serial programs. The authors proposed a method to select a unique optimal solution among the feasible solutions of the affine partition algorithm. Y. Lv et al. built a soft sensor model based on a PSO-BP neural network for titanium bullet beating furnace temperature. An improved particle swarm optimization is proposed, which optimizes the initial neural network weights.

L. Xu is a Professor and the deputy dean of the College of Computer and Information Engineering, Hohai University, China and he is the Director of Engineering Research Center of Telemetry, Remote Sensing and Information System. He received Ph.D. degree from China University of Mining and Technology, Xuzhou, China in 1997. Prof. Xu’s current research areas include multi-sensor system and information fusion, signal processing in remote sensing and remote control, information processing system and its applications, system modelling and simulation. He is a Senior Member of Chinese Institute of Electronic, and China Computer Federation. He has coordinated more than 10 international and national research projects, and has published more than 60 national, international journals papers and 5 books.
X. Li is an Associate Professor in the College of Computer and Information Engineering at Hohai University, Nanjing, P. R. China. She received her B.Sc. degree in computer science and technology from Hohai University in 1995 and her M.Sc. degree in power system automation from Hohai University in 2004. She is a Senior Member of China Computer Federation and the Secretary General of the IEEE SMC Nanjing Chapter. Her research areas include information acquisition and wireless sensor networks.

S. X. Yang received the B.Sc. degree in engineering physics from Beijing University, China in 1987, the first of two M.Sc. degrees in biophysics from Chinese Academy of Sciences, Beijing, China in 1990, the second M.Sc. degree in electrical engineering from the University of Houston, USA in 1996, and the Ph.D. degree in electrical and computer engineering from the University of Alberta, Edmonton, Canada in 1999. Prof. Yang joined the School of Engineering at the University of Guelph, Canada in 1999. Currently he is a Professor and the Head of the Advanced Robotics & Intelligent Systems (ARIS) Laboratory at the University of Guelph in Canada. His research interests include intelligent systems, robotics, sensors and multi-sensor fusion, wireless sensor networks, control systems, soft computing, and computational neuroscience.