A Note on ”Fuzzy Initial Value Problem for Nth-Order Fuzzy Linear Differential Equations”

Amit Kumar \(^1\), Sneh Lata \(^1\)*

\(^1\) School of Mathematics and Computer Applications, Thapar University, Patiala

Copyright 2012 © Amit Kumar and Sneh Lata. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Buckley and Feuring [1] solved a fuzzy linear differential equation and on the basis of the obtained solution, they introduced a new result. The main aim of this note is to show that the solution of the fuzzy linear differential equation, obtained by Buckley and Feuring [1], is incorrect and due to which the result, introduced by Buckley and Feuring [1], is also incorrect.

Keywords: Fuzzy numbers; Simultaneous differential equations; Fuzzy linear differential equations.

1 Existing method to find the solution of fuzzy initial value problem for \(n^{th}\) order fuzzy linear differential equation

Buckley and Feuring [1] proposed a new method to find the solution of the following fuzzy differential equation

\[
y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y^{(1)} + a_0(x)y = g(x),
\]

where the \(a_i(x), 0 \leq i \leq n - 1\), and \(g(x)\) are continuous on some interval \(I\), subject to initial conditions \(y(0) = \bar{\gamma}_0, y^{(1)}(0) = \bar{\gamma}_1, \ldots, y^{(n-1)}(0) = \bar{\gamma}_{n-1}\), for fuzzy numbers \(\bar{\gamma}_i, 0 \leq i \leq n - 1\). The interval \(I\) can be [0, \(T\]) for some \(T > 0\) or \(I = [0, \infty)\).

To find the solution of fuzzy linear differential Eq. (1.1), first solve the fuzzy initial value problem and then check to see if it defines a fuzzy function for \(x\) in \(I\).

Let \(\bar{Y}(x)\) denote the fuzzy subset of \(\mathbb{R}\) for each \(x \in I\) so that its \(\alpha\)-cuts are closed, bounded, intervals for all \(x\). Set \(\bar{Y}(x) = [y_1(x, \alpha), y_2(x, \alpha)], x \in I, \alpha \in [0, 1]\). We substitute

\(^*\)Corresponding author. Email address: sneh.thaparian@gmail.com, Tel: +919876909735
the α-cuts of $\bar{Y}(x)$ into the differential equation and then solve for $y_1(x, \alpha)$ and $y_2(x, \alpha)$. Then $y_i(x, \alpha)$ are assumed to have continuous derivatives on x of order n for all α. From Eq. (1.1), Buckley and Feuring [1] obtained

$$\left[y^n_1(x, \alpha), y^n_2(x, \alpha) \right] + a_{n-1}(x)[y^{n-1}_1(x, \alpha), y^{n-1}_2(x, \alpha)] + \cdots + a_0(x)[y_1(x, \alpha), y_2(x, \alpha)] = \left[g(x), g(x) \right]$$

subject to the initial conditions:

1. $y_{1}(0, \alpha) = \gamma_{01}(\alpha), \ldots, y^{(n-1)}_{1}(0, \alpha) = \gamma_{n-1,1}(\alpha)$
2. $y_{2}(0, \alpha) = \gamma_{02}(\alpha), \ldots, y^{(n-1)}_{2}(0, \alpha) = \gamma_{n-1,2}(\alpha),$

to be solved for the $y_i(x, \alpha), i = 1, 2$.

The symbol $y^k_i(x, \alpha)$ is the kth derivative on x for fixed $\alpha \in [0, 1], i = 1, 2$. One does interval arithmetic in Eq. (1.2) to obtain two equations to solve simultaneously for $y_{1}(x, \alpha)$ and $y_{2}(x, \alpha)$.

2 Existing Results

Buckley and Feuring [1] pointed out that for $a < 0, b \geq 0$ with roots $r_1 < r_2$, Eq. (1.2) can be converted into the following differential equations

$$y''_{1}(x, \alpha) + ay'_{2}(x, \alpha) + by_{1}(x, \alpha) = g(x) \quad (2.3)$$
$$y''_{2}(x, \alpha) + ay'_{1}(x, \alpha) + by_{2}(x, \alpha) = g(x) \quad (2.4)$$

with $y_{1}(0, \alpha) = \gamma_{01}(\alpha), y'_{1}(0, \alpha) = \gamma_{11}(\alpha), y_{2}(0, \alpha) = \gamma_{02}(\alpha)$ and $y'_{2}(0, \alpha) = \gamma_{12}(\alpha)$.

Buckley and Feuring [1] also claimed that on solving Eq. (2.3) and Eq. (2.4), the following solution is obtained ([1], equation (55), (56), pp. 252)

$$y_{2} = c_{1}e^{r_{1}x} + c_{2}e^{r_{2}x} + G(x) \quad (2.5)$$
$$y_{1} = c_{3}e^{r_{1}x} + c_{4}e^{r_{2}x} + G(x) \quad (2.6)$$

where, $c_{1} = c_{3}$ and $c_{2} = c_{4}$, i.e., $y_{1} = y_{2}$.

On the basis of the obtained result, Buckley and Feuring [1] pointed out that for $a < 0$ and $b \geq 0$, the set of simultaneous differential Eq. (2.3) and Eq. (2.4) does not have any fuzzy solution.

3 Drawback of the existing result

Using Maple software, the solution of simultaneous differential Eq. (2.3) and Eq. (2.4), is

$$y_{1} = c_{1}e^{r_{1}x} + c_{2}e^{r_{2}x} + c_{3}e^{r_{1}x} + c_{4}e^{r_{2}x} + G(x) \quad (3.7)$$
\[y_2 = \frac{1}{8bc}(c_1e^{r_1x}(a^2 - 4b)^{3/2} - c_2e^{r_2x}(a^2 - 4b)^{3/2} + c_3e^{r_3x}(a^2 - 4b)^{3/2} - c_4e^{r_4x}(a^2 - 4b)^{3/2} \\
- a^2c_1e^{r_1x}\sqrt{a^2 - 4b} + a^2c_2e^{r_2x}\sqrt{a^2 - 4b} - a^2c_3e^{r_3x}\sqrt{a^2 - 4b} + a^2c_4e^{r_4x}\sqrt{a^2 - 4b} \\
- 8c_1e^{r_1x}ab + 4c_1e^{r_1x}b\sqrt{a^2 - 4b} - 8c_2e^{r_2x}ab - 4c_2e^{r_2x}b\sqrt{a^2 - 4b} + 8c_3e^{r_3x}ab \\
+ 4c_3e^{r_3x}b\sqrt{a^2 - 4b} + 8c_4e^{r_4x}ab - 4c_4e^{r_4x}b\sqrt{a^2 - 4b} + G(x) \tag{3.8} \]

where,
\[r_1 = \frac{1}{2}(a + \sqrt{a^2 - 4b}), \quad r_2 = -\frac{1}{2}(-a + \sqrt{a^2 - 4b}), \quad r_3 = \frac{1}{2}(-a + \sqrt{a^2 - 4b}), \quad r_4 = -\frac{1}{2}(a + \sqrt{a^2 - 4b}) \]

It is obvious from equations Eq. (3.7) and Eq. (3.8) that \(y_1 \neq y_2 \) i.e., for \(a < 0, b \geq 0 \) the fuzzy solution of Eq. (2.3) and Eq. (2.4) may or may not exist which shows that the result claimed by Buckley and Feuring is incorrect.

Acknowledgements

The authors would like to thank to the Editor-in-Chief for various suggestions which have led to an improvement in both the quality and clarity of the paper.

I, Dr. Amit Kumar, want to acknowledge the adolescent inner blessings of Mehar. I believe that Mehar is an angel for me and without Mehar’s blessing it was not possible to think the drawback pointed out in this note. Mehar is a lovely daughter of Parampreet Kaur (Research Scholar under my supervision).

References

http://dx.doi.org/10.1016/S0165-0114(00)00028-2.