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Abstract

The construction of new hyperkähler manifolds by taking the infinite monopole

mass limit of certain BPS monopole moduli spaces is considered. The one-parameter

family of hyperkähler manifolds due to Dancer is shown to be an example of such

manifolds. A new family of fixed monopole spaces is constructed. They are the mod-

uli spaces of four SU4 monopoles, in the infinite mass limit of two of the monopoles.

These manifolds are shown to be non-singular when the fixed monopole positions are

distinct.

1 Introduction

The moduli spaces of Bogomolny-Prasad-Sommerfield (BPS) monopoles are hyper-
kähler manifolds. For charge two SU2 monopoles, the moduli space is the Atiyah-Hitchin
manifold [1]. For two distinct monopoles in the maximally broken SU3 theory, the moduli
space is Taub-NUT space [3, 7, 15]. Since monopole moduli spaces have an isometric SO3

action corresponding to rotations of the monopoles in space, these hyperkähler manifolds
are the only possible non-trivial four dimensional monopole moduli spaces [9, 1]. In this
paper other four dimensional hyperkähler manifolds are derived from monopole moduli
spaces by taking the infinite mass limit of some of the monopole masses, thus fixing the
monopole positions. Fixing monopole positions generally breaks the SO3 isometry.

A one-parameter deformation of the Atiyah-Hitchin manifold is known, [4, 5]. It was
constructed using the hyperkähler quotient. These hyperkähler manifolds will be rein-
terpreted as BPS monopole moduli spaces, with one monopole fixed. A moduli space of
BPS monopoles with two fixed monopoles is then considered. By constructing these mod-
uli spaces via a hyperkähler quotient, they are proven to be non-singular when the fixed
monopoles are fixed at different points in space.
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2 Nahm data and BPS monopoles

A BPS monopole is a pair (Φ, Ai) satisfying the Bogomolny equation. The Higgs field
Φ is an sun valued scalar field and Ai is the gauge potential. There is an SUn gauge action
on these fields, broken by the asymptotic Higgs field. If SUn is broken to the maximal
torus Un−1

1 the Higgs field at infinity is required to lie in the gauge orbit of

Φ∞ = idiag(t1, t2, . . . , tn). (1)

By convention t1 < t2 < . . . < tn and, since Φ is traceless, t1 + t2 + . . . + tn = 0. Because
of the asymptotic condition on Φ, it gives a map from the large sphere at infinity into the
quotient space orbitSUn

Φ∞ = SUn/U
n−1
1 . Since π2(SUn/Un−1

1 ) = ZZ
n−1 the moduli space

of monopoles is divided, topologically, into sectors labelled by n − 1 integers, ki, called
topological charges. The maximal torus of SUn is generated by the Cartan space and the
matrix Φ∞ defines a direction in this Cartan space. This direction picks out a unique set
of simple roots in the Cartan space; those whose inner product with Φ∞ is positive. Each
U1 in the maximal torus is generated by one of these simple roots. The ki are then ordered
by the requirement that adjacent ki’s correspond to non-orthogonal roots. A monopole
with topological charge (k1, k2, . . . , kn−1) will be called a (k1, k2, . . . , kn−1)-monopole.

The moduli spaces of BPS monopoles are diffeomorphic to spaces of Nahm data [17,
13, 18]. It will be assumed that these diffeomorphisms are isometries. This assumption
is known to hold for many examples and is believed to be true generally. The Nahm
data corresponding to a (k1, k2, . . . , kn−1)-monopole are a triplet of skew-hermitian matrix
functions defined over the interval [t1, tn]. The t1 < t2 < . . . < tn subdivide the interval
into n− 1 abutting subintervals. Corresponding to a (k1, k2, . . . , kn−1)-monopole a skyline
diagram is drawn: a step function over the interval whose height on the i’th subinterval is
ki. For example, a (3, 1, 2)-monopole in an SU4 theory has diagram

(2)6

?

6

? 6

?

2

2
3

t
t1 t2 t3 t4

.

The Nahm triplet is a triplet of square matrix functions of t of different size over different
subintervals. The size of the Nahm matrices in a subinterval is given by the height of the
skyline in that interval. The matrices must satisfy the Nahm equations in each subinterval.
The Nahm equations are

dT1

dt
= [T2, T3] (3)

and two others by cyclic permutations of 1, 2 and 3.
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There are boundary conditions relating the Nahm matrices in abutting subintervals.
For the purpose of explaining these conditions let us consider the skyline diagram

(4)

6

?

6

?

t = τ

k1

k2

.

The skyline is k1 high to the left of τ and k2 < k1 high to the right of it. Thus, the Nahm
triplet, (T1(t), T2(t), T3(t)), is a triplet of k1×k1 matrices over the left interval and of k2×k2

matrices over the right interval. As t approaches τ from the left, it is required that

Ti(s) =

m k2








Ri/s + O(1) O(s(m−1)/2)

O(s(m−1)/2) T ′

i + O(s)









m

k2

(5)

where s = τ − t, m = k1 − k2 and T ′

i is the non-singular limit of the right interval
Nahm data at t = τ . The m × m residue matrices Ri in (5) must form the irreducible
m dimensional representation of su2. Since the one dimensional representation is trivial,
there is no singularity when m = 1. When k1 is less than k2, the conditions are almost
the same, again there is a pole with residue matrices forming the m = k2 − k1 dimensional
representation of su2 and the k1 × k1 data are submatrices of the k2 × k2 data at the
boundary. The situation when k1 = k2 is very different, but that case will not be required
in this paper.

When some of the ti’s in the asymptotic Higgs field are coincident, the residual gauge
symmetry is enhanced. If two coincide, one U1 factor is replaced by an SU2 factor. If
three coincide, two U1’s are lost and an SU3 gained. Generally the unbroken group is
U r

1 ×K where K is a rank n− r−1 semi-simple Lie group. Since π2(SUn/(Uk
1 ×K)) = ZZ

r

monopole solutions in theories with non-abelian residual theories have fewer topological
charges. However, the monopole solutions still have n − 1 integer labels. Some of these
integers are the usual topological charges. The rest are what are known as holomorphic
charges.

The role of the holomorphic charges is subtle. If two ti’s are coincident, there is a zero
thickness subinterval in the Nahm interval. The boundary conditions for Nahm data in this
situation can be described in terms of those explained above, by formally imagining the
zero thickness subinterval as the zero thickness limit of a subinterval of finite thickness. The
Nahm data on this subinterval become irrelevant in the limit, but the height of the skyline
on vanishing subintervals affects the matching condition between the Nahm matrices over
the subintervals on either side.
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As an example, let us consider SU3 broken to U2
1 . A (2, 1)-monopole has skyline

(6)6

?
2

6
?1

t = τ
.

The Nahm data are 2 × 2 in the left interval and 1 × 1 in the right interval. The Nahm
equations (3) dictate that 1 × 1 data are constant. Therefore, the right interval triplet is
a triplet of imaginary numbers. These numbers are i times the cartesian coordinates of
the ( ,1) part of the (2, 1)-monopole. The boundary conditions imply that the 2 × 2 data
are non-singular at the boundary, t = τ , between the two intervals and, further, that their
entries Ti(τ)

2,2
are the 1× 1 data. The 2× 2 data are singular on the left boundary of the

interval and the residues there form an irreducible representation of su2. Letting the right
hand interval vanish, a SU3 monopole with topological charge two and holomorphic charge
one is obtained. Holomorphic charges will be distinguished from topological charges by
square bracketing them. Thus, this monopole is a (2,[1])-monopole and it has skyline

(7)

t1 t2 = t3

6

?
2

.

The Nahm data are 2 × 2 matrices with a pole on the left boundary but not on the right
one.

In contrast, a (2, 0)-monopole has skyline

(8)

t1 t2 t3

6

?
2

.

The Nahm data are 2 × 2 matrices over the left hand subinterval and have poles at t1
and t2. There is no data over the right hand subinterval. These data are identical to SU2

2-monopole data and correspond to the embedding of an SU2 2-monopole in SU3. The
length of the right hand subinterval does not affect the Nahm data, there is a pole at both
t1 and t2 irrespective of whether t2 = t3 or not. If t2 = t3 the Nahm data correspond to a
(2,[0])-monopole.

These examples demonstrate how the holomorphic charges determine the boundary
conditions and how these boundary conditions can be derived by imagining the non-abelian
case as the zero interval thickness limit of the abelian case. It should be noted that different
holomorphic charges do not necessarily correspond to different monopoles or to different
Nahm data. For example, (3,[1])-monopoles could equally well be called (3,[2])-monopoles.
This ambiguity is discussed, for example, by Weinberg in [21].
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3 Dancer’s family of hyperkähler manifolds

In [4], the moduli space of centred (2, [1])-monopoles is constructed. These monopoles
are charge (2, [1]) SU3 monopoles. They have the skyline diagram (7). They are called
centred because their Nahm data are traceless. The moduli space, M8

0 , is eight dimensional.
The Nahm data for such monopoles are a triplet of 2 × 2 traceless skew-hermitian matrix
function over the interval [−2, 1]. There is a simple pole at t = −2 and the residues
there form the irreducible two dimensional representation of su2. The space of such Nahm
triplets, M5

0 , is five dimensional. The whole of M8
0 is generated by the action of SU2 on

these Nahm data.
In the last Section, for simplicity, the Nahm data described are gauge fixed. While the

gauge fixed Nahm data are a triplet of matrix functions, to form the required SU2 orbit
of M5

0 the quadruplet of matrix functions (T0, T1, T2, T3) is introduced. This quadruplet is
required to satisfy the Nahm equations

dT1

dt
+ [T0, T1] = [T2, T3] (9)

and two others by cyclic permutations of 1, 2 and 3.
The introduction of T0 allows a group action to be defined on the space of (2, [1]) Nahm

data

0G = {g ∈ Cw([−2, 1], U2) : g(−2) = 11} (10)

and its subgroup

0G0 = {g ∈ Cw([−2, 1], U2) : g(−2) = g(1) = 11}. (11)

An action is then defined on (T0, T1, T2, T3) by

T0 7→ gT0g
−1 −

dg

dt
g−1, (12)

Ti 7→ gTig
−1, (i = 1, 2, 3).

If g ∈ 0G0 then the action is a gauge action. The moduli space of uncentred Nahm data,
M12, is the space of gauge inequivalent data. Furthermore, U2 =0 G/0G0 and a U2 action
on the data is given by (12) with g ∈ 0G. A hyperkähler quotient by the centre of this
U2 on M12 centres the Nahm data, giving M8

0 . The remaining SU2 action can be fixed by
setting T0 to zero, reducing (9) to (3) and M8

0 to M5
0 .

There is also SO3 action. It both rotates the Nahm triplet as a vector and gauge
transforms the four Nahm matrices. This action is not tri-holomorphic, it rotates the
complex structures.

The SU2 action on M8
0 is tri-holomorphic and isometric. This means that there is an

induced moment map, µ, from M8
0 to IR

3 formed by the action of a U1 subgroup of SU2.
Dancer’s family of hyperkähler manifolds is the family of hyperkähler four-manifolds

M(λ) = µ−1(λ)/U1, (13)
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where λ ∈ IR
3. The SO3 action on M8

0 is not an isometry of M(λ), rather, it acts on λ to
give an isometry between M(λ) and M(Rλ) where R is an SO3 matrix. M(0) is a double
cover of the Atiyah-Hitchin manifold.

The hyperkähler manifolds M(λ) are hyperkähler quotients of a monopole moduli
space. It will now be shown that they are the infinite mass limit of another monopole
space. The moment map µ is known explicitly. If the U1 subgroup is the subgroup which
fixes iσ3 when SU2 acts on su2 in the adjoint representation, the moment map µ : M8

0 → IR
3

given by this U1 action is

µ : (T0, T1, T2, T3) 7→ (−trace(T1(1)iσ3),−trace(T2(1)iσ3),−trace(T3(1)iσ3)). (14)

The level set µ−1(λ) consists of Nahm data whose entries Ti(1)
2,2

are iλi/2 at t = 1. For
(2, 1)-monopoles, (6), the data in the right hand interval are given by the Ti(1)

2,2
entries

of the left hand Nahm data at the boundary. Thus, the hyperkähler manifolds M(λ) are
the moduli spaces of (2, 1)-monopoles with the ( , 1)-monopole fixed. The ( , 1)-monopole
can be fixed by taking its infinite mass limit. The monopole mass is proportional to the
length of the corresponding interval, so this limit is

(15)-

.

The vector λ is now related to the position of the ( , 1)-monopole: the monopole whose
position is fixed. When the position of the ( , 1)-monopole is fixed in the centre, the relative
metric of the (2, )-monopole is Atiyah-Hitchin. That is not surprising. It has been noted,
[2, 14], that if three SU2 monopoles are lined up, with suitable relative phases, the metric
is Atiyah-Hitchin.

An advantage of this description of M(λ) is that its asymptotic behaviour may be
calculated using the methods of [19, 8, 16], that is by approximating the monopoles by
point particles and calculating their long range interactions. By calculating the asymptotic
metric for (2, 1)-monopoles and then taking the infinite mass limit, it is found that on M(λ)
the asymptotic metric is

ds2 = V1dr · dr + V −1
2 (dχ + W · dr)2 (16)

V1 =
1

2
−

1

r
+

1

8r1

+
1

8r2

V2 = 1 −
1

r
+

1 − 4r1r2

8r1r2 + 2r1 + 2r2

W = −w +
1

8
w1 +

1

8
w2

6



where r is the separation vector for the two (2, )-monopoles, r is its length, χ is the
relative phase, r1 and r2 are the distances between each of the two (2, )-monopoles and
the ( , 1)-monopole. These distances are well defined in the point particle approximation.

(17)

x

h

x
�

�
�

�
�

�
��

@
@

@@

!!!!!!!!!

R

/

1

r

r1

r2

The Dirac monopole potential w is defined so that curl(w) = grad(1/r). For w1 and w2 r
is replaced respectively by r1 and r2 and the curl and grad performed with respect to the
pertinent separation vector. This metric is obviously singular as r → 0. The form (16) is
valid only for large r.

4 A new family of hyperkähler manifolds

Another advantage of this description is that it immediately suggests a new family
of four dimensional hyperkähler manifolds, N(λ, µ). In Section 3, it is shown that M(λ)
is a fixed monopole space derived from the moduli space of charge (2, 1) SU3 monopoles.
This suggests that a new family of hyperkähler manifolds could be constructed by fixing
monopoles in the moduli space of charge (1, 2, 1) SU4 monopoles. A (1, 2, 1)-monopole has
skyline

(18)

t1 t2 t3 t4

.

The corresponding Nahm data are 2 × 2 matrices in the middle subinterval and 1 × 1
matrices in the left and right subintervals. The Nahm data in the left subinterval are equal
to the entries Ti(t2)2,2

of the 2 × 2 data, the Nahm data in the right subinterval are equal
to the entries Ti(t3)2,2

. All the Nahm data are analytic.
The limit where the subintervals [t1, t2] and [t3, t4] become infinitely long gives the

(1, 2, 1) fixed monopole spaces:

(19)� -

.

They are labelled by two vectors, λ and µ, the positions of the two fixed monopoles: the
(1, , )-monopole and the ( , , 1)-monopole. These spaces will be denoted N(λ, µ). The
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SO3 action on the charge (1, 2, 1) moduli space is isometric and rotates the two vectors
λ and µ. In the infinite mass limit of the (1, , )-monopole and the ( , , 1)-monopole, the
action of some R ∈ SO3 gives an isomorphism between N(λ, µ) and N(Rλ, Rµ). Thus,
N(λ, µ) is a three-parameter family of hyperkähler manifolds. If λ and µ are parallel then
a U1 subgroup of the SO3 action fixes N(λ, µ) and so N(λ, µ) has a U1 isometry.

Using the same methods as before, the asymptotic form of the N(λ, µ) metric can be
calculated. It is

ds2 = V1dr · dr + V −1
2 (dχ + W · dr)2 (20)

V1 =
1

2
−

1

r
+

1

8r1
1

+
1

8r1
2

+
1

8r2
1

+
1

8r2
2

V2 = 1 −
1

r
+

1

2

r2
1r

2
2 + r2

1r
1
2 + r1

1r
1
2 + r1

1r
2
2 − 4r1

1r
2
1r

1
2r

2
2

4r1
1r

2
1r

1
2r

2
2 + r1

1r
2
1r

1
2 + r1

1r
2
1r

2
2 + r1

1r
1
2r

2
2 + r2

1r
1
2r

2
2

W = −w +
1

8
w1

1 +
1

8
w1

2 +
1

8
w2

1 +
1

8
w2

2

where everything is defined as before, except that now there are two fixed monopoles and
the distances from the two ( , 2, )-monopoles to the first of these have been denoted by r1

1

and r1
2 and the distances to the second by r2

1 and r2
2.

(21)

x

h

h

x
�

�
�

�
�

�
��

@
@

@@

!!!!!!!!!

�������

B
B
B

B
B

R

1

9

Mr2
2

r1
1

r1
2

r

r2
1

Examining the asymptotic formula, it is interesting to see how flat the N(λ, µ) metrics
are. All the metrics are flat up to the second order in 1/r.

In the limit where λ and µ have infinite length, one would expect N(λ, µ) to approach
the Atiyah-Hitchin manifold. This is because, in the limit where the two fixed monopoles
are infinitely far away, one expects the ( , 2, )-monopole to interact like ordinary SU2

2-monopoles. Equivalently, if λ and µ have infinite length, the Nahm data are now singular
at the boundaries. Similarly, in the limit where one of the vectors, say µ, becomes infinitely
long, one expects N(λ, µ) = M(λ).
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5 Non-singularity of the new hyperkähler manifolds

It is not clear from the discussion in Section 4 that the (1, 2, 1)-moduli space remains
non-singular as the masses of the (1, , )-monopole and the ( , , 1)-monopole become infi-
nite. Dancer’s family; M(λ), is known to be non-singular because it can be constructed
using a hyperkähler quotient. Let us now imitate this by constructing N(λ, µ) using a
hyperkähler quotient. Let us consider the moduli space of ([1], 2, [1])-monopoles. These
monopoles are topological charge two SU4 monopoles in the theory where the residual
symmetry is SU2 × U1 × SU2. The skyline diagram is

(22)

t = −2 t = 2
.

The Nahm data are 2 × 2 matrices analytic over the whole interval [2, 2]. There are two
commuting SU2 actions, one at each boundary. These data correspond to ([1], 2, [1])-mono-
poles. In this Section, the moduli space of ([1], 2, [1])-monopoles is used to construct
N(λ, µ) in the same way as the moduli space of (2, [1])-monopoles is used to construct
M(λ). It is found that the manifold N(λ, µ) is free of singularities as long as λ 6= µ.

The charge ([1],2,[1]) Nahm data are quadruplets (T0, T1, T2, T3) satisfying the Nahm
equations (9) and acted on by the gauge group

0G0 = {g ∈ Cw([−2, 2], U2) : g(−2) = g(2) = 11}. (23)

The two larger groups,

0G = {g ∈ Cw([−2, 2], U2) : g(−2) = 11}, (24)

G0 = {g ∈ Cw([−2, 2], U2) : g(2) = 11} (25)

are defined. These are subgroups of G = {g ∈ Cw([−2, 2], U2)}.
Two U2 actions are given by 0G/0G0 and G0/0G0. These actions commute. The whole

U2 × U2 action could be described as the G/0G0 action. The centre is U1 × U1. The Nahm
data are fixed under the central element represented by the constant function g(t) = eiθ

112.
The element represented by g(t) = eiθt

112 sends (T0, T1, T2, T3) to (T0− iθ112, T1, T2, T3) and
generates the vector field (−i112, 0, 0, 0). The hyperkähler quotient by this action centres
the Nahm data. This space of centred data will be called N12

0 . It is twelve dimensional.
It has an isometric tri-holomorphic SU2 × SU2 action. There is also an SO3 action, which
rotates (T1, T2, T3) as a three-vector and commutes with the SU2 × SU2 action.

A U1 × U1 subgroup of the SU2 × SU2 is represented by the elements

α(t) = e
iθ
4

(t+2)σ3 , β(t) = e
iθ
4

(2−t)σ3 . (26)

The moment map, µ : N12
0 → IR

3 × IR
3 for the action of this subgroup is

µ : (T0, T1, T2, T3) 7→ (λ, µ) (27)

9



where
λ = (−trace(T1(−2)iσ3),−trace(T2(−2)iσ3),−trace(T3(−2)iσ3)) (28)

and
µ = (−trace(T1(2)iσ3),−trace(T2(2)iσ3),−trace(T3(2)iσ3)). (29)

By the same argument as in Section 3, N12
0 reduces to N(λ, µ) under the hyperkähler

quotient:
N(λ, µ) = µ−1(λ, µ)/U1 × U1 (30)

The condition that λ and µ must satisfy, in order for the U1 ×U1 action to be free, are
now needed. These are the conditions for the non-singularity of the N(λ, µ).

Let us consider the solutions of the Nahm equations. Using the G action, T0 is gauged
to zero. This leaves an eight dimensional space acted on by constant elements of G and
by the SO3 action. By acting with the SO3 the t invariants: trace(T1T2), trace(T2T3) and
trace(T3T1), can be set to zero. This means that if the Ti are written as

Ti =
1

2
ifini · σ (i = 1, 2, 3), (31)

the ni are constant orthonormal vectors and so the functions f1, f2 and f3 satisfy

df1

dt
= f2f3 (32)

and two others given by cyclic permutations of 1, 2 and 3. The SO3 action can be com-
pletely fixed by requiring that

f 2
1 ≤ f 2

2 ≤ f 2
3 . (33)

The remaining group action is that of constant elements of G. It is fixed by setting
n1 = (1, 0, 0), n2 = (0, 1, 0) and n3 = (0, 0, 1). The resulting subspace of the moduli space
N12

0 will be called N3. Since the SO3 action on N12
0 is not free, N3 is not a manifold.

Equations (32) are the well known Euler top equations and can be solved in terms of
Jacobi elliptic functions as

f1(t) = ±
Dcnk(D(t + τ))

snk(D(t + τ))
, f2(t) = ±

Ddnk(D(t + τ))

snk(D(t + τ))
, f3(t) = ±

D

snk(D(t + τ))
, (34)

where 0 ≤ k ≤ 1 is the elliptic modulus, D and τ are arbitrary real constants and the signs
are all minus or exactly two of them are plus. Analyticity of the data requires that τ > 2
and D(τ + 2) < 2K(k) where 4K(k) is the period of snk. Further solutions can be found
by changing the sign of all three fi’s and sending t to −t. The analyticity requirements
on these further solutions are that τ < 2 and D(τ + 2) < 2K(k). This exhausts all the
solutions consistent with the various conditions which have been imposed.

Let us now consider the action of the α(t) and β(t) given by (26). Since T0 is zero on N3

the only element in the group generated by α(t) and β(t) which could have a fixed point in
N3 is the constant one αβ(t) = eiθσ3 . For αβ to have a fixed point in N3 it is necessary and

10



sufficient that f1(0) = f2(0) = 0. This only occurs if k = 1 and τ = ∞. The solutions (34)
are then f1(t) = 0, f2(t) = 0 and f3(t) = D and the hyperkähler quotient gives the space
N((0, 0, D), (0, 0, D)). This means N(λ, µ) with λ = µ = (0, 0, D) may have a singularity.
By considering the action on N3 of SU2×SU2, it is seen that the only points in N12

0 where
the action of α(t) or β(t) is not free are those points in the SO3× (constant elements of G)
orbit of the fixed points occuring in N3. Therefore, the only potentially singular N(λ, µ)
manifolds are N(λ, λ). In the fixed monopole description, these are the manifolds of
coincident fixed monopoles.

6 Other fixed monopole spaces

Following the example of M(λ) and N(λ, µ) it is natural to ask whether further non-
singular fixed monopole spaces might be constructed by fixing larger numbers of monopoles.
For example, a large class of four dimensional hyperkähler manifolds might be derived
from the (k1, 2, k2)-monopole moduli spaces. One might conjecture that, as long as the
(k1, , )-monopoles and the ( , , k2)-monopoles are not fixed in coincident positions, new
multi-parameter families of four dimensional hyperkähler manifolds could result.

More complicated mixtures of fixed and unfixed monopoles could be used to give fixed
monopole spaces of dimensions higher than four. Fixed charges are distinguished from
other charges by enclosing them in curly brackets. It could be conjectured that for r > 1
the ({k1}, l1, l2, . . . , lr, {k2}) spaces are non-singular when the (k1, , . . . , , )-monopoles and
the ( , , . . . , , k2)-monopoles are each fixed so they are not coincident with monopoles of the
same type. Mixtures of fixed, topological and holomorphic charges might be considered.
An example is the space (1, 2, [1]):

(35)

.

It is an interesting space, it has a tri-holomophic SU2 isometry and an isometric U1 action
which rotates the complex structures.

The asymptotic metrics can always be constructed for fixed monopole spaces using
the point monopole methods of [19, 8, 16]. Generally, these asymptotic fixed monopole
metrics will be singular. This is not the case for the ({k}, 1) space. In the limit of infinite
(k, )-monopole mass the (k, 1)-monopole asymptotic metric is the k centre multi-Taub-
NUT metric of Hawking [12]. The positions of the k centres are the k fixed monopole
positions. Since the multi-Taub-NUT metric is generically non-singular and is the same
asymptotically as the (k, 1) metric, it seems likely that they are the same everywhere.
Certainly, the (1, 1)-monopole metric is known explicitly [3, 7, 15] and the ({1}, 1) metric
is Taub-NUT. The (1, 1, 1) metric is also known and the infinite mass limit ({1}, 1, {1}) is
two centre multi-Taub-NUT.
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7 Applications

The N(λ, µ) are gravitational instantons. Gravitational instantons are asymptotically
flat solutions of the vacuum Einstein equations. All asymptotically flat four dimensional
hyperkähler manifolds are gravitational instantons. As noted earlier, N(λ, µ) approaches
flat space very rapidly.

Fixed monopole spaces are relevant to (2+1) dimensional quantum field theories. In a
celebrated recent paper, [11], Hanany and Witten propose a correspondence between three
dimensional supersymmetric gauge theories and moduli spaces of magnetic monopoles. In
the language of [11] the fixed monopole spaces correspond to brane configurations in which
some of the threebranes are infinitely extended in the direction along which the fivebranes
are separated. Thus, N(λ, µ) corresponds to the configuration

(36)

6

?

6

?

λ
µ

and to quantum field theories with hypermultiplets of masses λ and µ. The Dancer space
M(λ) corresponds to

(37)6

?
λ

and to quantum field theories with hypermultiplets of mass λ. These correspondences are
described generally in [11]. Our reinterpretation of M(λ) as a fixed monopole moduli space
gives an explanation, in the spirit of [11], of the appearance of M(λ) in [20].

Appendix: a note on ([1], 2, [1])-monopoles

The moduli space of ([1], 2, [1])-monopoles was used in Section 5 to prove the non-
singularity of N(λ, µ). The discussion in Section 5 would also be useful in studying
([1], 2, [1])-monopoles per se. All ([1], 2, [1])-monopoles are D2 symmetric about some axes.
The monopole can be orientated by imposing D2 symmetry about particular axes. By
imposing D2 symmetry about the cartesian axes, the monopoles are restricted to a three
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dimensional geodesic submanifold of the moduli space: which will be called XI. The space
N3 of Nahm data described above is the quotient of the full moduli space by the full SO3

action and since this action is not free, N3 is not a manifold. Instead of quotienting the
space of Nahm data by SO3, D2 symmetry is imposed on it, giving XI. The D2 symme-
try conditions are identical to (31) but without the ordering condition (33). Thus, XI is
composed of the six copies of N3 obtained by permuting the inequality (33). These copies
are joined at the planes where two of the fi’s are equal. These data, where two of the fi’s
are equal, correspond to axially symmetric monopoles. The planes intersect on the lines of
spherical symmetry. An example of a line of spherical symmetry is

f1(t) = f2(t) = f3(t) = −
1

t + τ
(38)

where τ > 2.
There are exceptional lines in XI given by letting k = 1 and taking τ to infinity. These

lines are notable in the context of Section 5 as the fixed points of the U1×U1 action. These
are the lines where one fi is constant and the other two are zero. They meet at the point
where all three fi are zero. These lines correspond to the exceptional ([1], 2, [1])-monopoles
produced by embedding two SU2 1-monopoles.

In their paper [6], Dancer and Leese studied the head on collision of (2, [1])-monopoles.
These collisions are described by geodesics on a two dimensional manifold that they call Y .
Our XI is the analog of Y for ([1], 2, [1])-monopoles. The boundaries of XI occur when (D, τ)
attain the bounds imposed by analyticity. When (D, τ) attain these bounds, the Nahm
data has a pole at one or other end. This means these boundaries are actually copies of
the space Y . In fact, the whole of XI has eight copies of Y at its boundaries.

We can picture XI. Take the IR
3 cartesian axes and thicken them. Divide the surfaces of

these thickened axes by tracing their intersections with the xy, yz and zx planes. The eight
surface elements bounded by these lines are the eight copies of Y . The interior of the thick-
ened axes is XI. The cartesian axes themselves are the lines of embedded monopoles. The
origin is the spherical embedded monopole. The intersections of the six planes x = ±y,
y = ±z and z = ±x with XI are the planes of axially symmetric monopoles. The lines
x = ±y = ±z are the lines of spherically symmetric monopoles. This picture of XI is not
metrically correct.
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