
Recursion and Cognitive Science:
Data Structures and Mechanisms

David J. Lobina (davidjames.lobina@urv.cat)
CRAMC, Department of Psychology (URV)\Department of Philosophy (UB)

Ctra. de Valls s\n, 43007, Tarragona, Spain

José E. Garcı́a-Albea (jegarcia.albea@urv.cat)
CRAMC, Department of Psychology, Ctra. de Valls s\n

43007, Tarragona, Spain

Abstract
The origin and application of Recursion in the formal sciences
is described, followed by a critical analysis of the adoption
and adaptation of this notion in cognitive science, with a focus
on linguistics and psychology. The conclusion argues against
a widespread mistake in cognitive science, and recommends
recursion should only be used in reference to mechanisms.
Keywords: Recursion; Hierarchy; Iteration; Combinatory
Operations; Data-structures.

Introduction
Recursion has been recently identified as the defining fea-
ture not only of natural language (Hauser, Fitch, & Chom-
sky, 2002), but of human cognition overall (Corballis, 2007).
However, it has received less than a satisfactory characterisa-
tion. More often than not, it has been applied to the structural
complexity of some of the representations the human mind
seems to have and use, irrespective of the mechanisms opera-
ting over these representantions. This is in clear discrepancy
with the formal sciences, where recursion originated. The
following section identifies its origin and describes its em-
ployment in mathematical logic and computer science. Sub-
sequent sections provide critical descriptions of its adoption
in cognitive science, with particular attention to linguistics
and psychology. The last section concludes the essay.

Recursion and the Formal Sciences
The word “recursion” entered the English language in the
17th century as an adaptation of the past participle of the
Latin verb “recurrere”. It meant ‘a running back, backward
course, return’ and was used in this sense by Robert Boyle in
his New Experiments Physico-Mechanical: ‘the recursions of
that Pendulum which was swinging within the Receiver’.

By the early 20th century this use was ‘rare, and obso-
lete’ and was so recorded in the 1933 edition of the Oxford
English Dictonary. Concurrently, however, mathematicians
were starting to use this term in a different, more technical,
manner.

Recursion and Mathematical Logic
The more technical designation made reference, as Soare
(1996) shows, to a 19th century technique: definition by in-
duction1. Thus, a function is recursive if it’s defined by induc-

1We here focus on the original interpretation only —see Soare’s
paper for more details.

tion; that is, if it’s defined in terms of itself: the characteristic
feature is that each value is specified in terms of previous va-
lues that the same function has already calculated.

Below follows a recursive definition of the class of facto-
rials, i.e., n! = n× n− 1× n− 2 . . .× 3× 2× 1, where n is a
natural number:

Def. n!
if n = 1, n! = 1 (base case)
if n > 1, n! = n× (n−1)! (recursive step)

The calculation of the factorial of, for instance, 4 (i.e.,
4!= 4× 3!), sees the factorial function calling itself in or-
der to calculate the factorial of 3, and so on until it reaches
the factorial of 1, the base case, effectively terminating the
recursion.“Self-reference” is therefore the prominent feature,
making recursion particularly apt to define infinite sets2.

Recursion is also used in what mathematicians call “induc-
tive proofs”, which are usually employed to prove if a given
property applies to, for example, every natural number. It
proceeds as follows: first we show that a given statement is
true for 1, then we assume it is true for n, a fixed number (the
inductive hypothesis), and finally we show it’s therefore true
for n + 1 (the recursive step). If every step is followed cor-
rectly, we conclude the statement is true for all numbers. An
inductive proof employs recursion, but it should not be confu-
sed with it proper. After all, a recursive definition involves no
“inductive hypothesis”.

Recursion and Computer Science
Computer scientists’ employment of recursion is similar, al-
though it differs in subtle but significant ways. This seems to
follow from the different aims these two disciplines have3.

It appears to be customary to describe what mathemati-
cians study as “declarative knowledge”, the “what is”, while
computer scientists focus on “imperative (procedural) know-
ledge”, the “how to”. Consequently, computer scientists are
under a number of constraints (inter alia: memory limitations,
computational complexity, etc.; i.e., efficiency) that mathe-
maticians don’t seem to worry too much about. Specific re-

2Cf.: ‘[t]he power of recursion evidently lies in the possibility of
defining an infinite set of objects by a finite statement’ (Wirth, 1986,
p. 136).

3This section draws heavily from Abelson and Sussman (1996).

1347

percussions for the role of recursion therein follow, but some
brief definitions must precede their description.

Computer “procedures” describe the rules for manipulating
data; they are much like mathematical functions, with the dif-
ference that the former must be effective. Each datum is cal-
led an “expression”, which can either be a primitive element,
or two or more elements linked by an operator. We interact
with a computer language by typing expressions via an “in-
terpreter”, which “evaluates” these expressions. Every eva-
luation follows the basic cycle: a) evaluate all the elements
of an expression; if it’s a compound, evaluate all the elements
of the subexpressions; and b) apply the procedure of the ope-
rator to the operands.

The first step establishes that in order to evaluate a com-
plex expression, the interpreter must evaluate each element
of the subexpression first. The evaluation rule contains there-
fore an invokation of the rule itself; it’s a recursively-defined
procedure.

More significantly, computer scientists have studied what
it means for a “process”(the rules of manipulation procedures
describe) to proceed recursively. Take the recursive definition
of the factorial functions from the precedent section. The fol-
lowing is the process executed by this procedure to calculate
the factorial of 4:

(factorial 4)

(4 × (factorial 3))

(4 × (3 × (factorial 2)))

(4 × (3 × (2 × (factorial 1))))

(4 × (3 × (2 × 1)))

(4 × (3 × 2))

(4 × 6)

24

As the shape of the process reveals, there is an expansion
followed by a contraction, as chains of deferred operations
are built up before they are orderly performed —some sort of
memory is needed to keep track of these operations. It’s this
accumulation of unfinished tasks, the result of a given opera-
tion calling itself (self-reference), that characterises recursive
processes.

There exist alternative ways to calculate factorials, though.
A related and relevant method starts by multiplying 1 by 2,
then the result by 3, then by 4, until we reach n. The process
keeps a running product together with a counter from 1 up to
n, and the stipulation that n! is the value of the product when
the counter exceeds n finalises it. The resulting process is
“iterative”:

(f actiter 4 1 1)
(f actiter 4 2 1)
(f actiter 4 3 2)
(f actiter 4 4 6)
(f actiter 4 5 24)

The first digit (4) indicates the number whose factorial we
want to compute. The second and third represent the counter
and the product, respectively, and both start at 1. The process
proceeds thus: the product is multiplied by the counter, then
the counter is increasing by 1, the previous product is now
multiplied by the new counter, and so on until the counter
reaches a value higher than the number whose factorial the
process is calculating. The product at that point is the result
of the operation.

Recursion and iteration are closely related. In fact, they
are both types of recurrence: both involve the repetition of
an operation (and both need the establishment of termination
conditions). The former, however, involves self-reference and
as a result chains of unfinished tasks, placing a heavy burden
on memory. In the case of the latter, the state of an itera-
tive process can be summarized at any stage by the number
of variables plus the fixed rule that establishes how the va-
riables are updated from one state to another. This is not pos-
sible with a recursive process, as the state at any stage must
take into consideration the deferred operations stored in me-
mory. In general, this makes iteration more computationally
efficient, but certain tasks naturally call for a recursive rather
than an iterative process.

The recursive method employed to compute factorials was
based on the rather subtle observation that we could solve
the problem by reducing it to one or more subproblems iden-
tical in structure but simpler to solve (Roberts, 2006, p. 4).
A problem must in fact meet three properties in order to be
recursively solved: a) the original problem must be decom-
posable into simpler instances of the same problem, b) the
subproblems must be so simple that they can be solved wi-
thout further subdivision; and c) it must be possible to com-
bine the results of solving these subproblems into a solution
to the original problem (Roberts, 2006, p. 8). Consequently,
the description of any recursive solution —the procedure—
must be general enough so that it applies to the original pro-
blem and any subproblems; it must be able to call the original
method with new arguments as it proceeds.

Our recursive solution to compute factorials met all the cri-
teria, but it took a subtle observation to do so. That is, even
though we managed to divide the original problem into hie-
rarchically organised subtasks, there was prima facie no sign
of such hierarchy in the data themselves. There are tasks, ho-
wever, where an internal hierarchy is evident and a recursive
strategy is in principle the most natural solution.

Paradigmatic cases include problems, functions or data
structures that are already defined in recursive terms (Wirth,
1986, p. 135). By a recursive data structure, we understand,
following the definition of the U.S. National Institute of Stan-
dards and Techonology, an object or class ‘that is partially
composed of smaller or simpler instances of the same data
structure’4. That is, a structure that includes an abstraction of
itself, and “trees”, “lists” and the like constitute the prototy-
pical cases —trees inside other trees, or lists inside lists.

4URL: http://www.itl.nist.gov/

1348

This introduces a distinction between “structural recur-
sion” and “generative recursion” and much work has been
devoted to work out how close the fit between the two is.
That is, do recursively-defined structures always call for re-
cursive mechanisms to operate over them? The answer is
yes in object-oriented programming languages, as the form
of the data establishes the form of the algorithm, but it is
not automatic in other cases. In general, there is in fact no
guarantee that a recursive algorithm is the best way to solve
a recursively-defined problem, as iteration might be a better
option.

There is therefore a natural fit between hierarchy and recur-
sion, but it’s a matter of research to work out if the orbiting
conditions of each problem suggest recursion or iteration.

Recursion and Cognitive Science
Ever since the advent of the representational-computational
paradigm, the formal sciences have informed the study of
cognition to a great extent, and recursion hasn’t been an ex-
ception. More often than not, however, scholars have exclu-
sively focused on the data structures the mind seems to have
and use, rather than on the mechanisms operating over them.
This clearly departs from the formal sciences, and this shift
hasn’t really been properly justified.

The following subsection provides examples from linguis-
tics, where its treatment has been the most prominent. Fol-
lowing subsections briefly describe possible applications in
other domains, such as higher-order cognition, or central sys-
tems, and the final section ends the essay with a set of conclu-
ding remarks.

The analysis will focus on two of the three levels of ex-
planation Marr (1982) outlined: a) the computational, which
provides an abstract characterization of the domain under
study, focusing on the mapping between one type of informa-
tion into another, including the abstract properties that derive,
and b) the algorithmic, which focuses on how this mapping is
actually performed —it attempts to determine the appropriate
representation of the input and output, and the algorithm em-
ployed for the transformation.

The following subsections implicitly support a Classical
architecture, where both representations and computations
are in fact postulated. It is for others to establish how any
of the following bears for a connectionist outlook, but no im-
plications can be legitimately derived from what we say.

Recursion and Linguistics
Work under this epigraph is an example of Marr’s computa-
tional level, and recursion has featured therein ever since the
1950’s. Emile Post’s “rewrite rules” were at the time used to
account for how sentences were generated:

(a) S→ NP VP

(b) NP→ D N

(c) VP→ V NP

(d) NP→ NP PP

(e) VP→ V S

The last two rules are recursive, as categories to the left
of the arrow are reintroduced on the right hand side. The
recursion in (d) is direct: the NP rule rewrites NP as a re-
sult. In (e) the recursion is indirect: an S rule, (a), generates
NP and VP, and (e), a VP rule, reintroduces S. These rules
can generate embedded structures such as ‘The guy [with the
green car]’, and ‘John thinks (that) [Michael killed the poli-
ceman]’, respectively. Recursion then applied to the rules of
formation, much like in the formal sciences. However, since
the advent of the Minimalist Program (MP; Chomsky, 1995),
one single operation is postulated: Merge. The role of recur-
sion has varied since then, and while some scholars employ it
to characterise the operations of Merge, the majority focus on
the structures Merge purportedly operates over. We provide
below critical descriptions of recent examples of both views.

Recursive Structures Pinker and Jackendoff (2005, PJ) de-
fine recursion as, firstly, a ‘procedure that calls itself’, but
then add it also applies to ‘a constituent that contains a consti-
tuent of the same kind’ (p. 203); self-embedding. We provi-
ded examples of self-embedding above, which were genera-
ted by clearly recursive rules in the 1950’s. However, PJ talk
of recursive structures independent of the mechanisms that
generate them, and this is rather widespread in the literature.
Boeckx and Uriagereka (2007), for instance, point out that
embedding is responsible for the recursive characteristics of
language, but provide no description of the recursiveness of
the mechanisms responsible for the generation of embedded
structures.

Much can be said about PJ’s definition. ‘A constituent in-
side a constituent of the same kind’ has kind refer to the ele-
ment heading a phrase, making an NP inside another NP a
case of self-embedding, but an NP inside a VP not quite.
Yet, one of the fundamental results in linguistics has been
the discovery that all phrases (NPs, VPs, etc.) have the same
configuration: an asymmetric [Spec [Head - Comp]] struc-
ture, regardless of which element heads the phrase. In this
respect, all structures manifest self-embedding: a sentence is
ultimately a collection of hierarchically organised phrases in-
side phrases of the exact, same geometrical shape. Nesting is
therefore the most prominent feature of tree representations
of sentences, and recursive mechanisms would in principle
care little about which element heads each phrase.

And yet for the most part linguists talk of recursion with no
reference to mechanisms. Neeleman and Van de Koot (2006),
for instance, identify recursion with nested structures: ‘recur-
sion will result if there is a set of primitive trees that can be
combined into a structure in which the root node is repea-
ted in the yield’ (ft. 5, p. 1530). We are not told how these
primitive trees are actually combined, so it’s impossible to
establish if the combination is recursive or not — i.e., if re-
cursion “results”. The onus seems to be on the structures that
are repeated, that recur, as Hinzen (2008) explicitly states: ‘it

1349

is only particular domains of syntactic organization that pro-
ductively “recur” at all’ (p. 359). Recur is a rather poor choice
of words; Recurse would be the right word to use, but there’s
no indication he has anything other than recurrence in mind.

This is not an isolated case; many other scholars use the
term recursion to actually mean recurrence. Medeiros (2008)
contains myriad mentions of recursion, recursive, etc., and an
early appearance has it that ‘certain consistent patterns in re-
cursion’ amount to ‘repeated structural “templates”’ (p. 153).
Immediately after, the phrase “recursive templates” substi-
tutes “repeated structural templates”, and the rest of the paper
analyses the geometrical properties of syntactic trees, with an
emphasis on “the minimal template structure” (perhaps part
of the primitive trees mentioned above), apparently needed to
‘have recursion at all’ (p. 174). The phrase “recursive shape”
appears throughout the paper, but it refers to the geometrical
shape of nested tree represetantions.

The obvious point to make is that recursion is being applied
to structures even if no indication is given as to how any of
these are actually generated. And yet, this is not the situation
we find in the 1950’s when recursion was first employed in
linguistic studies.

Recursive Mechanisms In the 1950’s recursion was used
in reference to mechanisms: ‘the output (of the language ac-
quisition device) is a system of recursive rules’ (Chomsky,
1967, p. 455). As Tomalin (2007) shows, Chomsky argued
the need for a grammar to have ‘recursive steps’ as early as
1956; ‘recursive devices’ were needed, it was then argued, in
order for the grammar to be able to ‘produce infinitely many
sentences’. It has been ‘conventionally assumed’, as Toma-
lin puts it (2007, p. 1785), that recursive components allow
a grammar to generate a potentially infinite set of syntactic
structures. This is however not reason enough to employ re-
cursion, as iteration may suffice. One needs to add that syn-
tactic structures are hierarchically organised, which certainly
calls for a recursive mechanism. A few examples will illus-
trate5.

The introduction to Maratz, Miyashita, and O’neil (2000),
for instance, states that the ‘combination of units in language
is recursive’ (p. 3), but the actual example they use actually
isn’t. According to them, the derivation of The man saw the
cat starts by merging the and cat, ‘the result of (this) combi-
nation becomes a unit for further combination, here with the
word saw’ (ibid.). As described, the operation is strictly re-
current, but not necessarily recursive. Things don’t improve
if we add, following Chomsky (1995, p. 248), that Merge
‘embeds (an object) within some construction . . . already for-
med’. That merely makes Merge an operation that embeds
elements into other elements, but it doesn’t follow it’s recur-

5Tomalin (2007) analyses how recursion was employed in ma-
thematical logic and its influence in syntactic theory. However, he
doesn’t consider its employment in computer science and its poten-
tial influence in cognitive science. He therefore focuses on how to
recursively define the operations of Merge (the procedure), but not
on whether the process his recursive definition describes proceeds
recursively (see supra).

sive. In order for Merge to apply recursively, the derivation
must contain chains of deferred operations.

Di Sciullo and Isac (2008) outline the operations of Merge
in some detail, which allows us to see if it applies recursively.
However: ‘Merge is recursive, where the output of Merge
may subsequently be submitted to Merge with other elements
yielding a further constituent’ (ibid., p. 261). This definition
is incorrect: it merely describes a recurrent operation.

Their description of Merge merits some attention, though.
A derivation starts with a Numeration —a list of lexical items
out of which Merge will yield a syntactic structure. There are
two types of Merge: External (EM; it takes two objects from
the Numeration and merges them) and Internal (IM; it takes
an element from an already-built object and moves/copies it
to a different location in the structure it’s constructing); both
can only operate over two objects at a time. As they describe
it, EM ‘iteratively selects items from the numeration, one by
one, until the numeration is exhausted and a complex object
is formed that contains all of the items that started out as in-
dividual elements’ (Di Sciullo & Isac, 2008, p. 261). Quite
right: as there are no deferred operations, EM is clearly not
recursive, even if they seem unaware of the discrepancy.

IM is another matter, though. As soon as EM introduces
an object that will be moved/copied to another location later
on by IM, a chain containing a deferred operation is crea-
ted. It then seems that recursion is a property of IM only,
which it has surprisingly only been mentioned in passing:
Epstein and Hornstein (2000) mention that recursion is ‘re-
legated to the transformational (i.e., movement) component’
(p.xii), while Soschen (2008) states that a ‘relation between
individuals may constitute a phase and induce movement (re-
cursion)’ (p. 212).

Thus, recursion appears to apply in the operations of IM
only, but it’s not clear how promiscuous a property of IM it is.
This depends on a number of things: how many elements trig-
gering movement are introduced in the derivation, when they
are introduced and in which order the movement/copying
operations apply. Movement may well apply iteratively ra-
ther than recursively if these orbiting conditions don’t create
chains of deferred operations.

Coda The employment of recursion in linguistics clearly
departs from the formal sciences in one respect: the focus
lies on data structures, rather than on the mechanisms these
structures call for. As Roberts (2006, p. 7) puts it: ‘one needs
to recognise that “recursiveness” is a property of the solution
to a problem and not an attribute of the problem itself’.

As a caveat, one could also talk of “structural” and “ge-
nerative” recursion, but why multiply terms unnecessarily?
When referring to “recursive structures”, linguists have ei-
ther self-embedding, nesting, or simply recurrence in mind,
so why not use those terms instead? Further, some structures
described as recursive may well not be generated recursively,
an inconsistency that ought to be avoided.

1350

Psycholinguistics
Most studies of syntactic processing have focused on how
new material is added to the already-built structure as the par-
ser proceeds (i.e., where it is attached), but no-one has so far
probed if the parser’s structure-building mechanism, for there
must be one, proceeds recursively or not6.

Some factors suggest recursive processing to be at least
possible. As a sentence, a TP (or else), is an asymmetric
phrase structure composed of other asymmetric structures
(NPs, VPs, etc.), we are then faced with a complex problem
(processing a TP), easily reducible to simpler instances of the
same problem (processing NPs, VPs, PPs, in succession); a
recursive solution is prima facie ideal.

Parsing a sentence therefore involves building a TP phrase,
but its completion depends upon the completion of every in-
ternal phrase. Both a recursive and a non-recursive strategy
can in principle solve the same task; thus, figuring out the
two strategies would allow us to predict how subjects would
proceed at any given moment. Different types of structures,
leading to different predictions, could then be devised and
tested7.

Recursion and General Cognition
Much like in linguistics, many cognitive scientists have also
applied recursion to both data structures and mechanisms,
and some of the same problems arise. We’ll provide a few
examples of both cases, and will close the essay with the
conclusions.

Recursive Structures Corballis (2007) illustrates a few
examples of what he takes to be recursion in different do-
mains. He starts with language, and much like the previous
section, focuses on nested structures, which turns out to be
the main feature of his entire discussion. Other examples in-
clude Theory of Mind abilities (i.e., belief ascription), which
he argues involve recursion. He divides these abilities into
two levels: a) zero-order theory of mind, i.e. mental pro-
cesses such as thinking or knowing; and b) first-order, i.e.
thinking or knowing what others are thinking or knowing,
which involves recursion.

The latter is implied in statements like “Mark thinks
Lauren thinks he is an idiot”. Some experimental evi-
dence suggests that children’s abilities in understanding self-
embedded sentences and self-embedded beliefs/desires is al-
most concurrent (P. H. Miller, Kessel, & Flavell, 1970),
even if the replication of these experiments shows that com-
prehension of “recursive ToM” abilities starts a bit earlier
(Oppenheimer, 1986). Still, the experiments tells us nothing
about how children represent self-embedded beliefs/desires,
and even less about how children process self-embedded sen-
tences OR self-embedded beliefs/desires. In short, the role of

6Mention of recursion in the psycholinguistics literature usually
refers to self-embedding (central or tail), a related but entirely dif-
ferent matter to what we’re saying here.

7This empirical work is currently being undertaken by the au-
thors.

recursion within is not clear.
The same applies to Corballis’s other examples, like episo-

dic memory abilities (e.g., “I know I experienced X”), or in
the apparent hierarchical conceptualization of tool making.
All these examples make reference to hierarchically nested
structures, and its application can be as broad as we can ima-
gine.

It is clearly the case that a basic feature of cognition is that
our thoughts can be composed of different bodies of informa-
tion from different modalities. There must be a conceptual
system where it all comes together, and this system is likely
to contain thoughts within thoughts. The overall problem re-
mains though: it’s one thing for the representations the mind
has and uses to exhibit hierarchy and nesting, but it’s ano-
ther thing completely for the mental processes operating over
these representations to apply recursively.

Recursive Mechanisms Much work has been undertaken
in the study of the architecture of cognition, and as Pylyshyn
(1984, 1988) points out, a computational system, whetever
the actual details, is one that reads, writes and transforms
structured representations.

Let us focus on the system’s component in charge of orde-
ring the rules/operations that apply over the data structures:
the Control. Control is in charge of sequencing action, but
not only from point to point, as it can also transfer control
to another locus, therefore creating subroutines. Subroutines
can send control to other subroutines, and a hierarchy of nes-
ted operations develops. Once each subroutine is completed,
control is sent back up to where it was transferred from, and
so on until it reaches the highest Control operation.

G. A. Miller, Galanter, and Pribram (1960) were perhaps
the first scholars to outline a detailed model of serially-
ordered compositional systems, and the focus was on TOTE
(test-operate-test-exit) units, which they argued were the ba-
sic Control unit of cognition.

This operation is based on feedback loops (self-reference),
and TOTEs can therefore be nested into other TOTEs (chains
of deferred operations therefore arise), making it ideal for
solving complex tasks divisible into functionally-equivalent
but simpler subtasks. It’s been recently described as an ins-
tantiation of the Standard Account in early cognitive science
(Samuels, forthcoming) —a “plan, then execute” model of
behaviour— and it’s ideally suited to account for the hierar-
chical organization of the cognitive architecture. In short, it
constitutes the clearest case of recursion in cognition.

Conclusion
Recursion developed in the formal sciences in reference to
combinatory operations, mechanisms and the like.

In the 1950’s, linguists correctly employed recursion in re-
ference to specific rewrite rules, but ever since their elimi-
nation from linguistic theory, most linguists have used recur-
sion, rather puzzlingly, to refer to those structures that recur-
sive rewrite rules were used to generate. This may well be the
unfortunate legacy of employing rewrite rules. Other linguists

1351

have focused on the operation Merge, which is welcome, but
a satisfactory treatment is yet to be provided.

There seems to be a strong tendency to confuse
hierarchically-structured representations with recursion.
Even though hierarchical data structures call for recursive
mechanisms, the latter are not automatic because of the
former. Recursion always involves hierarchy, but not all
hierarchy involves recursion —iteration may well be the right
candidate for some structures/tasks. Since all computational
tasks that can be solved recursively can also be solved
iteratively, extra care needs to be employed when arguing for
one or the other.

There are however good reasons to believe that recursive
mechanisms do apply in cognition, and brief descriptions of
these mechanisms have been provided. Most of our discus-
sion has focused on Marr’s computational level (i.e., Merge
and TOTE units), as little work on recursive processing has
been undertaken in cognitive science. Some indications have
been provided of what this empirical work might actually in-
volve, and this short essay may well be regarded as a theore-
tical clean-up of the role of recursion in cognitive science.

It is not a matter of terminology; applying recursion to
structures or to mechanisms, or to the fit between the two,
results in substantial claims regarding the specific properties
of the representations and operations the mind manifests. It
is in this light that most statements regarding the uniqueness
of recursion in either human language or cognition should be
viewed. There are strong reasons to think that hierarchically-
structured representations are unique in humans, but it is no
small matter to discover if the mechanisms operating over
them proceed recursively or not, with all the related issues
it involves (memory load, architectural complexity, etc.).

It is therefore strongly recommended that the focus shifts
from representations to mechanisms, with an emphasis on
how close the correspondence between recursive representa-
tions and recursive operations is.

Acknowledgements
The first author has been supported by the AGAUR grant
2008FI-00058 and the Anglo-Spanish Society 2008 02 scho-
larship; both authors have been supported by the Spanish Mi-
nistry of Education grant SEJ2006-11955.

References
Abelson, H., & Sussman, J., G. J. with Sussman. (1996).

Structure and interpretation of computer programs. Cam-
bridge, MA.: The MIT Press.

Boeckx, C., & Uriagereka, J. (2007). Minimalism. In
G. Ramchand & C. Reiss (Eds.), The Oxford handbook of
linguistic interfaces (p. 541-574). Oxford, England: Ox-
ford University Press.

Chomsky, N. (1967). Recent contributions to the theory of
innate ideas. Synthese, 17, 2-11.

Chomsky, N. (1995). The minimalist program. Cambridge,
MA.: The MIT Press.

Corballis, M. (2007). The uniqueness of human recursive
thinking. American Scientist, 95, 240-248.

Di Sciullo, A. M., & Isac, D. (2008). The asymmetry of
merge. Biolinguistics, 2, 260-290.

Epstein, S. D., & Hornstein, R. (2000). Working minimalism.
Cambridge, MA.: The MIT Press.

Hauser, M. D., Fitch, W. T., & Chomsky, N. (2002). The
faculty of language: what is it, who has it, and how did it
evolve? Science, 298, 1569-1579.

Hinzen, W. (2008). Prospects for an explanatory theory of
semantics. Biolinguistics, 2, 348-363.

Maratz, A., Miyashita, Y., & O’neil, W. (2000). Image, lan-
guage, brain. Cambridge, MA.: The MIT Press.

Marr, D. (1982). Vision: A computational investigation into
the human representation and processing of visual infor-
mation. San Francisco: W. H. Freeman & Company.

Medeiros, D. (2008). Optimal growth in phrase structure.
Biolinguistics, 2, 152-195.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans
and the structure of behaviour. New York, New York: Holt,
Rinehart and Winston, Inc.

Miller, P. H., Kessel, F. S., & Flavell, J. H. (1970). Thin-
king about people thinking about people thinking about...:a
study of social cognitive development. Child Development,
41, 613-623.

Neeleman, A., & Van de Koot, J. (2006). On syntactic and
phonological representations. Lingua, 116, 1524-1552.

Oppenheimer, L. (1986). Development of recursive thinking.
International Journal of Behavioural Development, 9, 401-
411.

Pinker, S., & Jackendoff, R. (2005). The faculty of language:
what’s special about it? Cognition, 95, 201-236.

Pylyshyn, Z. (1984). Computation and cognition. Cam-
bridge, MA.: The MIT Press.

Pylyshyn, Z. (1988). Computing in cognitive science. In
M. I. Posner (Ed.), Foundations of cognitive science (p. 49-
92). Cambridge, MA.: The MIT Press.

Roberts, E. (2006). Thinking recursively with java. Hoboken,
NJ: John Wiley and Sons, Inc.

Samuels, R. (forthcoming). Classical computationalism and
the many problems of cognitive relevance. Studies in His-
tory and Philosophy of Science.

Soare, R. (1996). Computability and recursion. The Bulletin
of Symbolic Logic, 2(3), 284-321.

Soschen, A. (2008). On the nature of syntax. Biolinguistics,
2, 196-224.

Tomalin, M. (2007). Reconsidering recursion in syntactic
theory. Lingua, 117, 1784-1800.

Wirth, N. (1986). Algorithms and data structures. USA:
Prentice Hall Publishers.

1352

