The Challenges behind Cyanobacteria in Southern Florida

Caitlin Burner
Worcester Polytechnic Institute

Shanel Chisholm
Worcester Polytechnic Institute

David Laovoravit
Worcester Polytechnic Institute

Gina Rios
Worcester Polytechnic Institute

Alexander Ruggiero
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
http://digitalcommons.wpi.edu/gps-posters/281

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
The Challenges Behind Cyanobacteria in Southern Florida

Caitlin Burner (CE), Shanel Chisholm (CHE), Tapanont David Laovoravit (RBE), Gina Rios (EVE), Alexander Ruggiero (RBE)

Advisors: Professors Derren Rosbach (CEE) and Sharon Wulf (SoB)

Abstract

Cyanobacteria are microorganisms that are important in the formation of the earth’s atmosphere as well as in the process of nitrogen fixation. In Lake Okeechobee, algae blooms of Anabaena and Microcystis strains of toxic cyanobacteria have been increasing since 1987. Due to an increase of the water level, the U.S. Army Corps of Engineers have been forced to release water from the lake, allowing the cyanobacteria and nutrients to flow into the waterways. We researched multiple methods of cyanobacteria filtration and compiled what we believe are the most effective methods into one system. We recommend the use of filtration strip switchgrass and filtration plates to filter out the nitrogen and phosphorous and remove the cyanobacteria in the long term.

Caitlin Burner (CE), Shanel Chisholm (CHE), Tapanont David Laovoravit (RBE), Gina Rios (EVE), Alexander Ruggiero (RBE)

Advisors: Professors Derren Rosbach (CEE) and Sharon Wulf (SoB)

Background

- Blue-green algae produces cyanotoxins which have side effects on humans ranging from abdominal cramps, nausea, diarrhea, and vomiting to liver damage.
- The toxic cyanobacteria blooms are leading to deaths in the populations of dolphins, manatees, shellfish, reefs, sea grasses, oysters, and has even been linked to human deaths.
- Cyanobacteria obtain their energy through photosynthesis and thrive under conditions with high nitrogen and phosphorus levels.

Santa Fe River, May 2012.
http://earthjustice.org/sites/default/files/sant_a-fe-slime4.jpg

Outcomes

- Prevention of nitrates and phosphates from entering Lake Okeechobee from agricultural runoff using switchgrass biomass filter strips
- Implementation of filtration plates on dam locks to remove the existing cyanobacteria from the water as the water is released into Lake Okeechobee’s tributaries

Conclusions

Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy ecosystem and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Methods

- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Pictured above is switchgrass, which can be used as a buffer to filter out phosphates and nitrates from water.

Project Goals

- Analyze methods of removing phosphates and nitrates from agricultural runoff
- Analyze methods of removing adequate amounts of cyanobacteria, phosphates and nitrates from Lake Okeechobee and it’s surrounding tributaries
- Consider feasible methods of implementing a feasible and cost effective solution

References

Abrams, C. M., & Kim, Y. (2013). Scott urges Obama to visit Lake Okeechobee to ‘see federal shortcomings’, Naked Politics

Conclusions

Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy ecosystem and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Methods

- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Pictured above is switchgrass, which can be used as a buffer to filter out phosphates and nitrates from water.

Project Goals

- Analyze methods of removing phosphates and nitrates from agricultural runoff
- Analyze methods of removing adequate amounts of cyanobacteria, phosphates and nitrates from Lake Okeechobee and it’s surrounding tributaries
- Consider feasible methods of implementing a feasible and cost effective solution

Conclusions

Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy ecosystem and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Methods

- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Pictured above is switchgrass, which can be used as a buffer to filter out phosphates and nitrates from water.

Project Goals

- Analyze methods of removing phosphates and nitrates from agricultural runoff
- Analyze methods of removing adequate amounts of cyanobacteria, phosphates and nitrates from Lake Okeechobee and it’s surrounding tributaries
- Consider feasible methods of implementing a feasible and cost effective solution

Conclusions

Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy ecosystem and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Methods

- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Pictured above is switchgrass, which can be used as a buffer to filter out phosphates and nitrates from water.

Project Goals

- Analyze methods of removing phosphates and nitrates from agricultural runoff
- Analyze methods of removing adequate amounts of cyanobacteria, phosphates and nitrates from Lake Okeechobee and it’s surrounding tributaries
- Consider feasible methods of implementing a feasible and cost effective solution

Conclusions

Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy ecosystem and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Methods

- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Pictured above is switchgrass, which can be used as a buffer to filter out phosphates and nitrates from water.