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Abstract

The lipogenic phenotype is a metabolic hallmark of cancer cells. Sterol regulatory element-binding proteins
(SREBP) are key transcriptional factors to regulate biosynthesis of cholesterol and fatty acids. It has been poorly
understood how the lipogenic phenotype in cancer cells is regulated and how it augments their malignant
properties. Here we describe roles of the melanoma antigen ganglioside GD3 and phosphatidylinositol 3-kinase
(PI3K)-Akt-mTOR complex 1 (mTORC1) signaling in the regulation of SREBP activity, cholesterol biosynthesis,
and the integrity of lipid rafts in human melanoma cells. GD3 expression induced the activation of both SREBP-1
and SREBP-2. Consequently, HMG-CoA reductase expression and cholesterol biosynthesis increased. The
activation of the SREBP pathway was independent of the oncogenic BRAF mutation. On the other hand,
it was regulated by PI3K-Akt-mTORCI1 signaling in human melanoma cells. Disruption of the signaling
pathway resulted in the reduction of cholesterol in lipid rafts. Inhibition of the SREBP pathway attenuated
Akt activation in lipid rafts and suppressed the growth of human melanoma cells in vitro and in vivo. These
results suggest that PI3K-Akt-mTORC1 signaling is important for the integrity of lipid rafts by regulating
SREBP activation and subsequent cholesterogenesis. We thus propose a positive feedback circuit in which
PI3K-Akt-mTORC1-SREBP signaling boosts Akt signaling in human melanoma cells expressing GD3. Cancer Res;

71(14); 4989-97. ©2011 AACR.

Introduction

Altered metabolism is a hallmark of cancer cells (1-3).
Cancer cells show increases in glucose uptake and glycolysis.
The metabolic changes play an important role in their
malignant properties. Cancer cells also display the lipogenic
phenotype (4). The expression of key lipogenic enzymes
such as fatty acid synthase (FAS) is elevated in various
tumor tissues and cancer cell lines, including melanomas
(4). Inhibition of FAS suppresses malignant properties of
cancer cells. Epidemiologic studies have shown that statins,
HMG-CoA reductase (HMGR) inhibitors, reduce the risk of
certain cancers, including melanomas, indicating that the
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cholesterol biosynthetic pathway also plays an important
role in malignancies (5, 6).

Lipid synthesis is tightly controlled by transcriptional
regulation of lipogenic enzymes. Sterol regulatory ele-
ment-binding proteins (SREBP) -1 and -2 are master tran-
scriptional factors that regulate cholesterol and fatty acid
biosynthesis (7). SREBPs are localized in endoplasmic reti-
culum (ER) membrane as a precursor and form a complex
with SREBP-cleavage activating protein (Scap) and Insig (8).
Upon a decrease in cellular sterol level, Insig dissociates
from the complex and SREBP/Scap is transported to the
Golgi apparatus where the precursors are cleaved to release
the mature forms. The mature forms then enter into the
nucleus and transactivate target genes. SREBP-1 and -2
regulate both cholesterol and fatty acid biosynthesis (9).
Sterols are well-known regulators of SREBPs, whereas recent
studies have shown that SREBPs are also regulated by
phosphatidylinositol 3-kinase (PI3K)-Akt signaling (10),
which is often hyperactivated in carcinomas. SREBP mature
forms are increased in human cancers (11, 12). Roles of
cancer-associated molecules in the regulation of SREBPs,
however, are largely unknown.

Changes in carbohydrate moieties of certain proteins and
glycosphingolipids (GSL) have frequently been observed in
carcinomas. GSLs modulate cell signaling through growth
factor receptors and/or integrins (13). In melanomas, one
of the most aggressive cancers, disialylganglioside GD3 is
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widely expressed as a melanoma antigen (14, 15). GD3 expres-
sion has also been reported in other cancers (16-18). We and
others showed that GD3 enhances proliferation and invasive
activity of melanoma and other cells (19-22) although the
molecular mechanism remains poorly understood. GD3 med-
iates such functions in membrane microdomains known as
lipid rafts where cholesterol and sphingolipids are enriched
(23). Lipid rafts are essential for various cellular functions (24).
How the microdomains are properly maintained on cellular
demands is not well understood.

In this study, we examined a role of the melanoma antigen
GD3 in the lipogenic phenotype in human melanoma cells.
Signaling pathway regulating the lipogenic pathway and a role
of the lipogenic phenotype in their malignant properties were
also investigated. Based on the current results, we propose a
positive feedback regulatory loop in which the activation of
the SREBP pathway by PI3K-Akt-mammalian target of rapa-
mycin complex 1 (mTORC1) signaling is crucial for the
reinforcement of Akt signaling.

Materials and Methods

Cell culture

Human melanoma cell lines (SK-MEL-25, -26, -28, -31, -37,
-130, -131, and -173, and MeWo) were obtained from Dr. L. J.
0ld (Memorial Sloan-Kettering Cancer Center, 1988). SK-MEL-
28-N1 cells (referred to as N1, a gift from Drs. K. O. Lyoyd and J.
Nakano, 2002) were isolated from SK-MEL-28 as a GD3-
deficient clone (25). N1 cell clones expressing GD3 synthase
(G5 and G11) and a mock transfectant (V9) were previously
established (19). Melanoma cells were maintained in
Dulbecco's modified Eagle's medium (DMEM) containing
7.5% FBS (medium A). Where indicated, cells were incubated
in serum-free medium (medium F). Cells were frozen down at
an early passage, and fresh vials were thawed every 2 months
and/or 20 passages. Cells were routinely verified by morphol-
ogy and growth rate. Melanoma cells were also authenticated
by the expression of GD3 by FACS analysis (Supplementary
Fig. S1).

Immunoblotting and antibodies

Whole cell lysate (WCL) was prepared by lysing cells with
urea buffer (8 mol/L urea, 10 mmol/L Tris-HCl pH 8.0, 50
mmol/L sodium phosphate, 150 mmol/L NacCl, and protease
inhibitor cocktail). Protein concentration was determined by
BCA Protein Assay (Pierce). Aliquots of WCL were subjected to
SDS-PAGE and immunoblot analysis. SREBP processing was
examined by using anti-SREBP-1 (2A4; gift from Dr. T.-Y.
Chang) or anti-SREBP-2 (1D2; MBL) antibodies. Other anti-
bodies used are described in Supplemental Materials and
Methods.

Cell fractionation and lipid raft preparation

Cells grown in 100-mm dishes were incubated in medium
F for 18 hours and treated as described in figure legends.
Postnuclear supernatant (PNS) and plasma membrane (PM)-
rich and cytosolic fractions were prepared as described (26).
To prepare lipid rafts, cells were lysed with 1% Lubrol WX

(Serva) in TNE buffer (25 mmol/L Tris-HCI pH 7.5, 150 mmol/L
NaCl, 5 mmol/L EDTA) containing protease inhibitor cocktail
(Sigma) for 30 minutes at 4°C, and homogenized with a
stainless homogenizer for 10 strokes. PNS was adjusted to
37.5% Opti-Prep (2 mL; Axis-Shield), and placed in the bottom
of a centrifuge tube (Beckman). Thirty percent of Opti-Prep
(1.25 mL) and TNE buffer (0.75 mL) was sequentially layered.
The tubes were spun at 200,000 g for 3 hours at 4°C using a
Beckman MLS50 rotor. Eight 0.5-mL fractions were collected
from the top. Lipids were extracted from equal amounts of
each fraction by chloroform/methanol (2:1, v/v).

Lipid analyses

Lipid synthesis was measured by incorporation of
[*H]acetate (150 mCi/mmol, American Radiolabeled Chemi-
cals) into cholesterol and phosphatidylcholine (PC) as
described (26). Amounts of cholesterol and choline-phospho-
lipids were determined by colorimetric enzymatic assay sys-
tems (Kyowa Medex) as described (27).

Immunofluorescence staining

Cells grown on poly-L-lysine-coated glass coverslips were
treated as described in the figure legends. Cells were fixed with
2% paraformaldehyde for 10 minutes and permeabilized with
0.1% Triton X-100 for 5 minutes. After specimens were blocked
with 4% FBS for 1 hour, they were incubated with anti-
phospho-Akt [p-Akt (Ser173)] and anti-GD3 antibodies (15).
Specimens were then stained with Alexa 488-conjugated anti-
rabbit IgG and with Alexa 555-conjugated anti-mouse IgG
antibodies (Invitorgen), respectively. They were mounted with
ProLong Gold Antifade Reagent (Invitrogen). Cell images were
acquired by using a confocal microscopy FV500 (Olympus).

siRNA and transfection

siGenome SMART Pools targeting human Raptor, human
Rictor, or nontargeting sequences were from Dharmacon.
Transfection of siRNAs was conducted by using Lipofectamine
2000 (Invitrogen).

Cell proliferation

Cell proliferation was determined by MTT assay (23). On
day 0, cells were seeded in 96-well plates (3,000 cells/well) in
medium A. On day 1, medium was switched to DMEM
containing 1% FBS and the indicated compounds. Medium
was changed every 2 days.

Xenograft experiments

Human melanoma cells suspended in medium F (150 pL)
were injected s.c. into the right flank of 6-week-old female
BALB/c nu/nu mice (Japan SLC) with the indicated com-
pound. 25-Hydroxycholesterol (25HC), compactin, or vehicle
(suspended in 100 UL of PBS) was injected into the tumor
every 2 days. The tumor volume was calculated as length x
width? x 0.5.

Statistical analyses
Data are presented as means =+ SD. Statistical analyses were
conducted using the 2-tailed Student ¢ test. The difference
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between 2 sets of values was considered significant when the
P value was < 0.05.

Results

Effects of GD3 expression and BRAF mutation on
SREBP pathway in human melanoma cells

Expression of SREBPs and key lipogenic enzymes in various
human melanoma cells was examined. Mature forms of
SREBP-1 and SREBP-2 were detected in most of the melanoma
cells tested (Fig. 1). HMGR and FAS, 2 major SREBP-regulated
gene products, were also expressed. In contrast, expression of
SREBP-1 and SREBP-2 mature forms, HMGR and FAS in GD3-
deficient N1 cells were much lower compared with parental
SK-MEL-28 cells and other melanoma cell lines expressing
GD3 (Supplementary Fig. S1). We thus asked whether GD3
expression induces the lipogenic pathway. We used N1 cell
clones with or without GD3 expression (Supplementary
Fig. S1). GD3-positive G5 and G11 cells showed increases in
both SREBP-1 and SREBP-2 mature forms compared with
parental N1 and control V9 cells (Fig. 2A). Both G5 and G11
cells also expressed higher levels of HMGR. Accordingly,
cholesterol biosynthesis was substantially increased in G5
and G11 cells (Fig. 2B). However, FAS expression (Fig. 2A)
and PC biosynthesis (Fig. 2C) were not affected by GD3
expression.

GD3 + ++ -+ + 4+ + + +
BRAF NN+ + - + N4+ - —
Lanes 12345678910
=g me = p

SREBP-1
e e .mud
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Figure 1. Expression of SREBP and lipogenic enzymes in human
melanoma cells. On day 0, human melanoma cells were seeded in 6-well
plates and grown in medium A. On day 2, cells were switched to medium F
and incubated for 18 hours. Equal amounts of WCL proteins were
subjected to immunoblotting with the indicated antibodies. B-Actin was
used as a loading control. GD3 expression and BRAF mutation were
indicated by + or —. Lanes 1: SK-MEL-25, 2: SK-MEL-26, 3: SK-MEL-28,
4: SK-MEL-28-N1, 5: SK-MEL-31, 6: SK-MEL-37, 7: SK-MEL-130, 8:
SK-MEL-131, 9: SK-MEL-173, 10: MeWo. P, precursor form; M, mature
form; N, not determined.

Human melanoma cells often express oncogenic BRAF
V600E (28), which constitutively activates ERK signaling. Levels
of SREBP mature forms (Fig. 1) were not correlated to BRAF
genotypes previously identified (28, 29). It thus seems unlikely
that the oncogenic BRAF induces the lipogenic pathway.

SREBP pathway is regulated by a PI3K-Akt-mTORC1
signaling

We previously showed that GD3 enhances cellular signaling
including Akt (19, 20). We thus asked whether GD3-induced
signaling is involved in SREBP regulation in human melanoma
cells. As reported (10), the specific PI3K inhibitor 1Y294002
reduced mature forms of SREBP-1 and SREBP-2 in SK-MEL-28
(Fig. 3A) and GI11 cells (data not shown). Wortmannin,
another PI3K inhibitor, also produced similar results (data
not shown). The mTORCI kinase is regulated downstream of
Akt. Whether mTORCI is involved in the regulation of SREBP
activity has been open to debate (10). Furthermore, its invol-
vement in SREBP-2 processing has remained unknown. The
mTORCI-specific inhibitor rapamycin reduced mature forms
of both SREBPs with higher sensitivity toward SREBP-1
(Fig. 3A). These results suggest that mTORC1 is involved in
the regulation of SREBPs in melanoma cells. However, pro-
longed treatment with or treatment at high concentration of
rapamycin is known to inhibit mTORC2, which phosphory-
lates Akt at serine 473 (30). To validate the involvement of
mTOR complexes in SREBP processing, the mTORC1 compo-
nent Raptor, the mTORC2 component Rictor, or both of them
were silenced by specific siRNAs, and SREBP cleavage was
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Figure 2. GD3 expression induces SREBP pathway. A, on day 0, GD3-
deficient N1 cells, and N1 cells expressing GD3 synthase (G5 and G11) or
vector (V9) were set up as shown in Fig. 1. On day 3, WCL was prepared for
immunoblotting with the indicated antibodies. B and C, biosynthesis of
cholesterol (B) and PC (C) was examined. Cells were set up as above. On
day 3, the cells were incubated in the presence of [°H]acetate (20 uCi/mL)
for 2 hours in medium F. Cellular lipids were analyzed by TLC. *, P < 0.002
(vs. N1 and V9).

www.aacrjournals.org

Cancer Res; 71(14) July 15, 2011

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2011 American Association for Cancer Research.

4991


http://cancerres.aacrjournals.org/

4992

Published OnlineFirst June 1, 2011; DOI: 10.1158/0008-5472.CAN-10-4108

Yamauchi et al.

A LY (umoliL) Rap (nmoll) G
0 2050 0 20100
- p | Precursor SREBPs
SREBP-1 (approx. 125 kDa)
L™ M

14— S1P & S2P

Mature SREBPs

SREBP-2 = " (approx. 65 kDa)
' P ll— MG132
-Actin
P I - El Proteasomal degradation
Q@
& Q\(’\Q.
B S D
P
SREBP-1 LY MG LY+MG
e L
Treatment 0124612461246 (h)
- P = ; ] p
SREBP-2 SREBP-1 =l E
Shengaem M Fr ssSfnses| v
Insig-1 [Fi] B-Actin [~———————— |
Raptor | == - ——————e— | P
. SREBP-2
Rictor [ws == v —————— |
PAKt S473 | wm B-Actin |
AKL | sm——
B-Actin

Figure 3. PIBK, mTORC1, and mTORC?2 are required for SREBP
processing. A, SK-MEL-28 cells were set up as shown in Fig. 1. After
incubation for 12 hours in medium F, cells were treated with LY294002 or
rapamycin at the indicated concentrations for 8 hours. Equal amounts of
proteins were subjected to immunoblotting with the indicated antibodies.
B, on day 0, SK-MEL-28 cells (1.2 x 10° cells/well) were seeded into 6-well
plates. On days 1 and 3, 75 nmol/L siRNAs targeting Raptor (siRap), Rictor
(siRic) or both (siRap/siRic), or control siRNAs (siCTR) were transfected.
On day 4, cells were switched to medium F and incubated for 21 hours. The
cells were then treated with MG132 (20 umol/L) in medium F for 3 hours
before harvesting. Cell lysates were subjected to immunoblotting with the
indicated antibodies. C, schematic diagram of SREBP processing. MG132
protects mature forms from proteasomal degradation. S1P, site 1
protease; S2P, site 2 protease; D, SK-MEL-28 cells were set up as A. The
cells were treated with or without LY294002 (50 umol/L) and/or MG132
(20 pmol/L) for up to 6 hours in medium F. SREBP processing was
examined as above.

examined. Silencing Raptor and/or Rictor markedly reduced
both SREBP-1 and SREBP-2 mature forms (Fig. 3B), indicating
that both mTORC1 and mTORC2 play a role in the SREBP
processing. Insig-1 expression was affected neither by Raptor
nor Rictor knockdown.

Amounts of SREBP mature forms are regulated by 2 inde-
pendent mechanisms (7); the 2-step proteolytic cleavage and
proteasomal degradation (Fig. 3C). To determine which process
isregulated by Akt signaling in human melanoma cells, SK-MEL-
28 cells were treated with or without LY294002 and/or MG132, a
proteasomal inhibitor. LY294002 reduced mature forms of
SREBP-1 and SREBP-2 within 2 hours, whereas MG132 rapidly
increased the mature forms (Fig. 3D). When the cells were
treated with both compounds, increases in mature forms of
both SREBPs were suppressed, suggesting that PI3K-Akt signal-
ing is involved in the processing step in melanoma cells.

To further explore the signaling cascade that regulates
SREBP processing, SK-MEL-28 cells were stimulated with
insulin-like growth factor-1 (IGF-1), which activates Akt sig-
naling and is an important growth factor for malignant
properties of melanoma cells (31). IGF-1 increased mature
forms of SREBPs and HMGR expression within 2 hours
(Fig. 4A). To determine whether inhibition of PI3K-Akt-
mTORCI signaling also prevents the IGF-1-induced SREBP
processing, SK-MEL-28 cells were stimulated with IGF-1 in the
presence or absence of LY294002 or rapamycin only for 3
hours. The increase in mature forms of SREBPs by IGF-1 was
suppressed by LY294002 and rapamycin (Fig. 4B). Accordingly,
HMGR expression did not increase by IGF-1 when PI3K or
mTORCI was inhibited. FAS expression was not induced by
IGF-1. Moreover, Insig-1 expression was not influenced by
IGF-1 and by these inhibitors, suggesting that the regulation of
SREBP processing by the PI3K-Akt-mTORC1 pathway is inde-
pendent of Insig-1. The increase in p-Akt by IGF-1 in rapa-
mycin-treated cells could be because rapamycin inhibits the
negative feedback regulation of PI3K-Akt signaling by S6
kinase (30).

To address whether the above changes influence lipid
biosynthesis, SK-MEL-28 cells were incubated with IGF-1
and/or LY294002 in the presence of [*Hl]acetate. IGF-1
increased cholesterol biosynthesis (Fig. 4C). On the other
hand, PC biosynthesis was unchanged by IGF-1. LY294002
reduced both cholesterol and PC synthesis in the presence and
absence of IGF-1, but cholesterol biosynthesis was more
sensitive to the compound.

Effect of SREBP inactivation on lipid raft-associated
signaling

Cholesterol is essential for the formation of lipid rafts. We
explored whether PI3K-Akt-mTORCI-SREBP axis regulates
the integrity of lipid rafts. The results showed that disruption
of PI3K-Akt-mTORCI1 signaling significantly reduces choles-
terol contents in lipid rafts (Supplementary Fig. S2), which
impairs the balance of cholesterol distribution between lipid
rafts and nonlipid rafts (Fig. 4D). Changes in phospholipid
distribution by these inhibitors were only modest.

Lipid rafts play an important role in Akt signaling (32-36).
We next examined a role of SREBPs in Akt activation. 25HC
inhibits SREBP processing by sequestering the SREBP/Scap
complex in the ER. It reduced both SREBP mature forms in SK-
MEL-28 cells (Supplementary Fig. S3). SK-MEL-28 cells pre-
treated with or without 25HC were stimulated with IGF-1, and
Akt phosphorylation was assessed. In the cells treated with
25HC, phosphorylation of Akt by IGF-1 was suppressed
(Fig. 5A). Inhibition of cholesterol biosynthesis also resulted
in decreases in Akt phophorylation (Supplementary Fig. S4).
SK-MEL-28 cells with or without the 25HC pretreatment were
subjected to subcellular fractionation, and distribution of p-Akt
was examined. The PM protein Na* /K" ATPase was enriched
in the PM-rich fraction, but undetectable in the cytosol fraction.
In contrast, the cytosolic protein FAS was detected only in the
cytosol fraction (Fig. 5A). Akt phosphorylation by IGF-1 was
strongly suppressed in the PM-rich fraction prepared from the
25HC-treated cells. The 25HC treatment also slightly reduced
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Figure 4. PIBK-Akt-mTORC1 pathway regulates IGF-1-induced SREBP processing. A, SK-MEL-28 cells were set up as shown in Fig. 1. Cells were treated with
IGF-1 (100 ng/mL) for up to 4 hours. Aliquots of WCL were subjected to immunoblotting with the indicated antibodies. B, SK-MEL-28 cells were set

up as above. After incubation in medium F for 18 hours, cells were pretreated with 50 pumol/L LY294002 (LY), 100 nmol/L rapamycin (Rap), or vehicle
(0.1% DMSO) for 30 minutes. The cells were then stimulated with IGF-1 (100 ng/mL) for 3 hours in the presence of the inhibitors. WCL was subjected to
immunoblot analysis. C, SK-MEL-28 cells were set up as above. After incubation in medium F for 12 hours, cells were treated with or without 50 pmol/L
LY294002 for 4 hours in the presence or absence of IGF-1. The cells were then incubated with [°H]acetate (20 pCi/mL) in the same condition for

2 hours. Radioactivities in cellular cholesterol and PC were determined. *, P < 0.05; **, P < 0.01. D, effects of inhibiting PISBK-Akt-mTORC1 signaling on the
integrity of lipid rafts. On day 0, SK-MEL-28 cells were seeded into 100-mm dishes and grown in medium A. On day 2, the cells were switched to
medium F containing 0.1% DMSO as a control (CTR), 25 umol/L LY294002 (LY), or 50 nmol/L rapamycin (Rap). After incubation for 18 hours, lipid rafts were
prepared. Free cholesterol (FC) and phospholipid (PL) contents in each fraction were determined. Ratios of lipid rafts (LR, fraction 2) to nonlipid rafts

(NLR, fractions 4-8) for FC and PL are shown. * P < 0.05.

cytosolic p-Akt. To further examine subcellular localization of
p-Akt, we prepared lipid rafts. The majority of the lipid raft
marker flotillin-1 was recovered in fraction 2 (Fig. 5B). When the
cells were stimulated with IGF-1, significant amounts of p-Akt
were found in lipid raft fractions. In contrast, the level of p-Akt
in lipid rafts was much lower in the IGF-1-stimulated cells
pretreated with 25HC. To confirm these results, SK-MEL-28
cells pretreated with 25HC or vehicle were stimulated by IGF-1,
and cellular localization of p-Akt and GD3 was examined under
confocal microscopy. IGF-1 treatment increased p-Akt signals
at cell peripheries, which was suppressed by pretreatment of
the cells with LY294002 (Fig. 5C). p-Akt well colocalized with
GD3, indicating that Akt is activated at or near GD3-enriched
membrane microdomains. In contrast, p-Akt signals were not
significantly increased upon IGF-1 stimulation in the cells
pretreated with 25HC. 25HC seemed not to affect GD3 expres-
sion and distribution.

Roles of SREBP pathway in melanoma cell proliferation
and tumorigenesis

The effect of SREBP or cholesterol biosynthesis inhibitors
on melanoma cell proliferation was assessed. 25HC, NB598
(a squalene monooxygenase inhibitor), and compactin

(an HMGR inhibitor) all inhibited melanoma cell prolifera-
tion in the presence of FBS (Fig. 6A). In addition, all these 3
compounds potentiated the inhibitory effect of 1LY294002
and rapamycin on their proliferation (Fig. 6B). These results
indicate that melanoma cells require high levels of SREBP-
dependent cholesterol biosynthesis to maintain their rapid
proliferation (Fig. 6C).

Finally, we examined whether the SREBP pathway plays a
role in tumor growth in vivo. We injected SK-MEL-28 cells into
nude mice and treated the tumors with compactin or 25HC.
The treatment with compactin or 25HC significantly sup-
pressed the growth of melanoma cells in a xenograft model
(Fig. 7A and B). These results clearly show a crucial role of
SREBP pathway in tumorigenesis in vivo.

Discussion

Almost all human melanomas express GD3 (14, 15). We
reported that GD3 expression in the GD3-negative mutants
reinforces malignant properties of human melanoma cells (19,
20). In this work, we investigated whether GD3 is involved
in the lipogenic phenotype, a metabolic change often observed
in cancer cells, and how the lipogenic pathway is regulated in
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Figure 5. SREBP inhibition suppresses Akt activation in lipid rafts. A, on day 0, SK-MEL-28 cells were set up as shown in Fig. 4D. On day 2, cells were
switched to medium F containing 0.1% EtOH (CTR) or 5 umol/L 25HC (H). After 18 hours of incubation, cells were stimulated or not with IGF-1 (100 ng/mL) for
15 minutes, and PNS, PM-rich fraction (PM) and cytosol were prepared. Equal amounts of proteins were subjected to immunoblot analysis with the
indicated antibodies. B, SK-MEL-28 cells were set up and treated as above. After lipid raft preparation, equal amounts of each fraction were subjected to
immunoblot analysis with the indicated antibodies. C, on day 0, SK-MEL-28 cells were seeded on glass coverslips and grown in medium A. On day 2,
cells were switched to medium F with or without 5 umol/L 25HC. After incubation for 18 hours, cells were incubated in the presence or absence of 50 pmol/L
LY294002 (LY) for 1 hour and then stimulated with or without IGF-1 for 15 minutes. Cells were stained for p-Akt and GD3. Bar, 10 um.

human melanoma cells. The current study was also designed
to address how the lipogenic phenotype augments malignant
properties of melanomas.

We found that the SREBP pathway was activated in most of
human melanoma cells. The activation did not correlate with
BRAF status, suggesting that ERK signaling is not involved in
the induction of the lipogenic pathway. On the other hand, the
forced expression of GD3 induced the processing of SREBPs,
HMGR expression, and cholesterol biosynthesis. We could not
determine why FAS expression and PC synthesis were not
altered by GD3 expression despite SREBP activation. The
results, however, show that the melanoma antigen GD3 pro-
motes SREBP processing and cholesterol biosynthesis. A
recent study also showed a role of a tumor antigen in
lipogenesis. The oncoprotein mucin 1 (MUC1), a glycoprotein
overexpressed in 90% or more of breast cancers, induces
expression of lipogenic enzymes regulated by SREBPs (37).
Therefore, certain tumor antigens including GD3 and MUC1
mediate the induction of the lipogenic phenotype.

SREBP processing is tightly regulated by sterols. Cellular
sterol levels are sensed and regulated by various mechanisms
(38). A small change in the ER membrane cholesterol levels
regulates the ER-to-Golgi transport of SREBP-2 (39). On the
other hand, an involvement of PI3K-Akt signaling in the SREBP
pathway has recently been highlighted (10). The constitutively

active, myristoylated Akt (myr-Akt) induced the expression of
various SREBP-target genes including HMGR and FAS (40). In
gliobastomas, expression of a constitutive active form of epi-
dermal growth factor receptor (EGFR), EGFRviii, causes hyper-
activation of Akt and leads to SREBP-1 activation in an Akt-
dependent manner (11). In human melanoma, GD3 enhances
Akt activation (19, 20). We showed that GD3 expression pro-
motes SREBP-1 and SREBP-2 processing through PI3K-Akt
signaling. An important role of Akt was further confirmed by
the finding that mTORC2 inhibition by silencing Rictor reduces
SREBP processing. Our results also indicate that PI3SK-Akt
signaling regulates a step involved in the generation of the
mature forms, which is consistent with a previous report (41).
Our current results together with previous studies thus eluci-
date that PI3K-mTORC2-Akt signaling regulates the processing
of both SREBPs.

Whether mTORCI is involved in the regulation of SREBP
processing is an important issue to be clarified. In patients with
gliobastoma, levels of SREBP-1 mature form in the tumor
tissues were not affected by rapamycin treatment (11). Rapa-
mycin also failed to prevent SREBP-1 processing in glioblas-
toma cells expressing EGFRviii (11). These results suggest that
mTORCI is not involved in SREBP-1 processing in glioblasto-
mas. In contrast, it was shown that mTORCI1 plays a role in
SREBP-1 processing in cells expressing myr-Akt (42) and hepa-
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tocytes (43). Diivel and colleagues (44) also showed an involve-
ment of mMTORCI in SREBP regulation by genetic and bioinfor-
matic approaches. The current results strengthen an
involvement of mTORCI1 in the regulation of SREBP-1 proces-
sing. Furthermore, we showed that mTORC1 also plays a role in
SREBP-2 processing.

How the PI3K-Akt-mTORCI1 signaling regulates SREBP pro-
cessing remains unknown. Involvement of the mTORC1 sub-
strate ribosomal protein S6 kinase 1 in the SREBP processing is
controversial at present (43, 44). Insig-1 is an important reg-
ulator for SREBP processing by acting as an ER retention factor
of SREBP/Scap complex (8). Insig-1 is a short-lived protein with
a half-life of about 20 minutes (45). Sterol-dependent stabiliza-
tion of Insig-1 creates a convergent control of SREBP-2 proces-
sing for cholesterol homeostasis (45). However, we found that
Insig-1 expression is not affected by PI3K-mTORC2-Akt-
mTORCI signaling. These results suggest that Insig-1 degrada-
tion is not involved in the regulation of SREBP processing by
this signaling. PISK-Akt signaling regulates the ER-to-Golgi
transport of SREBP. A recent study showed that Akt phosphor-
ylates SREBP-1 upon insulin stimulation, which in turn pro-
motes its association to coatomer protein (COP) II vesicles and
its transport to the Golgi (46). The association of SREBP-2 with
COPII vesicles is not affected by insulin (46). Results from our
current work and work by others (44), however, suggest a

common mechanism through which PI3K-Akt-mTORCI signal-
ing regulates both SREBPs. Whether PI3K-Akt-mTORCI signal-
ing regulates ER cholesterol level is currently unknown.

In this study, we also investigated a role of PI3K-Akt-
mTORCI-SREBP signaling in the integrity of lipid rafts
because cholesterol biosynthesis was more promptly regu-
lated by this signaling. IGF-1 rapidly promoted SREBP-1 and
SREBP-2 processing, HMGR expression and cholesterol bio-
synthesis through PI3K-Akt-mTORCI signaling. On the other
hand, FAS expression and PC synthesis did not change by IGF-
1. The different responses between the expression of HMGR
and FAS or between cholesterol and PC synthesis could be
explained as follows. HMGR is a short-lived protein with a
half-life of about 60 minutes (47), whereas the half-life of FAS is
about 12 hours (48). A positive feedback regulation between
Akt signaling and FAS expression in ovarian cancer cells was
reported (49). However, consistent with its longer half-life, a
decrease in FAS expression (longer than 24 hours) by Akt
inhibition (49) is much slower than that in HMGR expression
(3 hours). Therefore cholesterol biosynthesis can be regulated
in a more timely manner by Akt signaling. This tight regulation
of cholesterol biosynthesis could promptly control lipid rafts
on physiologic demands. In agreement with this hypothesis,
we showed that the inhibition of PI3K-Akt-mTORCI signaling
disrupts lipid rafts. Activation of Akt requires proper lipid
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Figure 7. Tumor growth is SREBP pathway-dependent in a xenograft
model. A, SK-MEL-28 cells (5 x 10° cells/animal) were injected into nude
mice (n = 4-6). Mice were treated with compactin (20 ug/tumor), 25HC
(20 pg/tumor), or vehicle (2% DMSO) every 2 days. Tumor volume was
monitored periodically up to 4 weeks. The results were derived from 2
separate experiments except the compactin treatment. *, P < 0.01 vehicle
vs. 25HC; #, P < 0.05 vehicle vs. compactin. B, typical images of tumors
after the 4-week treatments.
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