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Abstract. In this review paper we summarize the various dialects of q-calculus: quantum calculus, time scales, and partitions.
The close connection between Γq(x) functions on the one hand, and elliptic functions and theta functions on the other hand will be
shown. The advantages of the Heine notation will be illustrated by the (q-)Euler reflection formula, q-Appell functions, Carlitz–
AlSalam polynomials, and the so-called q-addition. We conclude with some short biographies about famous scientists in q-calculus.
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1. INTRODUCTION

q-Calculus is a generalization of many subjects, like hypergeometric series, complex analysis, and particle
physics. In short, q-calculus is quite a popular subject today. It has developed various dialects like quantum
calculus, time scales, partitions, and continued fractions. We will give several aspects of q-calculus to
enlighten the strong interdisciplinary as well as mathematical character of this subject. The close connection
between q-calculus on the one hand, and elliptic functions and theta functions on the other hand will be
shown. Some new formulas will be given, such as the two restatements of Kummer’s 2F1(−1) formula (in
q-form) (36) and (37).

Several combinatorial formulas, equivalent to expansion formulas for q-Appell functions, will be given
for the first time. These formulas are not, as usually thought, equivalent to the corresponding Vandermonde
formula, etc.

Several examples will be given of q-formulas not corresponding to known formulas for q = 1 (38), (39),
or which are not valid for q = 1 (72)–(76), (83). The definitions of q-integral (17), (18) also do not seem
to be valid for q = 1, however a limit process shows that the q-integral of a power function gives the same
value as for the case q = 1. There is also the possibility that the corresponding formulas for q = 1 are very
simple and well known (78).

Before continuing we will introduce the notation of the author (due to Heine [36]) to be able to give
some examples. In an appendix we briefly describe another notation, the so-called Watson [58] notation.

The notation of the author was standard notation in q-calculus 1846–1911 [52]. This method is a
mixture of Heine [36] and Gasper–Rahman [32]. The advantages of this method have been summarized
in [25, p. 495].

Also Jackson [41–43] used a variant of this notation. His biography is found in the appendix. The two
notations (Heine and Watson) are equivalent. There is also a third notation, due to Cigler [20], which uses
mainly q-binomial coefficients. Cigler’s notation is equivalent to the Heine and the Watson notation.
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In the entire paper, the symbol ≡ will denote definitions, except when we work with congruences.
We now start with the mathematics of the Heine notation. Everywhere q will denote a complex number

|q|< 1, except for certain cases, when explicitly stated, q will be real and 0 < q < 1.

Definition 1.1. The power function is defined by qa ≡ ealog(q). We always use the principal branch of the
logarithm.

The q-analogues of a complex number a and of the factorial function are defined by

{a}q ≡ 1−qa

1−q
, q ∈ C\{1}, (1)

{n}q!≡
n

∏
k=1
{k}q, {0}q! = 1, q ∈ C. (2)

The q-shifted factorial is given by

〈a;q〉n ≡





1, n = 0;
n−1

∏
m=0

(1−qa+m) n = 1,2, . . . .
(3)

Furthermore,

〈a;q〉∞ ≡
∞

∏
m=0

(1−qa+m), 0 < |q|< 1. (4)

Let the Gauss q-binomial coefficient be defined by
(

n
k

)

q
≡ 〈1;q〉n
〈1;q〉k〈1;q〉n−k

, k = 0,1, . . . ,n. (5)

Definition 1.2. If |q|> 1, or
0 < |q|< 1 and |z|< |1−q|−1,

the first q-exponential function Eq(z) is given by

Eq(z)≡
∞

∑
k=0

1
{k}q!

zk. (6)

There is another q-exponential function which is entire when 0 < |q| < 1. To obtain it, we must invert the
base in (6), i.e. q→ 1

q :

E 1
q
(z)≡

∞

∑
k=0

q(k
2)

{k}q!
zk. (7)

Definition 1.3. The q-gamma function is given by

Γq(z)≡ 〈1;q〉∞
〈z;q〉∞ (1−q)1−z, 0 < |q|< 1. (8)

Here we deviate from the usual convention q < 1, because we want to work with meromorphic functions
of several variables. The q-gamma function has simple poles located at x =−n± 2kπi

logq , n,k ∈ N. Except for
this the q-gamma function and the gamma function have very similar behaviour.
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Definition 1.4. In the following, C/Z will denote the space of complex numbers mod 2πi
logq . This is isomorphic

to the cylinder R× e2πiθ , θ ∈ R. The operator

:̃
C
Z
7→ C
Z

is defined by

a 7→ a+
πi

logq
. (9)

Furthermore, we define
〈̃a;q〉n ≡ 〈ã;q〉n. (10)

By (9) it follows that

〈̃a;q〉n =
n−1

∏
m=0

(1+qa+m), (11)

where this time the tilde denotes an involution which changes a minus sign to a plus sign in all the n factors
of 〈a;q〉n.

Definition 1.5. Generalizing Heine’s 2φ1 series [39], we shall define a q-hypergeometric series by
(compare [32, p. 4])

pφr(â1, . . . , âp; b̂1, . . . , b̂r|q,z)≡ pφr

[
â1, . . . , âp

b̂1, . . . , b̂r
|q,z

]

≡
∞

∑
n=0

〈â1, . . . , âp;q〉n
〈1, b̂1, . . . , b̂r;q〉n

[
(−1)nq(n

2)
]1+r−p

zn,
(12)

where q 6= 0 if p > r +1, and
â≡ a∨ ã. (13)

The following notation will be convenient:
QE(x)≡ qx. (14)

Definition 1.6. Let a and b be any elements with commutative multiplication. Then the Nalli–Ward–AlSalam
(NWA) q-addition is given by

(a⊕q b)n ≡
n

∑
k=0

(
n
k

)

q
akbn−k, n = 0,1,2, . . . . (15)

Furthermore, we put

(aªq b)n ≡
n

∑
k=0

(
n
k

)

q
ak(−b)n−k, n = 0,1,2, . . . . (16)

Theorem 1.1. The NWA q-addition forms a commutative monoid, i.e. a monoid with commutative
q-addition.

We will come back to this monoid theme later.



84 Proceedings of the Estonian Academy of Sciences, 2008, 57, 2, 81–99

Definition 1.7. In 1910 Jackson redefined the general q-integral for a bounded interval [32,41]

∫ a

0
f (t,q)dq(t)≡ a(1−q)

∞

∑
n=0

f (aqn,q)qn, 0 < q < 1, a ∈ R. (17)

Following Jackson, we will put

∫ ∞

0
f (t,q)dq(t)≡ (1−q)

∞

∑
n=−∞

f (qn,q)qn, 0 < |q|< 1, (18)

provided the sum converges absolutely.

We will now start an exposition of different dialects of q-calculus. Quantum calculus is more or less
equal to q-calculus and started with the book [46]. Here the basic formulas of q-calculus are given in a
different notation. It was followed by [24], where different q-analogues of the Euler integral formula

Γ(x) =
∫ ∞

0
tx−1e−tdt (19)

were discussed.
When we are looking for a q-analogue of such an integral, we have a multiple choice. We can use

different q-exponential functions. We can use the q-integral (18) with upper integration limit +∞, or we can
use the finite q-integral (17) with the upper integration limit 1

1−q .
Before embarking on this q-analogue we are going to mention another formula.
The bilateral summation formula

1Ψ1(a;b|q,qz) =
〈b−a,a+ z,1,1−a− z,q〉∞
〈b,b−a− z,z,1−a,q〉∞ , (20)

an extension of the q-binomial theorem, was first stated by S. Ramanujan (see [35]). A proof of (20) was
given by Andrews and Askey in 1978 [9] (see the book by Gasper and Rahman [32, pp. 126–127]).

In [24] the formula

Γq(x) =
∫ 1

1−q

0
tx−1E 1

q
(−qt)dq(t) (21)

was given. This q-integral formula is merely a heavily disguised version of (20). The formula (21) was first
proved by Nalli [48, p. 337] in a slightly different form. She simply showed that this q-integral satisfies the
functional equation of the Γq-function. Nalli also introduced a q-Riemann zeta function and the so-called
q-addition. This addition is imperative for obtaining analogues of formulas for hypergeometric functions of
one and many variables with function argument x+y. These addition formulas are proved in an operational
way, so no certain convergence region can be given; in general small function arguments work best. In the
footsteps of Jackson, Hahn [33, p. 10] has presented another q-analogue of (19) with the upper integration
limit ∞. Hahn’s proof is not as clear as the proof of Nalli. Hahn also does not define the Γq-function
explicitly. It looks that Hahn still thought of the Heine Ω-function, which we will define here. Heine,
Ashton [11], and Daum [22] used another function without the factor (1− q)1−x, which they called the
Heine Ω-function. The main difference between the two functions is that Ω has zeros, in contrast to the
Γq function which has no zeros, and therefore 1/Γq is entire. In his thesis [11], supervised by Lindemann,
Ashton showed the connection of the Heine function to elliptic functions. However, Hahn has contributed
greatly to the development of q-calculus; his reasoning is often on a very high level.

Time scales were introduced by Hilger in his thesis of 1988 [40]. Hilger says that one can generalize
differential and integral calculus (for functions of one variable) by replacing the range of definition of the
functions under consideration by an arbitrary measure chain (or time scale).
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There exists a so-called integral for time scales [1] with inverse operator. However, this integral is a
special case of the general q-integral. Regular conferences on time scales are held in the US, sometimes
also as special sessions of the American Mathematical Society meetings.

Partition theory or additive number theory is a well-established subject with connections to many areas.
This is outlined in [47]. The Young frames equivalent to partitions give the representations of the symmetric
group. The representations of Lie groups are then obtained as tensor products of these representations. The
characters of these representations can be computed by the Weyl determinant formula. Quantum groups
started in Santilli’s thesis of 1967 [50] as a development from the Lie admissible deformations. Many
physical objects have been q-deformed, however, a unified connection to the q-special functions which
form the representations of these quantum groups is still lacking. There is a parallel theory, introduced by
Woronowicz [59] in 1987. Woronowicz introduced a compact matrix pseudogroup (A,µ), where A is a C?

algebra with unity, and A is an N×N matrix with entries belonging to A. Several interesting formulas have
been obtained by this method, however, these results are always in the same spirit as quantum groups.

The mathematical literature is currently flooded with articles about q-deformations. Just as an example
we mention the highly interesting paper [34], where representations of the q-rook monoid are given. A
q-rook monoid is a q-algebra with certain q-deformed commutation relations.

2. ELLIPTIC FUNCTIONS, THETA FUNCTIONS

The two subjects, elliptic functions and theta functions, developed in the nineteenth century, are intimately
connected with each other. They share the beauty and multitude of formulas. As was shown in [28], the
Jacobi elliptic functions can be developed into a series of q-hypergeometric functions.

We first remind the reader of some elementary facts concerning general elliptic functions, i.e. double-
periodic functions in the complex plane taken from the excellent exposition [45]. Just as the rational
functions on the Riemann sphere Σ form a field denoted C(z), the meromorphic functions on the torus
C/Ω are the doubly periodic elliptic functions on C, which form a field, denoted E(Ω), where Ω is a fixed
lattice. Both E(Ω) and E1(Ω), the field of even elliptic functions, are extension fields of C. About 1850
K. Weierstrass (1815–1897) introduced the Weierstrass sigma-function, σ(z), which is z multiplied with the
product over all lattice points of those elementary factors which have simple zeros at the lattice points. The
Weierstrass zeta-function ζ (z) is the logarithmic derivative of σ(z). The Weierstrass ℘-function ∈ E1(Ω) is
−dζ/dz.

We now turn to the Jacobi elliptic functions. Here the σ -functions are called θ -functions; there are four
of them. For our purposes it will suffice to study just one of them.

Definition 2.1. The first Jacobi theta function is given by

θ1(z,q)≡ 2
∞

∑
n=0

(−1)nQE
((

n+
1
2

)2)
sin(2n+1)z . (22)

This function has period 2π and quasiperiod −i
2 logq.

The Jacobi elliptic functions are formed as quotients of these four θ -functions. We will now present
the q-series expansions of the first three Jacobi elliptic functions [28], which were given by Gauss in 1799,
Abel in 1828, Jacobi in 1829, Gudermann in 1844, Heine in 1850 [38,39], Durège in 1861, Broch in 1867,
Enneper in 1876, Laurent in 1880, Glaisher in 1881, Halphen in 1886, Bellachi in 1894, and Hermite in
1908. It was, however, only Heine who gave the series in the present form. For a historical account on this
subject see [28].
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Theorem 2.1. 2K,4K and 2K′,4K′ denote the periods of the Jacobi elliptic functions

K =
π
2

∞

∑
l=0

(
(2l−1)!!

(2l)!!

)2

k2l, (23)

q≡ e−π K′
K , x≡ uπ

2K
. (24)

Assume that

−π
2

K′

K
< Im(x) <

π
2

K′

K
. (25)

Then [28]

[44, (19)]sn u =
2π
Kk

Im


q

1
2 eix

1−q 2φ1(1, 1
2 ; 3

2 |q2;qe2ix)


 , (26)

[44, (21)]cn u =
2π
Kk

Re


q

1
2 eix

1+q 2φ1(1, 1̃
2 ; 3̃

2 |q2;qe2ix)


 , (27)

[44, (25)]dn u =
π

2K
Re

(
−1+2 2φ1(1, 0̃; 1̃|q2;qe2ix)

)
. (28)

We will now show that the Jacobi theta function plays a central role in q-calculus.

Theorem 2.2. The q-analogue of Euler’s reflection formula for the Γ function is [12, p. 1326], [29]

Γq(z)Γq(1− z) =
iq

1
8 (1−q)(〈1;q〉∞)3

q
z
2 θ1(−iz

2 logq,
√

q)
. (29)

The zeros z = mπ and z = −in
2 logq of θ1 correspond to the set of poles±2mπi

logq and−n of Γq, respectively.
The formula (29) was known in the literature three times before it was given in English in 2001. It first

appeared in a 1869 paper by Thomae [54, p. 262, (6a)]. The second time it appeared in 1873 in a book by
Thomae [55, p. 183, (168a)] about, among other things, theta functions. Then it appeared in an Italian paper
of 1923 by Nalli [48, p. 338]. The interesting thing is that both Thomae and Nalli used notations for theta
functions which are clearly different from the modern notation. The Thomae notation was reminiscent of
Riemann theta functions, and the Nalli notation was maybe influenced by nineteenth-century Italian books
about elliptic functions.

Thomae [54, p. 262] also claims that his teacher Heine published this equation in [37, p. 310], but it
looks like that the equations on page 310 were about something else.

The Jacobi triple product identity (1829) is very important in analytic number theory.

Theorem 2.3. The following formula [5,56] for the theta function holds:
∞

∑
n=−∞

qn2
zn = (q2,−qz,−qz−1;q2)∞, (30)

where z ∈ C\{0}, 0 < |q|< 1.

This relationship generalizes other results, such as the pentagonal number theorem.
There could possibly be some relationship between the Jacobi triple product identity and the q-analogue

of Euler’s reflection formula (29).
The first person to work explicitly with the expression Γq(x)Γq(1−x) was Reverend Jackson [41, p. 193],

who showed that
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Γq(x)Γq(1− x) =
Γq(1

2)2

σq(x)
, (31)

when computing a certain q-integral. Here σq(x) is a certain σ - or θ -function.
We now come to the definition of one of the zeta functions. Recall the corresponding definition in the

Weierstrass elliptic function case:

Zs(x)≡ θ1(x,q)′

θ1(x,q)
. (32)

This zeta function has a q-series expansion [28]; we have excluded a multiplicative constant:

[14, p. 288, (43)]Zs(x) = cot x+4Im
(

q2e2ix

1−q2 2φ1(1,1;2|q2;q2e2ix)
)

. (33)

Brown and Eastham have found two new reformulations of hypergeometric formulas in their recent
paper [15].

The first is a restatement of Kummer’s 2F1(−1) formula

2F1(a,b;1+a−b;−1) = 2cos
(

1
2

πa
)

Γ
[ −a,1+a−b
−a

2 ,1+ a
2 −b

]
. (34)

Another paper by the author about this is in preparation. Recall that Bailey–Daum’s classic q-analogue
of Kummer’s 2F1(−1) theorem has been expressed in the new notation as

Theorem 2.4. [26]

2φ1(a,b;1+a−b|q,−q1−b) = Γq

[
1+a−b,1+ a

2
1+a,1+ a

2 −b

] 〈 ˜1+ a
2 −b, 1̃;q〉∞

〈1̃+ a
2 , 1̃−b;q〉∞

. (35)

The following two formulas are simply restatements of two equations from [29].
Two q-analogues of (34) are given by the following theorems.

Theorem 2.5. A second q-analogue of Kummer’s 2F1(−1) formula

3φ3(a,b, 1̃+ a
2 ;1+a−b, ã

2 ,∞|q,q1+ a
2−b) = Γq

[
1+a−b,−a
−a

2 ,1+ a
2 −b

]
q−

a
4

θ1( ia
2 logq,q

1
2 )

θ1( ia
4 logq,q

1
2 )

, (36)

where 1+a−b 6= 0,−1,−2 . . . .

Theorem 2.6. A third q-analogue of Kummer’s 2F1(−1) formula

4φ2(a,b, 1̃+ a
2 ,∞;1+a−b, ã

2 |q,q−
a
2−b) = Γq

[
1+a−b,−a
−a

2 ,1+ a
2 −b

]
q−

a
4 + ab

2
θ1( ia

2 logq,q
1
2 )

θ1( ia
4 logq,q

1
2 )

, (37)

where 1+a−b 6= 0,−1,−2 . . . .

The two intermediary identities in the mock theta function paper by Andrews [6] are examples of
q-formulas which do not correspond to known formulas for q = 1. In the new notation they can be written
as follows:
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Theorem 2.7. Andrews [6, p. 68]

3φ2

[
c+1−b−t

2 ,b, ˜c+1−b−t
2

c, 1̃
|q;qt

]
=

〈 c+1−b
2 ;q2〉∞
〈c, b̃;q〉∞

〈 c+b
2 ;q2〉∞
〈1

2 ;q2〉∞ 2φ1(1−t
2 ,b; c+b

2 |q2,qt)

+
qb〈 c−b

2 ;q2〉∞
〈c, b̃;q〉∞

〈 c+b+1
2 ;q2〉∞
〈1

2 ;q2〉∞ 2φ1(2−t
2 ,b; c+b+1

2 |q2,qt+1). (38)

Theorem 2.8. Andrews [6, p. 69]

2φ1

[
b, 1̃− t

c
|q;qt

]
=
〈1+b

2 , 2c−b
2 ;q2〉∞〈1̃;q〉∞

〈c, c̃−b;q〉∞
3φ2

[
c̃−b−t

2 , ˜c+1−b−t
2 , b

2
2c−b

2 , 1
2

|q2;q2t

]

+
1+qc−b−t

1−q
qt 〈b

2 , 2c+1−b
2 ;q2〉∞〈1̃;q〉∞
〈c, c̃−b;q〉∞

3φ2

[
˜c+1−b−t

2 , ˜c+2−b−t
2 , b+1

2
2c+1−b

2 , 3
2

|q2;q2t

]
. (39)

These two formulas are clearly different from Andrews’s q-analogues of Kummer’s formulas in [8]. For
the convenience of the reader we display two of these Kummer’s formulas here:

2F1

(
a,b;

1+a+b
2

;
1
2

)
= Γ

[ 1+a+b
2 , 1

2
1+b

2 , 1+a
2

]
, (40)

2F1

(
a,1−a;c;

1
2

)
= Γ

[ c
2 , 1+c

2
1+c−a

2 , a+c
2

]
. (41)

3. q-APPELL FUNCTIONS

In this chapter we discuss several cases of q-hypergeometric functions of two variables and consider special
limit cases to one variable and to combinatorics. In 1880 Paul Emile Appell (1855–1930) [10] introduced
some 2-variable hypergeometric series now called Appell functions, which have the following q-analogues.

Definition 3.1. The q-Appell functions [42,43] have convergence areas in the x1 x2 plane, which are slightly
larger than for the corresponding Appell functions. The convergence areas given are those for q = 1.

Φ1(a;b,b′;c|q;x1,x2)≡
∞

∑
m1,m2=0

〈a;q〉m1+m2〈b;q〉m1〈b′;q〉m2

〈1;q〉m1〈1;q〉m2〈c;q〉m1+m2

xm1
1 xm2

2 , max(|x1|, |x2|) < 1; (42)

Φ2(a;b,b′;c,c′|q;x1,x2)≡
∞

∑
m1,m2=0

〈a;q〉m1+m2〈b;q〉m1〈b′;q〉m2

〈1;q〉m1〈1;q〉m2〈c;q〉m1〈c′;q〉m2

xm1
1 xm2

2 , |x1|+ |x2|< 1; (43)

Φ3(a,a′;b,b′;c|q;x1,x2)≡
∞

∑
m1,m2=0

〈a;q〉m1〈a′;q〉m2〈b;q〉m1〈b′;q〉m2

〈1;q〉m1〈1;q〉m2〈c;q〉m1+m2

xm1
1 xm2

2 , max(|x1|, |x2|) < 1; (44)

Φ4(a;b;c,c′|q;x1,x2)≡
∞

∑
m1,m2=0

〈a;q〉m1+m2〈b;q〉m1+m2

〈1;q〉m1〈1;q〉m2〈c;q〉m1〈c′;q〉m2

xm1
1 xm2

2 , |√x1|+ |√x2|< 1. (45)
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Definition 3.2. Let {θi}q ≡ xiDq,i. The following inverse pair of symbolic operators defined in [26,42] will
be used in some of the computations:

5q(h)≡ Γq

[
h,h+{θ1}q +{θ2}q
h+{θ1}q,h+{θ2}q

]
, 4q(h)≡ Γq

[
h+{θ1}q,h+{θ2}q
h+{θ1}q +{θ2}q,h

]
. (46)

Then
5q(h)〈h;q〉m〈h;q〉nxm

1 xn
2 = 〈h;q〉m+nxm

1 xn
2. (47)

In [26] we found general expansion formulas, which upon specialization of variables lead to 6
expansion formulas for q-Appell functions. We write these expansion formulas followed by their companion
combinatorial identities.

Theorem 3.1. q-Analogue of [16, (26)]

Φ2(a;b,b′;c,c′|q;x1,x2) =
∞

∑
r=0

〈a,b,b′;q〉r
〈1,c,c′;q〉r xr

1xr
2qr(a+r−1)

× 2φ1(a+ r,b+ r;c+ r|q,x1) 2φ1(a+ r,b′+ r;c′+ r|q,x2). (48)

This is equivalent to a form of the first q-Vandermonde theorem

〈a;q〉m+n

〈1;q〉m〈1;q〉n =
min(m,n)

∑
r=0

〈a;q〉r
〈1;q〉r

〈a+ r;q〉m−r

〈1;q〉m−r

〈a+ r;q〉n−r

〈1;q〉n−r
qr(a+r−1). (49)

Theorem 3.2. q-Analogue of [16, (27)]

2φ1(a,b;c|q,x1) 2φ1(a,b′;c′|q,x2) =
∞

∑
r=0

(−1)r〈a,b,b′;q〉r
〈1,c,c′;q〉r xr

1xr
2qra+(r

2)

×Φ2(a+ r;b+ r,b′+ r;c+ r,c′+ r|q;x1,x2). (50)

This is equivalent to

〈a;q〉m〈a;q〉n
〈1;q〉m〈1;q〉n =

min(m,n)

∑
r=0

〈a;q〉m+n−r

〈1;q〉r
(−1)r

〈1;q〉m−r〈1;q〉n−r
qra+(r

2). (51)

Theorem 3.3. q-Analogue of [16, (28)] (compare [2, p. 194])

Φ3(a,a′;b,b′;c|q;x1,x2) =
∞

∑
r=0

(−1)r〈a,a′,b,b′;q〉r
〈1,c+ r−1;q〉r〈c;q〉2r

xr
1xr

2qrc+ 3
2 r(r−1)

× 2φ1(a+ r,b+ r;c+2r|q,x1) 2φ1(a′+ r,b′+ r;c+2r|q,x2). (52)
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This is equivalent to

1
〈1;q〉m〈1;q〉n〈a;q〉m+n

=
min(m,n)

∑
r=0

(−1)r

〈1,a+ r−1;q〉r〈1;q〉m−r

qra+ 3
2 r(r−1)

〈a;q〉m+r〈1,a+2r;q〉n−r
. (53)

Theorem 3.4. q-Analogue of [16, (29)]

2φ1(a,b;c|q,x1) 2φ1(a′,b′;c|q,x2) =
∞

∑
r=0

〈a,a′,b,b′;q〉r
〈1,c;q〉r〈c;q〉2r

xr
1xr

2qrc+r(r−1)

×Φ3(a+ r,a′+ r;b+ r,b′+ r;c+2r|q;x1,x2). (54)

This is equivalent to

〈a;q〉m+n

〈1,a;q〉m〈1,a;q〉n =
min(m,n)

∑
r=0

qra+r(r−1)

〈1,a;q〉r〈1;q〉m−r〈1;q〉n−r
, (55)

which for m = n is a special case of the first q-Vandermonde theorem.

Theorem 3.5. q-Analogue of [16, (30)]. The first version of this equation occurred in [42, (37), p. 75]. The
same corrected version also occurred in [2, 6.8, p. 193]:

Φ1(a;b,b′;c|q;x1,x2) =
∞

∑
r=0

〈c−a,a,b,b′;q〉r
〈1,c+ r−1;q〉r〈c;q〉2r

xr
1xr

2qra+r(r−1)

× 2φ1(a+ r,b+ r;c+2r|q,x1) 2φ1(a+ r,b′+ r;c+2r|q,x2). (56)

Proof.

Φ1(a;b,b′;c|q;x1,x2) =
∞

∑
r=0

〈−θ1,−θ2,c−a;q〉r〈c;q〉2r

〈1,a,c+ r−1,c+θ1,c+θ2;q〉r qraεr
1εr

2

× 2φ1(a,b;c|q,x1) 2φ1(a,b′;c|q,x2) =
∞

∑
r=0

〈−θ1,−θ2,c−a;q〉r〈c;q〉2r

〈1,c+ r−1,a,c,c;q〉r qraεr
1εr

2

× 2φ1(a,b;c+ r|q,x1) 2φ1(a,b′;c+ r|q,x2) =
∞

∑
r=0

〈b,a,b′,c−a;q〉r〈c;q〉2r

〈1,c+ r−1,c,c,c+ r,c+ r;q〉r
×qra+r(r−1)x1

rx2
r

2φ1(a+ r,b+ r;c+2r|q,x1) 2φ1(a+ r,b′+ r;c+2r|q,x2) = . . . .

(57)

This is equivalent to a form of the q-Whipple theorem

〈a;q〉m+n

〈1;q〉m〈1;q〉n〈c;q〉m+n
=

min(m,n)

∑
r=0

〈c−a,a;q〉rqra+r(r−1)

〈1,c+ r−1;q〉r〈1;q〉m−r

〈a+ r;q〉m−r

〈c;q〉m+r

〈a+ r;q〉n−r

〈1,c+2r;q〉n−r
. (58)
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Theorem 3.6. q-Analogue of [16, (31)]

2φ1(a,b;c|q,x1) 2φ1(a,b′;c|q,x2) =
∞

∑
r=0

(−1)r〈a,b,b′,c−a;q〉r
〈1,c;q〉r〈c;q〉2r

×qra+(r
2)x1

rx2
rΦ1(a+ r;b+ r,b′+ r;c+2r|q;x1,x2). (59)

This is equivalent to a form of the q-Pfaff–Saalschütz theorem

〈a;q〉m〈a;q〉n
〈1,c;q〉m〈1,c;q〉n =

min(m,n)

∑
r=0

(−1)r〈c−a;q〉r
〈1,c;q〉r〈c;q〉m+n

〈a;q〉m+n−r

〈1;q〉m−r〈1;q〉n−r
qra+(r

2). (60)

As an undergraduate at Cambridge in 1914 W. N. Bailey (1893–1961) was greatly influenced by
Ramanujan and wrote the first systematic treatment of hypergeometric series [13]. Lucy J. Slater attended
Bailey’s lectures on q-hypergeometric series in 1947–1950 at London University and wrote many important
papers on this subject; among her students was Howard Exton. In 1953 R. P. Agarwal [2] visited Bailey, and
made the aforementioned contributions to the subject. In 1966 Slater said [51, p. 234] that there seemed to
be no systematic attempt to find summation theorems for basic Appell series, but Andrews [7] managed to
prove some summation and transformation formulas for basic Appell series. We are now going to present
these formulas in the new notation. Despite their beauty, it turns out that the formulas by Andrews are not
very interesting for the special case q = 1. The reason is that the proofs involve the q-binomial theorem; the
obtained formulas are only formal.

So we start with q-analogues of a couple of formulas by Carlitz [17] to show some Saalschützian
theorems for basic double series, which make sense when q = 1.

Assume that
γ +δ ′ = α +β ′−n+1, (61)

γ = β ′+β , (62)

δ = α−β ′−m+1. (63)

This implies that
γ +δ = α +β −m+1. (64)

Then [3, p. 456, (7)]

S≡
m

∑
r=0

n

∑
s=0

〈−m;q〉r〈−n;q〉s〈α;q〉r+s〈β ;q〉r〈β ′;q〉sqr+s

〈1;q〉r〈1;q〉s〈γ;q〉r+s〈δ ;q〉r〈δ ′;q〉s

=
m

∑
r=0

〈−m,α,β ;q〉r
〈1,γ,δ ;q〉r qr

n

∑
s=0

〈−n,α + r,β ′;q〉s
〈1,γ + r,δ ′;q〉s qs

=
m

∑
r=0

〈−m,α,β ;q〉r
〈1,γ,δ ;q〉r qr 〈γ−α,γ−β ′+ r;q〉n

〈γ + r,γ−α−β ′;q〉n

=
m

∑
r=0

〈−m,α,γ−β ′+n;q〉r
〈1,γ +n,δ ;q〉r qr 〈γ−α,γ−β ′;q〉n

〈γ,γ−α−β ′;q〉n

=
〈γ−α,γ−β ′;q〉n
〈γ,γ−α−β ′;q〉n

〈γ−α +n,β ′;q〉m
〈γ +n,β ′−α;q〉m

=
〈β +β ′−α;q〉m+n〈β ′;q〉m〈β ;q〉n

〈β +β ′;q〉m+n〈β ′−α;q〉m〈β −α;q〉n . (65)
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If instead of (62) we assume that
δ ′+δ = 1+α, (66)

(61) implies that
γ−β ′+n = δ . (67)

In this case we have [3, p. 456, (8)]

S =
m

∑
r=0

〈−m,α,β ;q〉r
〈1,γ,δ ;q〉r qr 〈γ−α,γ−β ′+ r;q〉n

〈γ + r,γ−α−β ′;q〉n

=
〈γ−α,γ−β ′;q〉n
〈γ,γ−α−β ′;q〉n 3φ2(−m,α,β ;γ +n,γ−β ′|q,q)

=
〈γ−α,γ−β ′;q〉n
〈γ,γ−α−β ′;q〉n

〈γ +n−α,γ +n−β ;q〉m
〈γ +n,γ +n−α−β ;q〉m

=
〈γ−α〉n+m〈γ−β ′〉n〈γ−α−β ′;q〉mqmα

〈γ〉n+m〈γ−α−β ′;q〉n〈γ−β ′〉m . (68)

Assume again that γ = β ′+β . We can now use (65) to prove the following transformation formula:

Theorem 3.7. Srivastava [53, p. 52, (3.3)]

Φ1(β ′+β −α;β ′,β ;β +β ′|q;x,y) = (xqβ ′−α ;q)α−β ′(yqβ−α ;q)α−β Φ1(α,β ,β ′;β +β ′|q;xqβ ′−α ,yqβ−α).
(69)

Proof.

Φ1(β ′+β −α;β ′,β ;β +β ′|q;x,y) =
∞

∑
m,n=0

xmyn〈β ′−α;q〉m〈β −α;q〉n
〈1;q〉n〈1;q〉m

×
m

∑
r=0

n

∑
s=0

〈−m;q〉r〈−n;q〉s
〈1;q〉r〈1;q〉s

qr+s〈α;q〉r+s〈β ;q〉r〈β ′;q〉s
〈γ;q〉r+s〈α−β ′−m+1;q〉r〈α−β −n+1;q〉s

=
∞

∑
r=0

∞

∑
s=0

xrysqr+s〈α;q〉r+s〈β ;q〉r〈β ′;q〉s
〈1;q〉r〈1;q〉s〈γ;q〉r+s

∞

∑
m=r

∞

∑
n=s

〈−m;q〉r〈β ′−α;q〉m−r

〈1;q〉m〈1;q〉n

× (−1)r+sxm−r〈−n;q〉s〈β −α;q〉n−syn−sq−(s
2)−(r

2)+s(β−α+n−1)+r(β ′−α+m−1)

=
∞

∑
r=0

∞

∑
s=0

xrys〈α;q〉r+s〈β ;q〉r〈β ′;q〉s
〈1;q〉r〈1;q〉s〈γ;q〉r+s

qs(β−α)+r(β ′−α)

×
∞

∑
m=r

〈β ′−α;q〉m−rxm−r

〈1;q〉m−r

∞

∑
n=s

〈β −α;q〉n−syn−s

〈1;q〉n−s

=
(xqβ ′−α ;q)∞

(x;q)∞

(yqβ−α ;q)∞

(y;q)∞
Φ1(α,β ,β ′;β +β ′|q;xqβ ′−α ,yqβ−α). (70)
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Remark 3.1. The original paper by Carlitz, which treated the hypergeometric case [17, p. 417, (12)] seems
to contain a misprint. Also compare with [18, p. 138, (3)] and [19, p. 1, (1.5)]. In the first q-analogue (in
Watson’s notation) [3, p. 457, eq. 9], another misprint was introduced. This clearly shows the disadvantages
of the Watson notation compared to the Heine notation.

Waleed Al-Salam (1926–1996) was a student of Leonard Carlitz (1907–1999) at Duke University in
1958. We will come back to these two people in the next chapter. Waleed Al-Salam had a wife Nadhla
Al-Salam, who passed her PHD exam under Carlitz in 1965, and who published on special functions in
several respected journals. She had no graduate students.

For the special case y = 0, (69) becomes a q-analogue of Euler’s transformation:

Theorem 3.8. [32, p. 10, (1.4.3)], [39, p. 115]

2φ1(γ−α;β ;γ|q;x) = (xqβ−α ;q)α−β 2φ1(α,γ−β ;γ|q;xqβ−α). (71)

We continue with Andrews’s formulas, which were originally presented in Watson’s notation. We show
that although these formulas have no hypergeometric counterpart, they can be presented in the current
notation.

Theorem 3.9. The following transformation [7, p. 618] holds:

Φ1(α;β ,β ′;γ|q;qx,qy) =
〈α;q〉∞〈β + x;q〉∞〈β ′+ y;q〉∞

〈γ;q〉∞〈x;q〉∞〈y;q〉∞ × 3φ2
(
γ−α,x,y;β + x,β ′+ y|q,qα)

. (72)

Proof. We use the q-binomial theorem. Absolute convergence is assumed.

Φ1(α;β ,β ′;γ|q;qx,qy) =
∞

∑
m=0

∞

∑
n=0

qxmqyn〈α;q〉m+n〈β ;q〉m〈β ′;q〉n
〈γ;q〉m+n〈1;q〉m〈1;q〉n

=
〈α;q〉∞
〈γ;q〉∞

∞

∑
m=0

∞

∑
n=0

qxmqyn〈γ +m+n;q〉∞〈β ;q〉m〈β ′;q〉n
〈α +m+n;q〉∞〈1;q〉m〈1;q〉n

=
〈α;q〉∞
〈γ;q〉∞

∞

∑
m=0

∞

∑
n=0

∞

∑
r=0

qxmqynqr(α+m+n)〈γ−α;q〉r〈β ;q〉m〈β ′;q〉n
〈1;q〉r〈1;q〉m〈1;q〉n

=
〈α;q〉∞
〈γ;q〉∞

∞

∑
r=0

〈γ−α;q〉r
〈1;q〉r qαr 〈β + x+ r;q〉∞

〈x+ r;q〉∞
〈β ′+ y+ r;q〉∞
〈y+ r;q〉∞

=
〈α;q〉∞
〈γ;q〉∞

〈β + x;q〉∞
〈x;q〉∞

〈β ′+ y;q〉∞
〈y;q〉∞

∞

∑
r=0

〈γ−α;q〉r
〈1;q〉r qαr

× 〈x;q〉r
〈β + x;q〉r

〈y;q〉r
〈β ′+ x;q〉r =

〈α;q〉∞〈β + x;q〉∞〈β ′+ y;q〉∞
〈γ;q〉∞〈x;q〉∞〈y;q〉∞

× 3φ2
(
γ−α,x,y;β + x,β ′+ y|q,qα)

. (73)
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Furthermore,

Theorem 3.10. [7, p. 619]

Φ1(β ′− x;β ,β ′;β +β ′|q;qx,qy) =
〈β + x,β ′,β ′+ y− x;q〉∞

〈β +β ′,x,y;q〉∞ . (74)

Proof.

Φ1(β ′− x;β ,β ′;β +β ′|q;qx,qy) =
〈β + x,β ′− x,β ′+ y;q〉∞

〈β +β ′,x,y;q〉∞
× 2φ1

(
x,y;β ′+ y|q,qβ ′−x

)
=
〈β + x,β ′,β ′+ y− x;q〉∞

〈β +β ′,x,y;q〉∞ . (75)

Finally

Theorem 3.11. [7, p. 619]

Φ1(1̃− y;β ,x+1−2y; ˜β +1+ x− y|q;qx,qy) =
〈β + x, 1̃;q〉∞〈x+1,2(1− y)+ x;q2〉∞

〈 ˜β +1+ x− y,x,y;q〉∞
. (76)

Proof.

Φ1(1̃− y;β ,x+1−2y; ˜β +1+ x− y|q;qx,qy)

=
〈1̃− y,β + x,x+1− y;q〉∞
〈 ˜β +1+ x− y,x,y;q〉∞

2φ1
(
x,y;x+1− y|q,−q1−y)

=
〈β + x, 1̃;q〉∞〈x+1,2(1− y)+ x;q2〉∞

〈 ˜β +1+ x− y,x,y;q〉∞
. (77)

4. CARLITZ–ALSALAM POLYNOMIALS AND VARIOUS OTHER q-FUNCTIONS

The Carlitz–AlSalam orthogonal polynomials Fn,q(x) are examples of q-analogues of xn defined by a
generating function made up of q-exponential functions.

Definition 4.1. [4,23]
∞

∑
ν=0

tν

{ν}q!
Fν ,q(x) =

Eq(xt)
Eq(t)Eq(−t)

. (78)

This special type of x-dependence in the RHS is characteristic of so-called q-Appell polynomials [27].
The vector of Fν ,q(x) can be written as a q-Pascal matrix times Fν,q(0).
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The recurrence for Fn,q(x) is

F0,q(x) = 1, F1,q(x) = x,

Fn+1,q(x) = xFn,q(x)− (1−qn)qn−1Fn−1,q(x), n≥ 1.
(79)

This is an example of a recurrence which has a very simple form for q = 1.
The denominator in (78) can be written as Eq(t ªq t). Already in 1936 Morgan Ward (1901–

1963) [57, p. 256] proved the following equations for q-subtraction:

(xªq y)2n+1 =
n

∑
k=0

(−1)k
(

2n+1
k

)

q
xkyk(x2n+1−2k− y2n+1−2k); (80)

(xªq y)2n = (−1)n
(

2n
n

)

q
xnyn +

n−1

∑
k=0

(−1)k
(

2n
k

)

q
xkyk(x2n−2k + y2n−2k). (81)

According to a formula of Gauss,

2n

∑
k=0

(−1)k
(

2n
k

)

q
= (1−q)(1−q3) . . .(1−q2n−1). (82)

The polynomials Fn,q(x) are connected to the Cigler q-Hermite polynomials [20] by the following
substitution:

hν ,q(x) =
(

q
1−q

)ν
2

Fν ,q

(
x

√
1−q

q

)
. (83)

This substitution is only valid for q 6= 1.
We now find the following generating function for the Cigler q-Hermite polynomials [20, p. 42]:

Eq(xt)

E2,q(
qt2

{2}q
)

=
∞

∑
ν=0

tν

{ν}q!
hν ,q(x). (84)

Here we have used a q-exponential function adapted to a quadratic function argument, which was first
mentioned by Jackson in his articles about q-Bessel functions around 1904.

Definition 4.2.

E2,q(x)≡
∞

∑
k=0

xk

{k}q2!
. (85)

Exton [30, p. 168] has given a third variant of q-exponential function

EExt,q(x)≡
∞

∑
k=0

q
k(k−1)

4

{k}q!
xk. (86)

This function is invariant under inversion of basis and entire. No addition theorems and no power series
inversion are known. However, the following differentiation formula is obtained:

Dn
qEExt,q(x) = QE(

n(n−1)
4

)EExt,q(xq
n
2 ). (87)
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Definition 4.3. The corresponding q-trigonometric functions are

sinExt,q(x)≡
∞

∑
n=0

(−1)nQE
(

n(2n+1)
2

)
x2n+1

{2n+1}q!
, (88)

cosExt,q(x)≡
∞

∑
n=0

(−1)nQE
(

n(2n−1)
2

)
x2n

{2n}q!
, (89)

where x ∈ C.

As long as no addition formulas for these q-trigonometric functions exist, they are not very interesting
from an operational point of view. These functions have beautiful graphs, exactly resembling the usual
trigonometric graphs. Two very similar q-trigonometric functions were given in [31, p. 590]. It should,
however, be mentioned that there are q-trigonometric functions with q-addition theorems and the interested
reader could consult the literature for more information about these functions.

In such a complex subject as q-calculus, many different definitions have been used. Many physicists
prefer another, symmetric definition of a q-analogue. Therefore in [21, p. 158] another, similar definition
of the NWA q-addition (15) was given. Sometimes new concepts in q-calculus are developed for the first
time by physicists using this other symmetric q-analogue. Quantum groups have been around since the
early 1980s and many q-analogues of matrix Lie groups have been presented, which are often used in string
theory. The so-called grand unification theory uses so-called q-special functions to represent these quantum
groups. Like in q-calculus, many dialects of string theory exist, and the physicists are not yet certain which
of these dialects is the right one.

4.1. Some more facts about Leonard Carlitz

1907 Born in Philadelphia, PA, USA
1927 BA, University of Pennsylvania
1930 PhD, University of Pennsylvania, 1930 under Howard Mitchell, who had studied under Oswald Veblen

at Princeton
1930–1931 at CalTech with E. T. Bell
1931 Married Clara Skaler
1931–1932 at Cambridge with G. H. Hardy
1932 Joined the faculty of Duke University where he served for 45 years
1938–1973 Editorial Board of Duke Mathematics Journal (Managing Editor from 1945)
1939 Birth of son Michael
1940 Supervision of his first doctoral student E. F. Canaday, degree awarded in 1940
1945 Birth of son Robert
1964 First James B. Duke Professor in Mathematics
1977 Supervised his 44th and last doctoral student, Jo Ann Lutz, degree awarded in 1977
1977 Retired
1990 Death of wife Clara, after 59 years of marriage
1999, 17 September, Died in Pittsburgh, PA

Carlitz moved to San Francisco after 1977, according to Srivastava’s wife Rekha. Hari M. Srivastava
was a close friend of Carlitz, who said that Carlitz was a reserved person, and a brilliant researcher. Richard
Askey said that Carlitz went to Wisconsin in 1977 to meet his graduate student Dennis Stanton and to discuss
some mathematics. Askey respected Carlitz highly. A description of Carlitz as a young man is given in [49].

Formula (69) in hypergeometric form is not found elsewhere according to Per Karlsson.
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APPENDIX

We remind the reader that there is also another notation, based on the following q-shifted factorial. This is
called the Watson notation [58]:

(a;q)n ≡





1, n = 0;
n−1

∏
m=0

(1−aqm), n = 1,2, . . . .
(90)

The relation between the new and the old notation is

〈a;q〉n = (qa;q)n. (91)

We conclude with a short biography of F. H. Jackson, one of the greatest heros of q-calculus. Jackson
used a notation very similar to the notation of the author.

Frank Hilton Jackson (1870–1960) was born in Hull (England) in a family of eleven children. His
original interest lay in the classics field, but his father preferred him to study mathematics, and so at a very
young age Jackson joined the University of Cambridge. Only 19 years old, he passed the Tripos examination.
Later, he received his Doctor of Science degree.

After leaving Cambridge, he was ordained and served for a couple of years as a curate at Bremerton
near Salisbury. From here, he entered the Royal Navy, where he served as a chaplain and an instructor for
ten years. Serving at the H.M.S. Dido, he experienced the Boxer rebellion and received the China Medal.
Subsequently he returned to civil service and worked first as a curate, then as a vicar at different churches
in the years 1912–1918. During World War I he became Instructor-Commander in the Royal Navy. After
the war he continued his clerical career as rector and later on as rural dean at Chester-Le-Street. In 1930,
he was made an honorary canon of Durham Cathedral, in the city of Durham, England, and in 1957, Canon
Emeritus. During this long and distinguished clerical career, F. H. Jackson still studied mathematics and
wrote about forty papers on different subjects. His main interest lay in basic analogues, or q-analogues.
He thus wrote on basic hypergeometric functions, including the basic functions of Legendre and Bessel,
focusing on their relevance to theta functions and to elliptic functions.
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q-arvutuse eri rakendusvaldkondadest

Thomas Ernst

On antud ülevaade q-arvutuse rakendamise võimalustest kvantarvutuses, ajaskaalade ja lahutuste käsit-
lustes. On näidatud, et on olemas tihe seos ühelt poolt q-gammafunktsioonide ja teisalt elliptiliste ning
teetafunktsioonide vahel. On illustreeritud Heine sümboolika eeliseid Euleri q-sümmeetriavalemi, Appelli
q-funktsioonide, Carlitzi–AlSalami polünoomide ja nn q-liitmise käsitlemisel. Lõpuks on esitatud mõnede
tuntud q-arvutuse uurijate lühielulugu.


