ABOUT UNIQUELY COLORABLE MIXED HYPERTREES

ANGELA NICULITSA∗

Department of Mathematical Cybernetics
Moldova State University
Mateevici 60, Chişinău, MD-2009, Moldova

AND

VITALY VOLOSHIN†

Institute of Mathematics and Informatics
Moldovan Academy of Sciences
Academiei, 5, Chişinău, MD-2028, Moldova

Abstract

A mixed hypergraph is a triple $H = (X, C, D)$ where X is the vertex set and each of C, D is a family of subsets of X, the C-edges and D-edges, respectively. A k-coloring of H is a mapping $c : X \to [k]$ such that each C-edge has two vertices with the same color and each D-edge has two vertices with distinct colors. $H = (X, C, D)$ is called a mixed hypertree if there exists a tree $T = (X, E)$ such that every D-edge and every C-edge induces a subtree of T. A mixed hypergraph H is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.

Keywords: colorings of graphs and hypergraphs, mixed hypergraphs, unique colorability, trees, hypertrees, elimination ordering.

1991 Mathematics Subject Classification: 05C15.

∗Partially supported by DAAD, TU-Dresden.
†Partially supported by DFG, TU-Dresden.
Preliminaries

We use the standard concepts of graphs and hypergraphs from [1, 2] and updated terminology on mixed hypergraphs from [4, 5, 6, 7].

A mixed hypergraph is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ where X is the vertex set, $|X| = n$, and each of \mathcal{C}, \mathcal{D} is a family of subsets of X, the \mathcal{C}-edges and \mathcal{D}-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping $c : X \to [k]$ from the vertex set X into a set of k colors so that each \mathcal{C}-edge has two vertices with the same color and each \mathcal{D}-edge has two vertices with different colors. The chromatic polynomial $P(\mathcal{H}, k)$ gives the number of different proper k-colorings of \mathcal{H}.

A strict k-coloring is a proper coloring using all k colors. By $c(x)$ we denote the color of vertex $x \in X$ in the coloring c. The maximum number of colors in a strict coloring of \mathcal{H} is the upper chromatic number $\bar{\chi}(\mathcal{H})$; the minimum number is the lower chromatic number $\chi(\mathcal{H})$.

If for a mixed hypergraph \mathcal{H} there exists at least one coloring, then it is called colorable. Otherwise \mathcal{H} is called uncolorable. Throughout the paper we consider colorable mixed hypergraphs.

If $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a mixed hypergraph, then the subhypergraph induced by $X' \subseteq X$ is the mixed hypergraph $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}')$ defined by setting $\mathcal{C}' = \{ C \in \mathcal{C} : C \subseteq X' \}$, $\mathcal{D}' = \{ D \in \mathcal{D} : D \subseteq X' \}$ and denoted by $\mathcal{H}' = \mathcal{H}/X'$.

The mixed hypergraph $\mathcal{H} = (X, \emptyset, \emptyset)$ ($\mathcal{H} = (X, \emptyset, \emptyset)$) is called "$\emptyset$-hypergraph" ("$\emptyset$-hypergraph") and denoted by \mathcal{H}_{\emptyset} (\mathcal{H}_{\emptyset}). If \mathcal{H}_{\emptyset} contains only \emptyset-edges of size 2 then from the coloring point of view it coincides with classical graph ([2]). We call it \emptyset-graph.

For each k, let r_k be the number of partitions of the vertex set into k nonempty parts (color classes) such that the coloring constraint is satisfied on each \mathcal{C}- and \mathcal{D}- edge. In fact r_k equals the number of different strict k-colorings of \mathcal{H} if we disregard permutations of colors. The vector $R(\mathcal{H}) = (r_1, \ldots, r_n) = (0, \ldots, 0, r_\chi(\mathcal{H}), \ldots, r_{\bar{\chi}}(\mathcal{H}), 0, \ldots, 0)$ is the chromatic spectrum of \mathcal{H}.

For the simplicity we assume that two strict k-colorings are considered the same if they can be obtained from each other by permutation of colors. In this case the number of different strict k-colorings coincides with $r_k(\mathcal{H})$.

A mixed hypergraph \mathcal{H} is called a uniquely colorable (uc for short) [5] if it has just one strict coloring.
A mixed hypergraph \(\mathcal{H} = (X, \mathcal{C}, \mathcal{D}) \) is called \textit{uc-orderable} [5] if there exists the ordering of the vertex set \(X \), say \(X = \{x_1, x_2, \ldots, x_n\} \), with the following property: each subhypergraph \(\mathcal{H}_i = \mathcal{H}/X_i \) induced by the vertex set \(X_i = \{x_i, x_{i+1}, \ldots, x_n\} \) is uniquely colorable. The corresponding sequence \(x_1, \ldots, x_n \) will be called a \textit{uc-ordering} of \(\mathcal{H} \).

A sequence \(x_0, x_1, \ldots, x_{t+1} \) of vertices is called a \textit{D-path} if \((x_i, x_{i+1}) \in \mathcal{D}, 0 \leq i \leq t \). A mixed hypergraph \(\mathcal{H} = (X, \mathcal{C}, \mathcal{D}) \) is called \textit{reduced} if \(|\mathcal{C}| \geq 3 \) for each \(C \in \mathcal{C} \), and \(|\mathcal{D}| \geq 2 \) for each \(D \in \mathcal{D} \), and moreover, no one \(C \)-edge (\(D \)-edge) is included in another \(C \)-edge (\(D \)-edge).

As it follows from the splitting-contraction algorithm [6, 7] colorings properties of arbitrary mixed hypergraph may be obtained from some reduced mixed hypergraph. Therefore, throughout the paper we consider reduced mixed hypergraphs.

Let \(\mathcal{C}(x)(\mathcal{D}(x)) \) denote the set of \(C \)-edges (\(D \)-edges) containing vertex \(x \in X \). Call the set \(N(x) = \{y : y \in X, y \neq x, \mathcal{C}(x) \cap \mathcal{C}(y) \neq \emptyset, \text{ or } \mathcal{D}(x) \cap \mathcal{D}(y) \neq \emptyset\} \) the \textit{neighbourhood} of the vertex \(x \) in a mixed hypergraph \(\mathcal{H} \). In other words, the neighbourhood of a vertex \(x \) consists of those vertices which are contained in common \(C \)-edges or \(D \)-edges with \(x \) except \(x \) itself.

A vertex \(x \) is called \textit{simplicial} [8] in a mixed hypergraph if its neighbourhood induces a uniquely colorable mixed subhypergraph. A mixed hypergraph \(\mathcal{H} = (X, \mathcal{C}, \mathcal{D}) \) is called \textit{pseudo-chordal} [8] if there exists an ordering \(\sigma \) of the vertex set \(X \), \(\sigma = (x_1, x_2, \ldots, x_n) \), such that the vertex \(x_j \) is simplicial in the subhypergraph induced by the set \(\{x_j, x_{j+1}, \ldots, x_n\} \) for each \(j = 1, 2, \ldots, n-1 \).

\textbf{Definition} [8]. A mixed hypergraph \(\mathcal{H} = (X, \mathcal{C}, \mathcal{D}) \) is called a \textit{mixed hypertree} if there exists a tree \(T = (X, \mathcal{E}) \) such that every \(C \)-edge induces a subtree of \(T \) and every \(D \)-edge induces a subtree of \(T \).

Such a tree \(T \) is called further a \textit{host tree}. The edge set of a host tree \(T \) is denoted by \(\mathcal{E} = \{e_1, e_2, \ldots, e_{n-1}\} \), \(e_i = (x, y), x, y \in X, i = 1, 2, \ldots, n-1 \).

\section{Uniquely Colorable Mixed Hypertrees}

Let \(\mathcal{H} = (X, \mathcal{C}, \mathcal{D}) \) be an arbitrary mixed hypergraph.

\textbf{Definition}. A sequence of vertices of \(\mathcal{H} \), \(x = x_0, x_1, \ldots, x_k = y, k \geq 1 \), is called \((x, y)\)-invertor iff:
(1) \(x_i \neq x_{i+1}, \ i = 0, 1, \ldots, k - 1\);
(2) \((x_i, x_{i+1}) \in D, \ i = 0, 1, \ldots, k - 1\);
(3) if \(x_j \neq x_{j+2}\) then \((x_j, x_{j+1}, x_{j+2}) \in C, \ j = 0, 1, \ldots, k - 2\).

In \(\mathcal{H}\) for two vertices \(x, y \in X\) there may exist many \((x, y)\)-invertors. The shortest \((x, y)\)-inverter contains minimal number of vertices. Two \((x, y)\)-invertors are different if they have at least one distinct vertex. A \((x, y)\)-inverter with \(x = y\) is called cyclic inverter.

Definition. In a mixed hypertree, a cyclic inverter is called simple if all \(C\)-edges are different and every \(D\)-edge appears consecutively precisely two times.

Let \(\mu = (z_0, z_1, \ldots, z_k = z_0), \ k \geq 6,\) be some simple cyclic inverter in a mixed hypertree. Without loss of generality assume that \(z_0 \neq z_1 \neq z_2 \neq z_0\). From the definition of simple cyclic inverter it follows that \(z_0 \neq z_1 \neq \ldots \neq z_{k-2}\) and \(z_1 = z_3 = \ldots = z_{k-1} = y,\) where \(y\) is the center of some star in the host tree \(T\).

Theorem 1. If \(\mathcal{H} = (X, C, D)\) is a mixed hypertree then

1. \(\chi(\mathcal{H}) \leq 2;\)
2. if, in addition, \(|D| \leq n - 2\) then \(r_2(\mathcal{H}) \geq 2.\)

Proof. (1) It follows from the possibility to start at any vertex and to color \(\mathcal{H}\) alternatively by the colors 1 and 2 along the host tree \(T\).

(2) Let \(T = (X, \mathcal{E})\) be a host tree of the mixed hypertree \(\mathcal{H}\). Since \(|D| \leq n - 2\) in \(T\) there exists an edge \(e = (x, y) \notin D\). Starting with the vertices \(x, y\) we can construct two different colorings with two colors in the following way. First, put \(c(x) = c(y) = 1\) and color all the other vertices alternatively along the tree \(T\) with the colors 2, 1, 2, \ldots. Second, apply the same procedure starting with \(c(x) = 1\) and \(c(y) = 2.\)

Theorem 2. A mixed hypertree \(\mathcal{H} = (X, C, D)\) is uniquely colorable if and only if for every two vertices \(x, y \in X\) there exists an \((x, y)\)-inverter.

Proof. \(\Rightarrow\) Let \(c\) be the unique strict coloring of the mixed hypertree \(\mathcal{H}\). We show that for any two vertices \(x, y \in X\) there exists an \((x, y)\)-inverter.

Suppose \(\mathcal{H}\) has two vertices \(u, v \in X\) such that there is no \((u, v)\)-inverter in \(\mathcal{H}\). Consider the unique \((u, v)\)-path in the host tree \(T\) of \(\mathcal{H}\). The assumption implies that either in \(\mathcal{H}\) there is no \(D\)-path connecting \(u\) and \(v\) or in
Theorem 3.

4 is redundant because there is no invertor containing such \(\geq \).

In a uniquely colorable mixed hypertree \(H \).

Corollary 1.

If there is no \(D \)-path connecting \(u \) and \(v \) then by Theorem 1(2) \(H \) has two different colorings with two colors. This contradicts to the unique colorability of mixed hypertree \(H \).

Assume that in the sequence \(u = x_1, x_2, \ldots, x_p = v \) there exists a triple of pairwise different vertices \(x_j, x_{j+1}, x_{j+2} \) not belonging to \(C \).

If there is no \(D \)-path connecting \(u \) and \(v \) then by Theorem 1(2) \(H \) has two different colorings with two colors. This contradicts to the unique colorability of mixed hypertree \(H \).

Consider \((x_j, x_{j+1}, x_{j+2}) \). From Theorem 1(1) it follows that the number of colors in the unique coloring \(c \) of \(H \) is 2. Recolor the vertex \(x_{j+2} \) and all vertices on even distance from \(x_{j+2} \) in the component \(T_2 \) with the new color. The obtained coloring is a proper coloring of \(H \) different from \(c \), a contradiction.

(2) \(c(x_j) \neq c(x_{j+2}) \). Since \((x_j, x_{j+1}, x_{j+2}) \in \mathcal{D} \) we have that \(c(x_j) \neq c(x_{j+1}) \neq c(x_{j+2}) \). Consequently, \(H \) is colored with at least three colors. But according to Theorem 1 every mixed hypertree can be colored with two colors, a contradiction.

\(\Leftarrow \) Assume that any two vertices \(x, y \in \mathcal{X} \) are joined by an \((x, y)\)-invertor. Suppose \(H \) has at least two strict colorings \(c_1 \) and \(c_2 \). Then there exist two vertices, say \(x', y' \), such that \(c_1(x') = c_1(y') \) but \(c_2(x') \neq c_2(y') \). Consider \((x', y')\)-invertor \(x' = x_0, x_1, \ldots, x_k = y' \). From the definition of invertor follows that if \(k \) is even then in all possible colorings the vertices \(x' \) and \(y' \) have the same color. If \(k \) is odd then in all possible colorings the vertices \(x' \) and \(y' \) have distinct colors. Consider the unique \((x', y')\)-path connecting the vertices \(x', y' \) on the host tree \(T \). One can see that the parity of \(k \) coincides with the parity of length of the path. Moreover, it is true for any other \((x', y')\)-invertor. Therefore, in all colorings either \(c(x') = c(y') \) or \(c(x') \neq c(y') \), a contradiction.

\[\text{Corollary 1. If } H \text{ is a uniquely colorable mixed hypertree then } \mathcal{D} = \mathcal{E}. \]

Definition. Let \(H = (\mathcal{X}, \mathcal{C}, \mathcal{D}) \) be a mixed hypergraph. The \(C \)-edge \(C \subseteq \mathcal{C} \) is called redundant if \(R(H) = R(H_1) \), where \(H_1 = (\mathcal{X}, \mathcal{C} \setminus \{C\}, \mathcal{D}) \).

In a uniquely colorable mixed hypertree \(H = (\mathcal{X}, \mathcal{C}, \mathcal{D}) \) any \(C \)-edge of size \(\geq 4 \) is redundant because there is no invertor containing such \(C \)-edge.

Theorem 3. In a uniquely colorable mixed hypertree \(H = (\mathcal{X}, \mathcal{C}, \mathcal{D}) \) a \(C \)-edge \(C \) of size 3 is redundant if and only if there exists a simple cyclic invertor containing \(C \).
Proof. Let $C = (x_1, x_2, x_3)$ be the redundant C-edge. By definition $\mathcal{H}' = (X, C', D)$ where $C' = C \setminus \{C\}$ is a uniquely colorable mixed hypertree. Then for the vertices x_1 and x_3 in \mathcal{H}' there exists an (x_1, x_3)-invertor: $x_1 = z_0, z_1, \ldots, z_k = x_3$. Construct the (x_1, x_1)-invertor in the following way: $x_1 = z_0, z_1, \ldots, z_k = x_3, x_2, x_1$. This invertor is a simple cyclic invertor of \mathcal{H} containing C.

Conversely, suppose that C-edge, $C = (x_1, x_2, x_3)$ is contained in some simple cyclic invertor $x_1 = z_0, z_1, \ldots, z_k = x_3, x_2, x_1$. Then the vertices x_1 and x_3 are joined by two different (x_1, x_3)-invertors: $(x_1, x_2, x_3) = C$ and $(x_1 = z_0, z_1, \ldots, z_k = x_3) = (x_1, x_3)'$-invertor. In each (x, y)-invertor containing C replace this C-edge by $(x_1, x_3)'$-invertor. Thus, $\mathcal{H}' = (X, C \setminus \{C\}, D)$ is uniquely colorable, i.e., the C-edge is redundant.

Let us have a mixed hypergraph $\mathcal{H} = (X, C, D)$. Consider $X = X_1 \cup X_2 \cup \ldots \cup X_i$ any i-coloring of \mathcal{H}, $\chi(\mathcal{H}) = i \leq \bar{\chi}(\mathcal{H})$. Choose any X_j and construct touching graph $L_j = (X_j, V_j)$ in the following way: if some $C \in C$ satisfies $C \cap X_j = \{x, y\}$ and $|C \cap X_k| \leq 1$, $k \neq j$, for some $x, y \in X_j$, then $(x, y) \in V_j$ (cf. pair graphs [3]).

Theorem 4. If a mixed hypertree $\mathcal{H} = (X, C, D)$ is uniquely colorable then in its 2-coloring the touching graphs L_1 and L_2 are connected.

Proof. By Theorem 1(2), Corollary 1 we obtain $|D| = n - 1$, $\bar{\chi} = 2$ for each uniquely colorable mixed hypertree. If at least one touching graph is disconnected, then we can construct a new coloring of \mathcal{H} with 3 colors by assigning new color to the vertices of one component. This assures the proper coloring also of any C-edge of size ≥ 4.

Corollary 2. The minimal number of C-edges in any uniquely colorable mixed hypertree $\mathcal{H} = (X, C, D)$ is $n - 2$.

Proof. Let \mathcal{H} be a uniquely colorable mixed hypertree. Consider its unique 2-coloring, say $X = X_1 \cup X_2$, and construct the touching graphs $L_1 = (X_1, V_1)$, $L_2 = (X_2, V_2)$. The minimal number of edges in L_i to be connected is $|X_i| - 1$, and in this case each of L_i is a tree, $i = 1, 2$. Since every edge in L_i corresponds to some C-edge of \mathcal{H}, we obtain that the minimal number of C-edges is:

$$|X_1| - 1 + |X_2| - 1 = |X| - 2.$$
Corollary 3. In a uniquely colorable mixed hypertree $\mathcal{H} = (X, C, D)$ the number of redundant C-edges is $|C| - n + 2$.

Proof. Indeed, consider touching graphs L_i, and construct a spanning trees T_i, $i = 1, 2$. Each elementary cycle in L_i generates some simple cyclic inverter in \mathcal{H}. Therefore, each C-edge of \mathcal{H} which has a size ≥ 4 or corresponds to some edge of L_i which is a chord with respect to T_i, is redundant. Hence, the assertion follows.

Remark. Redundant C-edge may become not redundant after deleting from C some another redundant C-edges.

Definition. A mixed hypertree $\mathcal{H} = (X, C, D)$ is called complete if every edge of the host tree T forms a D-edge of \mathcal{H}, and every path on three vertices of T forms a C-edge in \mathcal{H}.

Therefore, having the host tree T for the complete mixed hypertree $\mathcal{H} = (X, C, D)$ we obtain that $D = \mathcal{E}$.

Denote by M the number of C-edges of a complete mixed hypertree $\mathcal{H} = (X, C, D)$. Then

$$M = \sum_{x \in T} \left(\frac{d(x)}{2} \right),$$

where $d(x)$ is the degree of vertex x in the host tree T.

Examples show that for any $k > 1$ one can construct a mixed hypertree $\mathcal{H} = (X, C, D)$ with $|D| = n - 1$, $n - 2 \leq |C| \leq M$ and $\chi(\mathcal{H}) = k$. Therefore these bounds on $|D|$ and $|C|$ are not sufficient for the mixed hypertrees to be uniquely colorable.

Proposition 1. A uniquely colorable mixed hypertree with $|C| = n - 2$ is a pseudo-chordal mixed hypergraph.

Proof. Since \mathcal{H} is uniquely colorable mixed hypertree and $|C| = n - 2$ then it contains no redundant C-edges and, moreover, all C-edges have the size 3. It follows that there exists a pendant vertex, say x, of the host tree $T = (X, \mathcal{E})$ which belongs to precisely one C-edge, say (x, y, z). The neighbourhood of x induces a complete D-graph on 2 vertices, which itself is uniquely colorable. Consequently, the vertex x is simplicial in \mathcal{H}. Deleting the vertex x and C-edge and D-edge containing it, obtain \mathcal{H}' which
is uniquely colorable mixed hypertree with minimal number of C-edges. Indeed, if \mathcal{H}' would be not uniquely colorable, then two distinct colorings of \mathcal{H}' formed different colorings of \mathcal{H} because $c(x) = c(z)$, a contradiction. ■

Remark. Redundant C-edges enlarge the neighbourhood of some vertices without affecting any coloring. Therefore, to recognise the pseudo-chordality we need to delete the redundant C-edges.

From the Theorem 4, Corollaries 2–4 and Proposition 1 we conclude that a uc-orderable mixed hypertree \mathcal{H} can be recognised by consecutive elmination of pendant vertices of D-graph \mathcal{H}_D in special ordering by applying the following

Algorithm (uc-ordering).

Input: A mixed hypertree $\mathcal{H} = (X, C, D)$, σ – n-dimensional empty vector.

Idea: Simultanious decomposition of \mathcal{H}_D, spanning trees T_1 and T_2 of touching graphs L_1, L_2, respectively, by pendant vertices.

Iterations:
1. If there is a vertex $x \in X$ belonging to none C-edge of size 3 or D-edge of size 2 then return NON UC. Otherwise remove from C all elements of size ≥ 4.
2. Color D-graph \mathcal{H}_D with two colors.
3. Construct touching graphs L_1 and L_2.
4. If L_i, $i = 1, 2$, is not connected then return NON UC.
5. For L_i construct spanning tree T_i, $i = 1, 2$.
6. $i := 1$.
7. While in T_i there exists a vertex x pendant in both T_i and \mathcal{H}_D then delete it from T_i and \mathcal{H}_D and include x in σ.
8. If at least one of T_1 and T_2 is not empty then go to 9. Otherwise return UC, σ-uc-ordering.
9. If $i = 1$ then assign $i := i + 1$, otherwise $i := i - 1$. Go to 7.

Remark. All chords of graph L_i with respect to spanning tree T_i, $i = 1, 2$, correspond to redundant C-edges in \mathcal{H}. The trees T_1 and T_2 provide existence of unique (x, y)-invertor for any $x, y \in X$. The last assures at any step of the algorithm the existence of a vertex, say x, pendant in both \mathcal{H}_D and one
of T_1 or T_2. Notice that not every elimination of pendant vertices generates a uc-ordering in \mathcal{H}_D.

Example. Given the mixed hypertree \mathcal{H} with $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$, $\mathcal{C} = \{(0, 1, 2); (0, 1, 3); (0, 2, 3); (0, 3, 4); (0, 4, 5); (0, 5, 6); (0, 4, 6); (0, 2, 7); (0, 7, 8); (7, 8, 9); (9, 8, 10); (9, 10, 11); (9, 11, 12); (9, 10, 12); (9, 12, 13); (9, 13, 14); (9, 14, 15); (9, 13, 15)\}$, and $\mathcal{D} = \{(0, 1); (0, 2); (0, 3); (0, 4); (0, 5); (0, 6); (0, 7); (7, 8); (8, 9); (9, 10); (9, 11); (9, 12); (9, 13); (9, 14); (9, 15)\}$, see the figures 1 and 2 (the \mathcal{C}-edges are depicted by triangles).

![Figure 1](image_url)

Apply the algorithm. Each vertex of \mathcal{H} belongs to at least one \mathcal{D}-edge of size 2 and at least one \mathcal{C}-edge of size 3. Color \mathcal{H}_D with 2 colors. Denote by $X_1 = \{0, 8, 10, 11, 12, 13, 14, 15\}$ and $X_2 = \{1, 2, 3, 4, 5, 6, 7, 9\}$ two color classes of \mathcal{H}_D. Construct the following touching graphs $L_1 = (X_1, V_1)$ and $L_2 = (X_2, V_2)$, where $V_1 = \{(0, 8); (8, 10); (10, 11); (10, 12); (11, 12); (12, 13); (13, 14); (13, 15); (14, 15)\}$ and $V_2 = \{(1, 2); (1, 3); (2, 3); (2, 7); (3, 4); (4, 5); (4, 6); (5, 6); (7, 9)\}$. Choose the respective trees T_1 and T_2 (Figure 3).

Consecutively applying the algorithm we obtain one of uc-orderings of \mathcal{H}: $\sigma = \{15, 14, 13, 11, 12, 10, 1, 5, 9, 6, 4, 3, 2, 8, 0, 7\}$. At the 7-th step of the algorithm, after including of vertex 10 in σ, we alternate the trees because T_1 has no pendant vertex which is also pendant in \mathcal{H}_D. The next alternations of trees are made after adding to σ of vertices 2 and 0. From the above algorithm we have
Figure 2. $\mathcal{H}_D = (X, \emptyset, D)$

$L_1 = (X_1, V_1)$

$T_1 = (X_1, E_1)$

$L_2 = (X_2, V_2)$

$T_2 = (X_2, E_2)$
Theorem 5. A mixed hypertree is uniquely colorable if and only if it is uc-orderable.

Therefore, combining the Theorems 2, 5 and relation between chromatic polynomial and chromatic spectrum [6, 7], we obtain the following

Theorem 6. Let $\mathcal{H} = (X, C, D)$ be a mixed hypertree. Then the following five statements are equivalent:

1. $R(\mathcal{H}) = (0, 1, 0, \ldots, 0)$;
2. $P(\mathcal{H}, k) = k(k - 1)$;
3. \mathcal{H} is uniquely colorable;
4. Every two vertices $x, y \in X$ are joined by an (x, y)-inverter;
5. \mathcal{H} is uc-orderable.

References

Received 16 April 1999
Revised 24 March 2000