Digital Modulation Classification by Support Vector Machines and Hilbert–Huang Transformation

ZHIJIN ZHAO, WEIGUO HU, DIANWU GUO

School of Telecommunication
Hangzhou Dianzi University
Hangzhou, Zhe Jiang 310018
CHINA

Abstract: Support Vector Machines (SVMs) map inputs vectors nonlinearly into a high dimensional feature space and construct the optimum separating hyperplane in space to realize signal classification. Automatic classification of digital modulation signals plays an important role in communication applications such as an intelligent demodulator, interference identification and monitoring, so many investigations have been carried out in the past. Hilbert-Huang transformation (HHT) is a novel method of time frequency analysis for nonlinear and non-stationary data. In this paper, a new method based on SVM and HHT for classifying BFSK, BPSK and 16QAM is proposed. The method can classify these signals well, and the correct classification rates are above 88%.

Key-Words: Support Vector Machines (SVMs), modulation identification, modulation classification, intelligent demodulator, Hilbert-Huang transformation (HHT), time frequency analysis

1 Introduction

Many studies on modulation type classification using a decision-theoretical or a statistical pattern recognition framework have been carried out [1,2,3]. SVM is a pattern recognition method. It has been used in speech recognition [4], digital recognition and etc. Being different from other learning machines, SVM [5-7] uses a structural risk minimization (SRM) principle, while others use an empirical risk minimization principle. It uses a kernel function for efficiently performing computations in high dimensional spaces and constructs nonlinear decision function to perform an optimal separating hyperplane in feature space.

Hilbert-Huang transformation is a novel method of time frequency analysis for nonlinear and non-stationary data, which was developed by Huang et al in 1998 [8]. This technique is expected to decompose time-dependent data series into its individual characteristic oscillations with the so-called empirical mode decomposition (EMD). This procedure is capable of empirically disintegrating any complex set of data into a finite number of hidden embedded intrinsic mode functions (IMFs). It has been used in other fields of geophysics, e.g. to examine earthquake processes as well as for the determination of the dispersion curves of seismic
surface waves [9,10]. It has been used in tsunami research to detect earthquake generated water waves from data series recorded from bottom pressure transducers in the Northern Pacific [11].

In this paper a new method based on support vector machines (SVMs) and Hilbert-Huang transformation for classifying BFSK, BPSK and 16QAM is proposed.

2 Support Vector Machines

Support vector machines are based on the structural risk minimization principle and Vapnik-Chervonenkis (VC) dimension from statistical learning theory developed by Vapnik, et al.[5] Traditional techniques for pattern recognition are based on the minimization of empirical risk, that is, on the attempt to optimize performance on the training set, SVMs minimize the structural risk to reach a better performance [4,5].

We can suppose that \(S \) is a set that is made up of points \(x_i (i = 1, 2, \cdots, N) \), which belong to \(R^n \), These points are divided into two classes by an objective function \(y_i \),

\[
y_i = \begin{cases}
1 & x_i \in S_1 \\
-1 & x_i \in S_2
\end{cases}
\]

(1)

where \(S_1 \) and \(S_2 \) belong to different classes. We try to find a hyperplane to separate the two classes, and sort the same class in same side of the hyperplane as much as possible, and make the margin as far as possible. If \(S \) can be separated linearly, there may be \(w \in R^n, \ b \in R \) to satisfy

\[
\begin{align*}
w \cdot x_i + b & \geq 1 \quad y_i = 1 \\
w \cdot x_i + b & \leq -1 \quad y_i = -1
\end{align*}
\]

(2)

Eqn (2) also can be represented by

\[
y_i (w \cdot x_i + b) \geq 1
\]

(3)

Parameters \((w, b) \) have determined a hyperplane,

\[
w \cdot x_i + b = 0
\]

(4)

This plane is called the separating hyperplane. The problem of finding the optimal separating hyperplane is converted to an optimal problem as follows.

\[
\min \frac{1}{2} ||w||^2
\]

(5)

with constraints,

\[
y_i (w \cdot x_i + b) \geq 1
\]

\((i = 1, 2, \cdots, N) \)

It is then converted to a dual problem by using Lagrange multiplies,

\[
\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)
\]

(6)

with constraints,

\[
\sum_{i=1}^{N} y_i \alpha_i = 0 \quad \alpha \geq 0
\]

When \(S \) cannot be separated linearly, introducing a nonnegative relax factor \(\xi = (\xi_1, \cdots, \xi_N) \), Eqn (3) can be rewritten as

\[
y_i (w \cdot x_i + b) \geq 1 - \xi_i
\]

(7)

The optimal problem can be described as

\[
\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)
\]

(8)

with constraints,

\[
\sum_{i=1}^{N} y_i \alpha_i = 0 \quad 0 \leq \alpha \leq C
\]

Formula (8) is a general form of SVM. When \(C \) tends to infinite, formula (8) degenerates into a linear separating problem as formula (6). Replacing \(y_i y_j x_i \cdot x_j \) by \(D_{ij} \), the optimal objective function turns to be the maximum \(\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i D_{ij} \alpha_j \).

Obviously, this is a quadratic program. We can solve it by using the sequential minimal optimization (SMO) proposed by Platt [7]. When parameters
αi and b are obtained, the different classes can be
distinguished by objective function

\[y = \text{sgn}(w^* \cdot x + b^*) \]

\[= \text{sgn}(\sum_{i=1}^{N} \alpha_i^* y_i \cdot x_i \cdot x + b^*) \]

(9)

In most cases, discrimination is not linear in
input space. A higher order function is introduced for
mapping a nonlinearly separating problem to a
linearly separating problem. Because the optimal
problem mentioned above deals with inner product
only, a kernel function can be constructed
to substitute the inner product.

Two typical kernel functions are the polynomial
kernel function as follows and the Gauss (Radial
Basis Function) kernel function, defined by

\[K(x_i, x_j) = [(x_i \cdot x_j) + 1]^d \]

(10)

\[K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right) \]

(11)

A kernel function exists when the Mercer
condition is satisfied.

When SVM is used for classification, it works like
a neural network, which classifies the different classes
by inner product between the input vectors and support
vectors. Inner product is substituted by kernel function
operation.

3 Feature Parameters

Hilbert-Huang Transformation consists of two
parts. Its key part is the so-called empirical mode
decomposition (EMD), by which any complicated
data set can be decomposed into finite number of
intrinsic mode functions(IMFs) . With Hilbert
transform, the IMFs yield instantaneous frequencies
as functions of time. The final presentation of the
results is a time-frequency-energy distribution,
designated as the Hilbert spectrum. Being different
from Fourier decomposition and wavelet
decomposition, EMD has no specified "basis".

Its "basis" is adaptively produced depending on the
signal itself, which brings not only high
decomposition efficiency but also sharp frequency
and time localization. EMD is capable of adaptively
decomposing signals into oscillating intrinsic
components. An IMF is defined as a function that
satisfies the following two conditions:

(1) The number of extrema and thus the number
of zero-crossings in the whole data series must be
equal or differ at the most by one.

(2) At any instant in time, the mean value of the
envelope defined by the local maxima and the
envelope of the local minima is zero.

The first condition is similar to the narrow-band
requirement for a stationary Gaussian process. It
ensures that the local maxima of the data series are
always positive and the local minima are negative,
respectively. The second condition modifies a global
requirement to a local one, and is necessary to ensure
that the instantaneous frequency will not have
unwanted fluctuations as induced by asymmetric
waveforms. Regarding an arbitrary data series x(t),
the IMFs are obtained, using the following
algorithm:

(1) Initialize: \(r_0(t) = x(t), i = 1 \)

(2) Extract the ith IMF:

(a) Initialize: \(h_0(t) = r_i(t), k = 1 \)

(b) Extract the local maxima and minima of
\(h_k(t) \)

(c) Interpolate the local maxima and the local
minima by a cubic spline to form upper and lower
envelopes of \(h_k(t) \)

(d) Calculate the mean \(m_k(t) \) of the upper and
lower envelopes of \(h_k(t) \)

(e) Define: \(h_k(t) = h_k(t) - m_k(t) \)

(f) If IMF criteria are satisfied, then set
IMF(t) = \(h_k(t) \) else go to (b) with \(k = k + 1 \)

(3) Define: \(r_i(t) = r_{i-1}(t) - \text{IMF}(t) \)

(4) If \(r_i(t) \) still has at least two extrema, then go to (2)
with \(i = i + 1 \); else the decomposition is completed and
\(r_i(t) \) is the "residue" of \(x(t) \).

At the beginning, the original data set \(x(t) \) is
initialized as \(r_0(t) \). This initialization can be
characterized as the introduction to the outer loop to
decompose the input signal into successive IMFs. The second inner loop is started to find every single IMF. Again this loop is initiated by an introductory process, setting \(r_i(t) \) as the starting array for the inner loop. The first run of the inner loop, array \(h_{k-1}(t) \), with \(k=1 \), corresponds to the original data series \(x(t) \). Extrema of the signal are revealed next. The minima and maxima are linked by a cubic spline to form an upper and lower envelope of \(x(t) \). Then the corresponding mean \(m_{k-1}(t) \) is defined as the difference of upper and lower envelopes and subtracted from the initial data series \(h_{k-1}(t) \) to represent a tentative first IMF \(h_k(t) \). The conditions of defining an IMF are subsequently approved. Usually, after the first run, the criteria are not satisfied; so the inner loop is restarted from (b) by using \(h_k(t) \) to initialize \(h_{k-1}(t) \) with \(k=k+1 \). This so-called "sifting" process is repeated until the stopping criteria are fulfilled. Then the first IMF is disintegrated and the whole procedure is redone to sift additional IMF from the data series \(x(t) \) provided that the stopping criteria of the outer loop fail. The iterative decomposition process ends when the stopping criteria of the outer loop are satisfied so that \(r(t) \) is taken as the residue of the sifting process. Due to this iterative procedure, none of these sifted IMFs is derived in the closed analytical form.

In this paper three kinds of commonly used digital modulation signals 16QAM, BFSK and BPSK are classified. Being different from FSK and PSK signals, the amplitude of QAM signals is modulated, so its amplitude and power fluctuate largely from one symbol to another one. The amplitude of ideal FSK and PSK signals is a constant. The energy deviation of main component of IMFs of QAM signals is much larger than zero, while the counterpart of PSK and FSK signals is near to zero. So the characteristic parameter used for distinguishing QAM, FSK and PSK can be chosen as the energy variance of IMFs’ main component, denoted \(\delta_{IMF}^2 \).

The signal is decomposed into a series of IMFs from the high-frequency components to the low frequency components, the first two IMFs have reflected the basic character. Calculating the Hilbert spectrum of first two components, we find that the spectrum of FSK signal has two main frequency components, while the spectrum of PSK and QAM signal is nearly a spectrum thread. So we chose the relative frequency spectrum width as the characteristic parameter, denoted \(B_{IMF} \).

4 Classification Results

For samples of BPSK, BFSK and 16QAM, experiments have been done by SVM using Gauss kernel functions, linear kernel functions and their parallel combination and using the feature parameters \(\delta_{IMF}^2 \) and \(B_{IMF} \). The correct classification rates are given in Table 1 and Table 2 at SNR 20dB and 25dB.

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Gauss Kernel</th>
<th>Linear Kernel</th>
<th>Parallel Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFSK</td>
<td>92.31%</td>
<td>92.31%</td>
<td>100%</td>
</tr>
<tr>
<td>BPSK</td>
<td>61.54%</td>
<td>90.39%</td>
<td>88.46%</td>
</tr>
<tr>
<td>16QAM</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Gauss Kernel</th>
<th>Linear Kernel</th>
<th>Parallel Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFSK</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>BPSK</td>
<td>86.54%</td>
<td>88.46%</td>
<td>88.46%</td>
</tr>
<tr>
<td>16QAM</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
From Tables we can see that using the two characteristic parameters and the SVMs, we successfully identify these three kinds of digital modulated signals. The correct classification rates are above 88% at SNR 20dB.

5 Conclusion

In this paper, we proposed the method using SVMs and Hilbert-Huang Transformation for classifying modulation. Results show that better results can be obtained by using parallel combination of SVM using linear kernel and SVM using Gauss kernel, and correct classification rates is much better than 88% at SNR 20dB.

References