intel)
| 2014 |EEE International Symposium on
Performance Analysis of Systems and

Software. March 23-25, Monterey, CA

A Top-Down Method for Performance
Analysis and Counters Architecture

== ___——=aul

Ahmad Yasin

Intel Corporation

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Motivation

« Performance Optimization Is Difficult
- Complicated micro-architectures
- Application/workload diversity
- Unmanageable data
- Tougher constraints: Time, Resource, Priorities

« Opportunities once true bottleneck is identified
- Software Tuning/Optimization
- Workload Characterization
- Profile-Guided Optimizations
- Resource utilization in the Cloud

u’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

2

3

Top Down Analysis

* A method to identify the true bottlenecks
- Simple: a structured hierarchical approach
- Quick: a few steps to get to a tree-leaf
- Practical: adopted by in-production tools, e.g. VTune[2]

 Benefits
- Analysis made easier for non-expert users
- Simplicity avoids u-arch high-learning curve
« Assumptions
- Goal: detect bottleneck; Not-a-goal: quantify speedup

- A sub-level of Analysis Process: System, Application, u/Architecture

u’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Agenda

v'Motivation

 Challenges

« Top Down Analysis Hierarchy
 Top Level heuristics
 Counters Architecture
 Results

e Summary

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel'

4

Intel Core™ parch

32K
Instruction
Cache

'
uncore Legacy

Decode

Fipeline Decoded

ICache

L

L]
256k, L2 l micro-op queue

Cache

-
Lgad —2 u”

A

s

& Rendme retnrement
i

(i Store (adcress)

Store data

Integer

MMX/SSE
AVX Low

X87
AVX High '

Front-end
of processor pipeline

Back-end
of processor pipeline

‘Where and How to start in this Complex microarchitecture?

ﬂ’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel>

6

Challenges

Traditional Methods Top Down Analysis
 Naive approach A hierarchy
Stall_Cycles = 2 Penalty,*MissEvent, - Top-Down designated events
at appropriate pipeline stages
 Unsuitable for out-of-orders - "Hierarchical safety property”
(Gaps) » Addressing Gaps
1) Stalls Overlap - Bad Speculation at the top
2) Speculative Execution - Generic top-down events, who
3) Workload-dependent penalties - count when matters, and
4) Predefined set of miss-events - count where matters
5) Superscalar inaccuracy - Occupancy events

u’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

The Hierarchy

A user-defined criteria for analyzing a hotspot:: CPU Bound = Analyze

Bad - -
Frontend e Retiring

Bound @ | (commit) Backend Bound

Fetch
Latency

Core Bound

(compute) Memory Bound

Branch
Misspredicts
Machine Clears
Micro Sequencer

Execution
Ports
Utilization

iTLB Miss
iCache Miss
Fetch src 1
Fetch src 2
Stores Bound

(V2]
—
Q
(o}
+
n
[}
o
i
(o)
c
[1°)
—
(an)]

MEM
Bandwidth

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel'

The Hierarchy w/ weights

A user-defined criteria for analyzing a hotspot:: CPU Bound = Analyze

Frontend Bad | Retiring Backend Bound

Speculation

Bound 20% 5% 5% 60%

Fetch Core Bound | Memory Bound

Latency

Branch
Misspredicts
Machine Clears
Micro Sequencer

Execution
Ports
Utilization

iTLB Miss
iCache Miss
Branch Resteers
Fetch src 1
Fetch src 2
Stores Bound

B

Hierarchically Classify' Out-Of- o1

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel'

Top Level Breakdown - the idea

N\
Uop
Issue?
Yes .
Backend
stall?
Yes No Yes No
\ \ \
Retirin Bad Frontend
& Speculation Bound

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (inte|>

Top Level Breakdown

Cycde 12 3 4 5
Backend Stall | 0] 0 | 1 | 0 | 0

Retiring
Bad Speculation 3 1

Uop
Issue?

BackEnd
stall?
Frontend
Bound

| Classify Each Pipeline Slot Into 1 of 4 Categories |

Ahmad Yasin -- A Top-Down Method tor Pertormance Analysis and Counters Architecture (ISPASS 2014) (inte|>

Bad
[Retlrlng [Speculatlon

10

The Hlerarchy - InteI Core™

d= Analyze

= P '
~ Frontend Spegulat Retiring Backend Bound
Bound ion™s. | -

. wni E E
L g =
£= & | w |8 Core
HEiTEN o (R Memory Bound
C z fia]
latency W 2 g -
| = = 5 |
L R S dEd :
w g a ¥ =)
3 = & 5 ?_—, = 5 ©
sSdzEkap = Il & B Ext.
5 ¥ O © S iliza 0
EREI9E2H a 2 @ Bound @ PBound = iemory
_a68 ' § B
il . i e —_— S —
= Bl ol - n - =
c @ — e —ry
~ 55 Eru 55822 E2I2| 52
R e aa 8w o o = 2 o |29 = S =
i Adrog2x® B8 S5 3
LEEEx |88F rRc
: L == e 6 g |a [o ¢
* Blue filled nodes denote Intel Core™ parch-specific T e S|

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

Counters Architecture

« Assume a baseline common PMU
- Few general counters can count many perf events
* A dozen perf. events are required to feature key
hierarchy nodes
- Just 8 are new TopDown events, rest are in PMU already

« Example: Frontend Bound

- TopDown Events
- FetchBubbles: Unutilized issue-pipeline slots AND there is no Backend-stall
— TotalSlots: Total number of issue-pipeline slots (e.g. Intel: 4*Clockticks)

- TopDown Metric
- Frontend Bound = FetchBubbles / TotalSlots

u’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

12

Top Level Events and Metrics

Total number of issue-pipeline slots. 4*CPU_CLK_UNHALTED.THREAD

Utilized issue-pipeline slots to issue UOPS_ISSUED.ANY
operations

Utilized issue-pipeline slots to retire UOPS _RETIRED.RETIRE_SLOTS
(complete) operations

Unutilized issue-pipeline slots while there IDQ UOPS NOT_DELIVERED.CORE
is no backend-stall

Unutilized issue-pipeline slots due to 4*INT_MISC.RECOVERY_CYCLES
recovery from earlier miss-speculation

Frontend Bound | Frontend delivers < 4 uops per cycle | FetchBubbles / TotalSlots
while Backend is ready to accept uops

Bad Speculation | Tracks uops that never retire or slots | (SlotsIssued - SlotsRetired +
wasted due to recovery from clears RecoveryBubbles) / TotalSlots

Retiring Successfully delivered uops who SlotsRetired / TotalSlots
eventually do retire

Backend Bound | No uops were delivered due tolack |1 - (Frontend Bound + Bad
of Backend resources Speculation + Retiring)

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

13

Top Level for SPEC CPU2006

Most apps are Backend
Bound, esp. FP

INT apps have quiet some
Frontend/Bad Spec. issues

43.5%

m Backend Bound

Frontend Bound

AR EHABEE R HEBEE R EREEEHEE
HEEEHEHER R EER I EHE R
2|8 *Eﬁﬂ_&fp;'@ﬁEE*xﬂsﬁfiﬁﬁigg*g“‘
S < NF| S m| T + | Q&3] TIY| T | & &3
g @ 3 T <

INT FP

e.g. [11] reported perlbench, gcc, xalancbmk, gobmk, sjeng have >32KB code footprint

“ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

14

Across microarchitecture’s support

 Haswell (4% Core gen) has
improved front-end

- Speculative iTLB and cache NN AR
accesses with better timing to

improve the benefits of
prefetching

 Benefiting benchmarks
clearly show reduction in
Frontend Bound

=11}

ENIT 018 |
erlbench DN
0.13

A400.perlbend

= oi [
= = | A | [

(&} L e [y
1%} = @] =
E = =
(=21 [=]
™~ [=11]
= i)
= ol
=
1
]

483 xalanchmk

Top Down Analysis forward compatibility on Intel Core™

m Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel'

15

Memory Bound (1-core vs 4-core)

Retiring mmmmm Bad Speculstion WSS Frontznd Bound Backend Bound Retiring W Bad Speculation WSS Front=nd Bound Backend Bound

sphinx3.an4 - Working Set Analysis

T T T

Memaory Bound

Per 1000 Tnstructioan

Misses

.‘ “ .- e
R 5
iR LR RN

Caclye Size (MBY
Source: http://www.jaleels.org/ajaleel/workload/
e

mllBound ml2Bound L3 Bound = MEM Bound Stores Bound

L1 Bound M L2 Bound L2 Bound ® MEM Bound Stores Bound

. xtern\ M

i = fiina € L3 Geche Bnd

http://www.jaleels.org/ajaleel/workload/

Case Study: Matrix Multiply

» A kernel is iteratively

analyzed with Top-Down
Speed

- Big matrices in memory
_ multiply1 MEM Bound

Loop Interchange: 12x _m__
- ' |-+ Memory Bound 24 0.12 0.31
OOD|'|2b X < coretiound TR —_—_—_

- Mu tIDy EC(?ITIES oreboun T __
due to execution ports L~ [eg1| o007 o021
utilization —— =

- Vectorization: 17x e

- multiply3 mitigated CoreBound.

w Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

17

Related Work

[4][5] use naive-approach
[6] IBM POWERS

- CPI Breakdown at commit-stage
- Stalls-periods counted per type of next instruction

[5] Cycle Accounting (x-Intel)

- A flat breakdown at execution-stage

[1][6][8] CPI stacks

- A simulation-based interval analysis improves over [4][6]
- High hardware cost as authors admit in [8]
- [8] requires extra logic for penalty calculation & aggregation in dedicated counters

[12][13] data-locality and scalability bottlenecks

- Use instrumentation- and simulation-based tools

- Advanced optimization-specific techniques; could be invoked from Top Down once
Memory Bound is flagged

u’ Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (intel‘

18

Summary

« Top Down Analysis Method

- |dentifies critical bottlenecks

- Simple, Structured, Quick
« Demonstrated results

- On many workloads

- In-production. e.g. VTune™, perf *

- Forward compatibility in Intel cores
« Counters Architecture

- For a generic out-of-orders
- Low cost: 8 simple events

- Standardization across platforms

7
~ Check out the paper and send us your feedback
— Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014) (l@

19

