
Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

2014 IEEE International Symposium on

Performance Analysis of Systems and

Software. March 23-25, Monterey, CA

 A Top-Down Method for Performance

Analysis and Counters Architecture

Ahmad Yasin
 Intel Corporation

2

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Motivation

• Performance Optimization Is Difficult

– Complicated micro-architectures

– Application/workload diversity

– Unmanageable data

– Tougher constraints: Time, Resource, Priorities

• Opportunities once true bottleneck is identified

– Software Tuning/Optimization

– Workload Characterization

– Profile-Guided Optimizations

– Resource utilization in the Cloud

3

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

• A method to identify the true bottlenecks

– Simple: a structured hierarchical approach

– Quick: a few steps to get to a tree-leaf

– Practical: adopted by in-production tools, e.g. VTune[2]

• Benefits

– Analysis made easier for non-expert users

– Simplicity avoids u-arch high-learning curve

• Assumptions
– Goal: detect bottleneck; Not-a-goal: quantify speedup

– A sub-level of Analysis Process: System, Application, u/Architecture

Top Down Analysis

4

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Agenda

Motivation

• Challenges

• Top Down Analysis Hierarchy

• Top Level heuristics

• Counters Architecture

• Results

• Summary

5

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

 Intel Core™ µarch

Front-end
of processor pipeline

Back-end
of processor pipeline

Where and How to start in this Complex microarchitecture?

6

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Challenges

Traditional Methods

• Naïve approach

 Stall_Cycles = Σ Penaltyi*MissEventi

• Unsuitable for out-of-orders
(Gaps)

1) Stalls Overlap

2) Speculative Execution

3) Workload-dependent penalties

4) Predefined set of miss-events

5) Superscalar inaccuracy

Top Down Analysis

• A hierarchy

– Top-Down designated events
at appropriate pipeline stages

– “Hierarchical safety property”

• Addressing Gaps

– Bad Speculation at the top

– Generic top-down events, who

– count when matters, and

– count where matters

– Occupancy events

7

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

The Hierarchy

A user-defined criteria for analyzing a hotspot:: CPU Bound Analyze

Frontend
Bound

Fetch

Latency

iT
L

B
 M

is
s

iC
a

ch
e

 M
is

s

B
ra

n
ch

 R
e

st
e

e
rs

O
th

e
r

Fetch
Band-
width

F
e

tc
h

 s
rc

 1

F
e

tc
h

 s
rc

 2

Bad
Specula

tion

B
ra

n
ch

M

is
sp

re
d

ic
ts

M
a

ch
in

e
 C

le
a

rs

Retiring
(commit)

BASE

F
P

-a
ri

th
.

S
ca

la
r

v
e

ct
o

r

O
th

e
r

M
ic

ro
 S

e
q

u
e

n
ce

r

Backend Bound

Core Bound
(compute)

D
iv

id
e

r Execution
Ports

Utilization

3
+

 p
o

rt
s

2
 p

o
rt

s

1
 p

o
rt

0
 p

o
rt

s

Memory Bound

S
to

re
s

B
o

u
n

d

L
1

 B
o

u
n

d

L
2

 B
o

u
n

d

L
3

 B
o

u
n

d

Ext.
Memory
Bound

M
E

M

B
a

n
d

w
id

th

M
E

M

L
a
te

n
cy

8

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

The Hierarchy w/ weights

A user-defined criteria for analyzing a hotspot:: CPU Bound Analyze

Frontend
Bound 20%

Fetch

Latency

iT
L

B
 M

is
s

iC
a

ch
e

 M
is

s

B
ra

n
ch

 R
e

st
e

e
rs

O
th

e
r

Fetch
Band-
width

F
e

tc
h

 s
rc

 1

F
e

tc
h

 s
rc

 2

Bad
Speculation

5%

B
ra

n
ch

M

is
sp

re
d

ic
ts

M
a

ch
in

e
 C

le
a

rs

Retiring
15%

BASE

F
P

-a
ri

th
.

S
ca

la
r

v
e

ct
o

r

O
th

e
r

M
ic

ro
 S

e
q

u
e

n
ce

r

Backend Bound

60%

Core Bound
20%

D
iv

id
e

r Execution
Ports

Utilization

3
+

 p
o

rt
s

2
 p

o
rt

s

1
 p

o
rt

0
 p

o
rt

s

Memory Bound

40%

S
to

re
s

B
o

u
n

d

L
1

 B
o

u
n

d

L
2

 B
o

u
n

d

L
3

 B
o

u
n

d
 Ext.

Memory
Bound

40%

M
E

M

B
a

n
d

w
id

th

M
E

M

L
a
te

n
cy

Hierarchically Classify Out-Of-Order CPU Bottlenecks

9

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Top Level Breakdown – the idea

Uop

Issue?

Uop ever
Retire?

Retiring
Bad

Speculation

Backend
stall?

Backend

Bound

Frontend
Bound

No Yes

No No Yes Yes

10
Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Top Level Breakdown

 Cycle 1 2 3 4 5
 Backend Stall 0 0 1 0 0
 Issue Slot 0 - v - v v
 Issue Slot 1 - v - v v
 Issue Slot 2 - v - v v
 Issue Slot 3 - - - v -
 Frontend Bound 4 1 0 1
 Backend Bound 4 0 0
 Retiring 3 1 2
 Bad Speculation 3 1

Classify Each Pipeline Slot Into 1 of 4 Categories

Uop

Issue?

Uop ever
Retire?

Retiring
Bad

Speculation

BackEnd
stall?

Backend

Bound

Frontend
Bound

11

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

The Hierarchy – Intel Core™

* Blue filled nodes denote Intel Core™ μarch-specific

12

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

• Assume a baseline common PMU

– Few general counters can count many perf events

• A dozen perf. events are required to feature key
hierarchy nodes

– Just 8 are new TopDown events, rest are in PMU already

• Example: Frontend Bound

– TopDown Events

– FetchBubbles: Unutilized issue-pipeline slots AND there is no Backend-stall

– TotalSlots: Total number of issue-pipeline slots (e.g. Intel: 4*Clockticks)

– TopDown Metric

– Frontend Bound = FetchBubbles / TotalSlots

Counters Architecture

13

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Top Level Events and Metrics

Event Name Definition Intel Core™ PMU event name

TotalSlots* Total number of issue-pipeline slots. 4*CPU_CLK_UNHALTED.THREAD

SlotsIssued* Utilized issue-pipeline slots to issue
operations

UOPS_ISSUED.ANY

SlotsRetired* Utilized issue-pipeline slots to retire
(complete) operations

UOPS_RETIRED.RETIRE_SLOTS

FetchBubbles Unutilized issue-pipeline slots while there
is no backend-stall

IDQ_UOPS_NOT_DELIVERED.CORE

RecoveryBubbles Unutilized issue-pipeline slots due to
recovery from earlier miss-speculation

4*INT_MISC.RECOVERY_CYCLES

Metric Name Definition Formula

Frontend Bound Frontend delivers < 4 uops per cycle

while Backend is ready to accept uops

FetchBubbles / TotalSlots

Bad Speculation Tracks uops that never retire or slots

wasted due to recovery from clears

(SlotsIssued – SlotsRetired +
RecoveryBubbles) / TotalSlots

Retiring Successfully delivered uops who

eventually do retire

SlotsRetired / TotalSlots

Backend Bound No uops were delivered due to lack
of Backend resources

1 – (Frontend Bound + Bad
Speculation + Retiring)

14

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Top Level for SPEC CPU2006
Most apps are Backend
Bound, esp. FP

INT apps have quiet some
Frontend/Bad Spec. issues

 43.5% 6.5% 13% 37%

e.g. [11] reported perlbench, gcc, xalancbmk, gobmk, sjeng have >32KB code footprint

15

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Across microarchitecture’s support

• Haswell (4th Core gen) has
improved front-end

– Speculative iTLB and cache
accesses with better timing to
improve the benefits of
prefetching

• Benefiting benchmarks
clearly show reduction in
Frontend Bound

Top Down Analysis forward compatibility on Intel Core™

16

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Memory Bound doubled

Memory Bound (1-core vs 4-core)

Source: http://www.jaleels.org/ajaleel/workload/

http://www.jaleels.org/ajaleel/workload/

17

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Case Study: Matrix Multiply

• A kernel is iteratively
analyzed with Top-Down

– Big matrices in memory

– multiply1 MEM Bound

– Loop Interchange: 12x

– multiply2 becomes CoreBound
due to execution ports
utilization

– Vectorization: 17x

– multiply3 mitigated CoreBound.

18

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

• [4][5] use naïve-approach

• [6] IBM POWER5
– CPI Breakdown at commit-stage

– Stalls-periods counted per type of next instruction

• [5] Cycle Accounting (x-Intel)
– A flat breakdown at execution-stage

• [1][6][8] CPI stacks
– A simulation-based interval analysis improves over [4][6]

– High hardware cost as authors admit in [8]

– [8] requires extra logic for penalty calculation & aggregation in dedicated counters

• [12][13] data-locality and scalability bottlenecks
– Use instrumentation- and simulation-based tools

– Advanced optimization-specific techniques; could be invoked from Top Down once
Memory Bound is flagged

Related Work

19

Ahmad Yasin -- A Top-Down Method for Performance Analysis and Counters Architecture (ISPASS 2014)

Summary

• Top Down Analysis Method

– Identifies critical bottlenecks

– Simple, Structured, Quick

• Demonstrated results
– On many workloads

– In-production. e.g. VTune™, perf *

– Forward compatibility in Intel cores

• Counters Architecture

– For a generic out-of-orders

– Low cost: 8 simple events

– Standardization across platforms

Check out the paper and send us your feedback

