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Motivation

« Performance Optimization Is Difficult
- Complicated micro-architectures
- Application/workload diversity
- Unmanageable data
- Tougher constraints: Time, Resource, Priorities

« Opportunities once true bottleneck is identified
- Software Tuning/Optimization
- Workload Characterization
- Profile-Guided Optimizations
- Resource utilization in the Cloud
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Top Down Analysis

* A method to identify the true bottlenecks
- Simple: a structured hierarchical approach
- Quick: a few steps to get to a tree-leaf
- Practical: adopted by in-production tools, e.g. VTune[2]

 Benefits
- Analysis made easier for non-expert users
- Simplicity avoids u-arch high-learning curve
« Assumptions
- Goal: detect bottleneck; Not-a-goal: quantify speedup

- A sub-level of Analysis Process: System, Application, u/Architecture
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Agenda

v'Motivation

 Challenges

« Top Down Analysis Hierarchy
 Top Level heuristics
 Counters Architecture
 Results

e Summary
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Intel Core™ parch
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‘Where and How to start in this Complex microarchitecture?
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Challenges

Traditional Methods Top Down Analysis
 Naive approach A hierarchy
Stall_Cycles = 2 Penalty,*MissEvent, - Top-Down designated events
at appropriate pipeline stages
 Unsuitable for out-of-orders - "Hierarchical safety property”
(Gaps) » Addressing Gaps
1) Stalls Overlap - Bad Speculation at the top
2) Speculative Execution - Generic top-down events, who
3) Workload-dependent penalties - count when matters, and
4) Predefined set of miss-events - count where matters
5) Superscalar inaccuracy - Occupancy events
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The Hierarchy

A user-defined criteria for analyzing a hotspot:: CPU Bound = Analyze
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The Hierarchy w/ weights

A user-defined criteria for analyzing a hotspot:: CPU Bound = Analyze

Frontend Bad | Retiring Backend Bound
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Top Level Breakdown - the idea
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Top Level Breakdown
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| Classify Each Pipeline Slot Into 1 of 4 Categories |
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The Hlerarchy - InteI Core™
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Counters Architecture

« Assume a baseline common PMU
- Few general counters can count many perf events
* A dozen perf. events are required to feature key
hierarchy nodes
- Just 8 are new TopDown events, rest are in PMU already

« Example: Frontend Bound

- TopDown Events
- FetchBubbles: Unutilized issue-pipeline slots AND there is no Backend-stall
— TotalSlots: Total number of issue-pipeline slots (e.g. Intel: 4*Clockticks)

- TopDown Metric
- Frontend Bound = FetchBubbles / TotalSlots
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Top Level Events and Metrics

Total number of issue-pipeline slots. 4*CPU_CLK_UNHALTED.THREAD

Utilized issue-pipeline slots to issue UOPS_ISSUED.ANY
operations

Utilized issue-pipeline slots to retire UOPS _RETIRED.RETIRE_SLOTS
(complete) operations

Unutilized issue-pipeline slots while there IDQ UOPS NOT_DELIVERED.CORE
is no backend-stall

Unutilized issue-pipeline slots due to 4*INT_MISC.RECOVERY_CYCLES
recovery from earlier miss-speculation

Frontend Bound | Frontend delivers < 4 uops per cycle | FetchBubbles / TotalSlots
while Backend is ready to accept uops

Bad Speculation | Tracks uops that never retire or slots | (SlotsIssued - SlotsRetired +
wasted due to recovery from clears RecoveryBubbles ) / TotalSlots

Retiring Successfully delivered uops who SlotsRetired / TotalSlots
eventually do retire

Backend Bound | No uops were delivered due tolack |1 - (Frontend Bound + Bad
of Backend resources Speculation + Retiring)
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Top Level for SPEC CPU2006

Most apps are Backend
Bound, esp. FP

INT apps have quiet some
Frontend/Bad Spec. issues
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e.g. [11] reported perlbench, gcc, xalancbmk, gobmk, sjeng have >32KB code footprint
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Across microarchitecture’s support

 Haswell (4% Core gen) has
improved front-end

- Speculative iTLB and cache NN AR
accesses with better timing to

improve the benefits of
prefetching

 Benefiting benchmarks
clearly show reduction in
Frontend Bound
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Top Down Analysis forward compatibility on Intel Core™
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Memory Bound (1-core vs 4-core)
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http://www.jaleels.org/ajaleel/workload/

Case Study: Matrix Multiply

» A kernel is iteratively

analyzed with Top-Down
Speed

- Big matrices in memory
_ multiply1 MEM Bound

Loop Interchange: 12x _m__
- ' |-+ Memory Bound 24 0.12 0.31
OOD|'|2b X < coretiound TR —_—_—_

- Mu tIDy EC(?ITIES oreboun T __
due to execution ports L~ [eg1| o007 o021
utilization —— =

- Vectorization: 17x e

- multiply3 mitigated CoreBound.
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Related Work

[4][5] use naive-approach
[6] IBM POWERS

- CPI Breakdown at commit-stage
- Stalls-periods counted per type of next instruction

[5] Cycle Accounting (x-Intel)

- A flat breakdown at execution-stage

[1][6][8] CPI stacks

- A simulation-based interval analysis improves over [4][6]
- High hardware cost as authors admit in [8]
- [8] requires extra logic for penalty calculation & aggregation in dedicated counters

[12][13] data-locality and scalability bottlenecks

- Use instrumentation- and simulation-based tools

- Advanced optimization-specific techniques; could be invoked from Top Down once
Memory Bound is flagged
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Summary

« Top Down Analysis Method

- |dentifies critical bottlenecks

- Simple, Structured, Quick
« Demonstrated results

- On many workloads

- In-production. e.g. VTune™, perf *

- Forward compatibility in Intel cores
« Counters Architecture

- For a generic out-of-orders
- Low cost: 8 simple events

- Standardization across platforms

7
~ Check out the paper and send us your feedback
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