AN INTRODUCTION TO
THE THEORY OF NUMBERS
Fifth Edition, Corrected Printings
by
Ivan Niven
Herbert S. Zuckerman
Hugh L. Montgomery

John Wiley (New York), 1991

ERRATA AND REVISIONS FOR PRINTINGS 3 AND HIGHER

PAGE/LINE

v/−15..−6 In place of the passage ‘The instructor may ... subdirectory /pub/clint.’ substitute:

Instructors can obtain a set of solutions to the starred exercises by contacting the third author, whose web page also provides useful software, a manual of computational laboratories, and several supplements.

vi/11 for ‘Appendixes’ read ‘Appendices’

1/12,13 replace ‘natural number such as’ by
‘natural number greater than 1 such as’

1/−2 replace ‘any exponent’ by ‘any integral exponent’

2/5 replace ‘natural numbers’ by ‘integers’

3/−10,−11 replace ‘is a logical consequence of the first’ by
‘is logically equivalent to the first’

18/3 between ‘of’ and ‘integers’ insert ‘two or more’.

29/−3 replace ‘numbers n’ by ‘numbers n ≥ 4’

[Thanks to Art Benjamin for pointing this out.]

56/2 Replace ‘ad − bc’ by ‘ad + bc’

57/Exercise 14 replace ‘all n’ by ‘all n ≥ 0’

88/6 replace ‘f′(5) = 1 ≡ 0 (mod 7)’ by ‘f′(5) = 11 ≢ 0 (mod 7)’

[Thanks to Peter Kahn for pointing this out.]

102/1 The term ‘quadratic residue’ is defined in Definition 3.1 on page 131.

107/4 replace ‘p|(a2n + 1)’ by ‘p|(a2n + 1)’

110/−2 The term ‘quadratic nonresidue’ is defined in Definition 3.1 on page 131.

137/*22. Replace ‘(p + 1)1/2’ by ‘p − 1’

157/−4 Replace ‘ax2 + bxy + y2’ by ‘ax2 + bxy + cy2’
NZM corrections, continued

161/15 To the end of the definition append: ‘(When \(d < 0, \) we count \(/ \) it only the positive definite forms.)’

182/1 Replace ‘de Plignac’s formula.’ by ‘(Legendre)’

195/Problem 5 Replace ‘\(2^{\omega(n)} \).’ by ‘\(2^{\omega(n)} \).’

197/-8 for ‘Slow’ read ‘Show’

207/13 Replace ‘permits’ by ‘permutes’

237/10 Replace ‘\((-1, 1), (0, 1), (3, 11),\)’ by ‘\((-1, \pm 1), (0, \pm 1), (3, \pm 11)\)’

293/–20 replace ‘Section 1.1’ by ‘Section 1.2’

[Thanks to Harley Flanders for pointing this out.]

308/6 Replace ‘\(\sqrt{5} \)’ by ‘\(3\sqrt{5} \)’

318 Between Corollary 6.27 and its proof, insert the following paragraph:

With a small amount of calculation one can show that 33 is not the sum of five positive perfect squares, but that every integer \(n, 34 \leq n \leq 169, \) is the sum of five positive squares. Hence the constant 169 in the corollary above can be replaced by 33, but not by any smaller number. [Thanks to P. T. Bateman for suggesting this.]

321/12 Wrong font: ‘\(bf_1 = g \)’ should be ‘\(bf_1 = g \)’

356/–7 Replace ‘\(x_2 = y_2 \sqrt{d} \)’ by ‘\(x_2 + y_2 \sqrt{d} \)’

[Thanks to Greg Martin for pointing this out.]

448/–1 Replace ‘\(q^e(n) = q^o(n) \)’ by ‘\(q^e(n) - q^o(n) \)’

[Thanks to Greg Martin for pointing this out.]