Security Analysis of an Authentication Scheme Using Smart Cards

Gaurav Tiwari, Amit K. Awasthi and Neha Shukla

Department of Applied Mathematics,
School of Vocational Studies & Applied Sciences,
Gautam Buddha University, Greater Noida, 201312, UP, India.
{gtiwari506@gmail.com, awasthi.amitk@gmail.com, nehshuk.28@gmail.com}

Abstract. In 2010, Sood et al [3] proposed a secure dynamic identity based authentication scheme using smart cards. They claimed that their scheme is secure against various attacks. In this paper, we improve their scheme for outsider attack as well as insider attack. To remedy these security flaws, an improved scheme is proposed to withstand these attacks.

[1] Introduction

With the rapid increasing need of remote digital services and electronic transactions; authentication schemes that ensure secure communication through an insecure channel are gaining popularity and have been studied widely in recent years. In 1981, Lamport [4] proposed first remote user password based authentication scheme by employing a one way hash chain, in an insecure and untrusted network, but this scheme has a. That is why, Smart cards major drawbacks of its dependency on verification table. Smart cards implementation solved this problem of dependency on verification tables and ensures secure communication based authentication scheme are becoming day by day more popular.

The paper is organized as follows: Section 2 reviews Sood et al's authentication scheme. Section 3 describes our proposed scheme followed by security analysis in Section 4. Finally, we conclude the paper in Section 5.

[2] Phases of Sood et al's Scheme

The dynamic identity based authentication scheme proposed by Sood et al in 2010, consists of four phases: registration phase, login phase, verification and session key agreement phase and password changing phase. The notations used throughout the paper are summarized below:
Notations and Symbols used in paper

- **Ui**: Legitimate ith user
- **IDi**: Identifier of Ui
- **PWi**: Password of Ui
- **S**: The Server
- **x**: Secret key of the server S
- **yi**: Server's random value
- **ski**: Session Key
- **T**: Current date and time of inpute device
- **T'**: Current date and time of the server S
- **δT**: Expected time interval for a transmission delay
- **H(.)**: Secure one way Hash Function
- **⊕**: Bitwise Exclusively or (XOR) operation
- **∥**: Bitwise concatenation operation

[3] Our Proposed Scheme

In this section, we propose an upgraded authentication scheme, that preserves the properties of Sood et al's scheme and resolves all the identified weaknesses of their scheme and make it secure and efficient for practical applications. The scheme consists of four phases: registration phase, login phase, verification & session key agreement phase and password changing phase.

[3.1] Registration

When the user Ui wants to register, he chooses his identity IDi and password PWi, and send it to the server S via a secure communication channel. Then, the server S chooses random value yi for ith user and computes:

\[N_i = H(PW_i) \oplus H(y_i \| ID_i) \oplus H(x) \oplus y_i, \]
\[B_i = H(y_i) \oplus H(PW_i), \]
\[V_i = H(ID_i \| PW_i) \oplus PW_i, \]
\[D_i = H(H(y_i) \| ID_i), \]

S chooses the value of yi, in such a way that the value of Di must be unique for each user. The server S stores \((N_i, B_i, V_i, H(.))\) into smart card and sends it to Ui, via a secure channel.

[3.2] Login Phase

The user Ui, inserts the smart card into the card reader and keys in IDi* and PWi*, then the smart card computes
and checks whether computed V_i^* is equal to the V_i or not. If they are equal, the requested user is the legitimate bearer of the smart card otherwise rejects the login request. To resist offline password guessing attack, the card reader locks the card if U_i enters either wrong identifier or wrong password more than limited number of times. After verifying the legality of the user, the smart card computes:

$yi = Bi \oplus H(PWi)$,

$H(x) \oplus yi = Ni \oplus H(PWi) \oplus H(yi\|IDi)$,

$CIDi = H(H(yi)\| IDi) \oplus H(H(x) \oplus yi\|T)$,

$Mi = H(H(x) \oplus yi\|H(H(yi)\|T)$,

and sends the login request message $(CIDi, Mi, T)$ to the server S.

[3.3] Verification and Session Key Agreement Phase

Upon receiving the login request, S first checks the validity of time stamp T by checking $(T'-T) \leq \delta T$ to accept/reject the login request. If it finds incorrect, the login request is rejected else the server S computes

$Di^* = CIDi \oplus H(H(x) \oplus yi\|T)$

and recomputes IDi and yi using its secret information x. Then the server computes

$Mi^* = H(H(x) \oplus yi\|H(H(yi)\|T)$

and verifies computed Mi^* with the received Mi. If it finds true, then Ui is authenticated and the login request is accepted else the connection is interrupted. Finally, S and Ui computes session key $ski = H(IDi\|H(yi)\|H(x) \oplus yi\|T)$ of the transmission.

[3.4] Password Change Phase

Whenever Ui wants to update his password, he inserts his smart card into the card reader and presents the credentials such as identifier IDi and current password PW_i. After verifying the legality of the user by verifying Vi, the smart card ask Ui to input new password $PW_{i\text{new}}$ to replace the value of Ni, Bi, Vi, with the $N_{i\text{new}}$, $B_{i\text{new}}$, $V_{i\text{new}}$ where

$N_{i\text{new}} = Ni \oplus H(PWi) \oplus H(PW_{i\text{new}})$

$B_{i\text{new}} = Bi \oplus H(PWi) \oplus H(PW_{i\text{new}})$

$V_{i\text{new}} = H(IDi\|PW_{i\text{new}}) \oplus PW_{i\text{new}}$
To resist offline password guessing attack, the card reader locks the card if \(U_i \) enters either wrong identifier or wrong password more than limited number of times.

[4] Security Analysis
In this section, we analyze the security of our scheme under the assumption that the secret information stored in the smart card could be extracted by some means.

[4.1] Denial of Service Attack
To resist password guessing attack, the card reader locks the card if someone enters either wrong identifier or wrong password more than limited number of times.

[4.2] Malicious User Attack
A legal but malicious user \(U_a \) can get the value of \(H(x) \) from his own card, which is same for each user. But from \(H(x) \), \(U_a \) may not be able to compute \(y_i \), which makes the proposed protocol secure against malicious user attack.

[4.3] Impersonation Attack
As both \(CID_i \) and \(M_i \) are protected by secure one way hash function, any modification in login request message \((CID_i, M_i, T) \) will be detected by the server by verifying \(M_i \). So, because the attacker has no way to find \(PW_i \) and \(y_i \) of the legitimate user \(U_i \), he cannot modify login request message, which makes this protocol secure against impersonation attack.

[4.4] Offline Password Guessing Attack
After gathering the information on legitimate user \(U_i \)'s smart card, an attacker can intercept the login request message \((CID_i, M_i, T) \) during the login transaction, and try to guess out \(ID_i, PW_i, y_i \) and \(x \), but it is not possible to guess out all the parameters correctly at the same time, which makes this protocol secure against offline guessing attacks.

[4.5] Stolen Smart Card Attack
An attacker can extract security parameters \((N_i, B_i, V_i, H(.)) \) from legitimate user \(U_i \)'s smart card. But, this information does not help him to find out the value of server's secret parameter \(y_i \) corresponding to the \(i \)th legitimate user. He cannot use this information to generate fake login request. He is also not able to play as man in middle by using any information on card. Thus, the proposed protocol is secure against stolen smart card attack.
[4.6] Insider Attack

Any privileged insider user can obtain $H(x)$ from his registered legal smart card, but without knowing the password of ith user, he cannot compute y_i and secret key x of the server and not use the secret information for personal benefit. Thus, this protocol is secure against an insider attack.

[5] Conclusion

In this paper, we analyzed Sood et al's dynamic identity based authentication scheme using smart cards and its immunity against various attacks. We got that their scheme is insecure for practical applications and vulnerable to outsider and insider attacks. To remedy these security flaws, we proposed an upgraded protocol for authentication scheme that preserves the similar properties of their scheme and resolves all the identified weaknesses of their scheme and make it more secure and efficient for practical purpose.

References

2. Cryptography / Network Security, Douglas R. Stinson, Fall 2013
