
Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237 and HR0011-18-C-0016. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Thunderclap:
Exploring Vulnerabilities in

Operating System IOMMU Protection
via DMA from Untrustworthy Peripherals

A. Theodore Markettos†, Colin Rothwell†, Brett F. Gutstein†*,

Allison Pearce†, Peter G. Neumann‡, Simon W. Moore†, Robert N. M. Watson†

RISE Annual Conference, London, 14 November 2018†University of Cambridge
Dept. Computer Science and Technology

‡SRI International *Rice University

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Smaller laptops, more external peripherals
• Laptops getting smaller, more devices are going external

• Chargers, dongles, docking stations
• Common to borrow external peripherals (power, dongles, displays) from others

• Performance is increasingly more of a constraint
• Security?

W
ik

im
ed

ia
/A

m
in

 C
C-

BY
-S

A-
4.

0

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

USB-C convergence: can’t tell protocol from the
connector

USB Type A

Video

PCI Express

USB Type C

DC Power

Thunderbolt 3

fli
ck

r:
ch

ri
st

ia
an

co
le

n
CC

-B
Y-

SA
-2

.0

Mode
selected
by cable

Thunderbolt
mux

Audio

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

The security story...
• USB is a message-based protocol

• people craft bad messages (eg BadUSB)
• attack the device driver stack (buffer overflow, etc)

• PCI Express is a shared-memory protocol
• ‘DMA’ means devices Directly Access Memory, not via CPU
• used when performance is more critical
• wide exposure of system memory, all data on the system is accessible
• PCIe threat model: existing chips/cards with bad firmware update/compromise (eg in servers)

• Thunderbolt is a multiplex of PCI Express and DisplayPort video
over USB-C (or miniDisplayPort)
• Thunderbolt threat model: can now hotplug DMA-capable devices into running systems
• Do everything PCIe devices can do and more
• Even more scope for user confusion

• Surely there are defenses?

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

IOMMU = an MMU for device memory accesses

• MMU used to protect & virtualize memory access from processes
• IOMMU used to protect & virtualize memory access from peripheral devices
• One IOMMU page table per device

• mapping 4KiB / 2MiB / 1GiB pages into I/O Virtual Address space
• IOTLB as a cache of recently-used translations (c.f. TLB in MMU)
• Implementations: Intel VT-d, AMD-Vi, Arm System MMU

Thunderbolt

CPU
MMU
L1 cache
L2 cache

Last-Level Cache (LLC)

DRAM

Network
card (NIC)

DMADMA

IOMMU

… …
DMA
NICNVMe /

SATA

PCI Express

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Use of the IOMMU to protect from I/O devices?

Windows 7 / 8 : don't use the IOMMU, all memory exposed
Windows 10 Home/Pro : didn't use the IOMMU
MacOS ≥10.8.2 : IOMMU enabled by default
Linux : supported, but IOMMU rarely enabled by default
FreeBSD : supported, but not enabled by default
IOMMU often disabled in default firmware settings (BIOS, UEFI)
Current state of the world is not good

Our work assumes that the OS vendor is at least vaguely trying...
What is the attack surface if they turned on IOMMU protection?

✗
✗

✗
✗
✗

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

The attack surface from a real device

• prior work: “when the IOMMU is enabled,
attacks are foiled”
• these are simple memory-probing attacks

• no interactions with driver or kernel

• actually, the attack surface is much more
nuanced

• what attack surface does a real I/O device have?
• what accesses can it make?

• how does it interact with the device driver stack?

• as the OS increasingly trusts it, what extra
vulnerabilities does it open up?

snare and rzn, Thunderbolts and Lightning – Very Very
Frightening (2014)

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Thunderclap: a research platform for I/O security
• We built a fake network card:

• software device model of an Intel E1000 PCIe ethernet card from QEMU
• software = easy to change, add malicious behavior

• run it on a CPU on an FPGA (Arm Cortex A9 on Intel Arria 10, running Ubuntu)
• FPGA logic can send and receive arbitrary PCIe packets
• QEMU model responds to PCIe packets and generates ‘DMA’ like a real NIC

• runs on FPGA dev boards, attached via PCIe or Thunderbolt dock
• hardware/software open sourced
• designed physical embodiments

• Thunderbolt dock implant
• malicious projector, charger
• not fully engineered/productized
• not released at this time

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: Windows 10

• Windows 10 Home/Pro don't use the IOMMU
• Windows 10 Enterprise doesn't by default
• Enterprise can enable Virtualization Based

Security: runs the main OS in a HyperV VM
• second minikernel for key storage, etc

• Under VBS: I/O device has full access to all
system memory except the few pages of
minikernel are protected

• Attacker can get everything except the disk
encryption keys

• keyloggers
• filesystem plaintext
• run arbitrary code

• screen capture
• network traffic
• much more...

Win 10 Enterprise
0GiB 16GiB

tiny protected minikernel

main OS unprotected

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Network card (NIC): common design patterns

OS packet structure with internal or external data
structure contains external data free() function pointer

mbuf (MacOS/FreeBSD)
skbuff (Linux)

NET_BUFFER_LIST (Windows)

NIC-specific ring buffer

1. NIC reads table by DMA
2. follows pointers in its I/O virtual address space
3. reads/writes data blocks by DMA to send/receive

Device driver

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

IOMMU vulnerability taxonomy

• IOMMU windows = regions of memory exposed to a
device, sized in pages
• Spatial vulnerability

• 4KiB page granularity isn’t fine enough to distinguish data
fields in complex data structures like mbufs
• Read or write memory we aren’t supposed to access

• Temporal vulnerability
• Exploit the time gap between asking for a window to be

closed and closure taking place
• Memory gets reused for something else in the interim

Data for device

Kernel private metadata

Allocation for other
kernel component

base

base +4KiB

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: MacOS data leakage and root shell

• MacOS
• all devices share one page map

• NIC can’t read/write kernel or apps memory, but can access
USB buffers, framebuffer

• mbufs are allocated in a single block and exposed to all
devices at boot time

• access all of the network data all of the time – traffic for other
NICs, VPN plaintext, etc

• Kernel-Address Space Layout Randomization (KASLR)
can be broken due to leaked USB symbol

• free() function pointer and 3 parameters from mbuf
allow launching a root shell

struct mbuf {
...
struct m_ext;
...
// internal buffer
char M_databuf[224];

};

struct m_ext {
// external buffer pointer
caddr_t ext_buf;
// free() function pointer
void (*ext_free)(caddr_t,

u_int, caddr_t);
u_int ext_size;
...
struct ext_ref {

u_int32_t refcnt;
// buffer is external flag
u_int32_t flags;

} *ext_refflags;
};

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Great, because I’m a NIC.

Hi! What are you?

I’m an … Intel e1000 NIC .. I promise!

Here are the descriptor rings, other parameters.

Attacker selects their device driver of choice
via the returned PCI device ID

PCIe

Device-driver/NIC protocol enters steady state.

The attacker can source and sink packets, allowing it to interact with OS state: respond to
DHCP, make and accept TCP connections, trigger OS services launching, etc.

Oh cool, I’ve got the perfect large,
buggy, and highly vulnerable vendor-
provided device driver just for you!

Device discovery and driver attachment

iMac (victim) Thunderclap
(Intel e1000 model)

Use spatial vulnerability to look in IOMMU windows for sensitive leaked data, change it

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

I’ll free this mbuf and …
Darn it, you’re running

arbitrary code in my kernel.

.. Oh, look, there’s a callback pointer in USB memory. Now I
know the addresses of kernel functions despite KASLR.

Rewrite mbuf external data “free()” function pointer.

Here’s an mbuf holding a TCP ACK to send.

This mbuf is sent, you can free it now.

A single I/O address space increases attacker
opportunity

Device-driver private data leakage weakens
secret-based vulnerability mitigation

Exposed kernel control-flow pointers and their parameters
allow arbitrary ROP-like code execution

A single packet-buffer mapping
conflates read and write access

by DMA.

PCIe

!

Attacking kernel control flow

I’ll just search exposed I/O memory
looking for kernel code pointers …

Descriptor rings allow the
attacker to control free timing

iMac (victim) Thunderclap
(Intel e1000 model)

Breaking KASLR

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack variations

• FreeBSD
• one page map per device
• see other network traffic co-located on pages (traffic for other NICs, VPN

plaintext)
• no KASLR: root shell attack works

• Linux
• one page map per device
• data and metadata on different pages – can’t overwrite free() pointer
• general kernel allocator used by driver

• see Unix domain socket traffic (as used by SSH agent)
• kernel NAT jump tables, potentially lots more...

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Spatio-temporal attack

• Driver increments head pointer of ring
buffer to indicate new data to send
• NIC increments tail pointer to indicate a

block has been sent and can be freed /
IOMMU window closed
• NIC can hold on to pages it has been asked

to transmit by not updating the tail pointer
• ‘I'm not done with this block yet, please keep

the IOMMU window open’

• Watch other parts of these page change as
they are reused multiple times
• data for other NICs
• VPN plaintext

Transmit
Ring Buffer

Head of TX queue
(driver updates
on new data)

Tail of TX queue
(NIC updates on
completed blocks)

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: Linux IOMMU bypass

• PCIe has a feature called Address Translation Services (ATS)
• Allows PCIe to carry pre-translated addresses

• Performance mitigation to cache translations locally, don't have to go inter-socket to IOTLB on a multi-
socket server

• ‘Pre-translated addresses’ means we can generate memory reads/writes to arbitrary physical
addresses with no IOMMU interposing

• Set Thunderclap to advertise PCIe configuration registers saying it supports ATS
• Linux sees this and enables ATS on the PCIe switches
• Set a bit in the PCIe packet header saying an address is pre-translated
• We've completely bypassed IOMMU protection!

Fmt Attr Length

Requester ID Tag Last BE

Address

Data word 0

Type R TC R AT

31 0

1st BE MemoryWrite32
TLP

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

The IOMMU attack surface

• The attacks shared-memory devices can do are rich, complex and nuanced
• Substantially more powerful than attacks by message-passing devices such as USB

• Most systems are poorly defended
• Look a lot like the syscall interface

• OS kernels are protected from processes by the MMU and carefully vet syscalls
from untrustworthy code
• Syscalls have a long history of hardening and code audit

• OS kernels are barely protected from devices by the IOMMU and
accesses from devices
• A large body of buggy and poorly tested device driver code
• Often provided by third-parties
• Malicious device can pick its shape to target the most vulnerable device driver

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

How can it be this bad?

• Elephant in the room: performance
• forcing all I/O through an additional layer of address translation is expensive

• worst case: walking 6 level page table
• IOTLB caches to mitigate this are typically too small to be effective
• synchronously revoking mappings can be very time consuming
• performance optimizations like ATS can be a security vulnerability

• Explains why the IOMMU is not enabled by default, or used minimally (as
MacOS)

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

DON'T PANIC: Mitigations already fielded

• Collaborating with vendors since 2016
• Apple mitigated specific exploit in MacOS 10.12.4

• encrypt the kernel pointer, hide the flags

• Microsoft shipped Kernel DMA Protection for Thunderbolt 3 in Windows 10 1803
• IOMMU enabled for Thunderbolt devices (only)
• Requires post-1803 firmware, ie new products only

• Intel enabled IOMMU for Thunderbolt in Linux 4.21 (now 5.0rc), disabled ATS
• We assume an active IOMMU, so our attacks still relevant for Windows and Linux
• Major laptop vendor: we won't ship Thunderbolt until we understand this attack vector

better
• Eternal vigilance: DMA turning up in numerous new places – PCIe in phones,

SD card 7.0, NVMe over Ethernet...

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Conclusion

• We present the IOMMU attack surface as a new and rich field for
vulnerabilities
• Open sourced Thunderclap, a research platform that allows

exploration from an FPGA
• Told some stories of attacks across four major OS platforms
• including a complete IOMMU bypass

• Vendors shipped mitigations to our attacks which are already fielded
• Solving the problem in the general case is harder than it appears, and

some major work may be required
• Source code and FAQ: thunderclap.io

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Thunderbolt access control

• On Windows and Linux, Thunderbolt can prompt when a new device is
connected
• Prompt gives no information about the rights being requested
• Users can’t make any kind of informed decision whether to allow it
• Can’t detect modifications to a device above the Thunderbolt layer
• MacOS doesn’t prompt, just need to buy a Thunderbolt dock on the whitelist

22

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Physical address utilisation study

• Hypothesis: network devices reuse memory in a way
that storage or GPUs don't
• Reuse-based mitigations might not be efficient?
• Method: use PCIe analyser to record physical address

patterns of different devices, under real-world
applications
• Result: very different access patterns
• Accelerators (GPUs, TPUs?) have deeper sharing

behaviours that IOMMU wouldn't handle efficiently
• Need better strategies, or a better IOMMU?

10G NIC, Linux pgbench

GPU, Windows 10, 4K demo

Heat map of 16GiB physical address space

0

8 12

16

4

106

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

PCIe Address Translation Services (ATS)

(IOMMU) (page table)

(ATC=local cache of
translations)

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: MacOS data leakage

• First OS that really tried using the IOMMU
• enabled by default since 10.8.2 (2012)

• All devices share a common page map
• NIC can't see kernel or apps but can see USB, framebuffer...

• Network packets (mbufs) are all pre-allocated and exposed at boot time
• both the data and the mbuf data structure is exposed due to 4KiB page granularity

• MacOS data leakage (10.8.2 to present)
• when a NIC is given a packet to send...
• look nearby for data stored in other packets

• find traffic for other NICs, VPN plaintext...
• worse: can see all of the network traffic all of the time

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: MacOS root shell

• notice that mbufs can contain a function pointer to a
custom free() function

• NIC can change mbuf flags so that kernel calls ext_free()
when NIC indicates a packet is sent

• ext_free() arguments are also read from the mbuf

• replace function pointer with our own, control 3
arguments it is called with

• need to defeat KASLR address randomisation
• USB driver also leaks kernel symbol
• use it calculate the KASLR offset, generate a valid function

pointer from any symbol in the kernel

• NIC sets function pointer to KUNCExecute,
parameters -> ‘Terminal.app’

• We have a root shell J

struct mbuf {
...
struct m_ext;
...
// internal buffer
char M_databuf[224];

};

struct m_ext {
// external buffer pointer
caddr_t ext_buf;
// free() function pointer
void (*ext_free)(caddr_t,

u_int, caddr_t);
u_int ext_size;
...
struct ext_ref {

u_int32_t refcnt;
// buffer is external flag
u_int32_t flags;

} *ext_refflags;
};

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: FreeBSD data leakage and root shell

• The same attack also works
• Tries harder, different page table per device
• NIC devices can only see their own data, no other memory exposed

• Same mbuf data structure, MacOS attack still works
• 4KiB page granularity means we can look in other parts of pages we are asked

to transmit/receive
• can’t see all network packets, only ones we share pages with

• no KASLR so root shell easier

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Attack: Linux kernel leakage

• Linux gives each device its own page table
• skbuffs put data and metadata on different pages, so free() pointer

isn’t accessible to us
• but data is often allocated by drivers from a common pool, other

parts of pages we are given still leak
• Unix domain socket traffic (as used by SSH agent)
• kernel NAT jump tables
• potentially lots more...

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

Outline

• A story of a new attack vector...
• peripheral devices are not your friends

• A new platform for investigating security of peripheral devices and
operating systems
• New classes of vulnerabilities, new exploit techniques
• Some real-world attacks
• Mitigations and... why didn’t they do it right first time?
• Conclusion

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals

• USB Type C is a connector standard (not a communication protocol)
• ‘Alternate modes’: cable switches port to carry a different protocol

• Thunderbolt is an ‘alternate mode’ of the Type C connector
• Thunderbolt interconnect = packetised multiplex of PCI Express & DisplayPort

Type C: ‘The USB that does it all’

Video

PCI Express

USB

Thunderbolt
mux

Thunderbolt 3

+ power

Type C connector

Audio

Alternate
mode
selection

