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Optimizing compilers for object-oriented languages apply static

class analysis and other techniques to try to deduce precise information about
the possible classes of the receivers of messages; if successful, dynamically-
dispatched messages can be replaced with direct procedure calls and
potentially further optimized through inline-expansion. By examining the
complete inheritance graph of a program, which we callclass hierarchy
analysis, the compiler can improve the quality of static class information and
thereby improve run-time performance. In this paper we present class
hierarchy analysis and describe techniques for implementing this analysis
effectively in both statically- and dynamically-typed languages and also in
the presence of multi-methods. We also discuss how class hierarchy analysis
can be supported in an interactive programming environment and, to some
extent, in the presence of separate compilation. Finally, we assess the
bottom-line performance improvement due to class hierarchy analysis alone
and in combination with two other “competing” optimizations, profile-
guided receiver class prediction and method specialization.

1 Introduction

Object-oriented languages foster the development of reusable, extensible class libraries
and frameworks [Johnson 92]. For example, the InterViews graphics framework [Linton
et al. 89] defines a collection of interacting base classes. The base classes define a set of
messages that are to be defined or overridden in subclasses. Clients of the framework
specialize it to their use by providing application-specific subclasses of the framework’s
base classes with the appropriate operations defined. Other frameworks have a similar
structure, exploiting inheritance and dynamic binding of messages to make library code
customizable and malleable.

Heavy use of inheritance and dynamically-bound messages is likely to make code
more extensible and reusable, but it also imposes a significant performance overhead,
compared to an equivalent but non-extensible program written in a non-object-oriented
manner. In some domains, such as structured graphics packages, the performance cost of
the extra flexibility provided by using a heavily object-oriented style is acceptable.
However, in other domains, such as basic data structure libraries, numerical computing
packages, rendering libraries, and trace-driven simulation frameworks, the cost of
message passing can be too great, forcing the programmer to avoid object-oriented
programming in the “hot spots” of their application. For example, hybrid languages like
C++ [Stroustrup 91], Modula-3 [Nelson 91, Harbison 92], and CLOS [Bobrowet al. 88,
Gabrielet al. 91] provide non-object-oriented built-in array data structures that are more



efficient than would be a typical class-based extensible implementation using
dynamically-dispatched fetch and store operations, Sather [Omohundro 94, Szyperskyet
al . 93] allows the programmer to explicitly select where subtype polymorphism is
allowed, trading away reusability for performance, and it is common practice in C++
programming to avoid virtual function calls along common execution paths, sometimes
leading to contorted, hard-to-understand and hard-to-extend code.

Compilers can reduce the cost of dynamically-dispatched messages in a number of
ways. For example,static class analysis identifies a superset of the set of possible classes
of objects that can be stored in variables and returned from expressions. Sometimes class
analysis determines that the receiver of a message can be an instance of only one class,
allowing the dynamically-dispatched message to be replaced with a direct procedure call
(i.e.,statically-bound) at compile-time and further optimized using inline expansion if the
target procedure is small. If static class analysis determines that the receiver of a message
can be one of a small set of classes, the dynamically-dispatched message can be replaced
with a “type-case” expression, implemented with a series of run-time class tests, each
branching to direct procedure calls implementing that case; executing one or two run-time
class tests followed by an inlined version of the called procedure can be faster than
performing a general run-time method lookup, particularly if additional optimizations of
the called and calling methods can take place after inlining. Several other compiler
techniques have been investigated for reducing the cost of message passing:

• Profile-guided receiver class prediction can support a type-casing-style
optimization where static analysis is unable to determine precise information about
the receiver of a message. The profile information representing the expected
receiver class distribution of particular messages or call sites can be hard-wired into
the compiler [Deutsch & Schiffman 84, Chamberset al. 89], gathered and
exploited on-line [Hölzle & Ungar 94], and/or gathered off-line and exploited via
recompilation [Garrettet al. 94, Calder & Grunwald 94].

• Method specialization can produce faster specialized versions of a method for
particular inheriting subclasses; each specialized version can be optimized for the
particular class or classes of the receiver for which the method is being specialized.
Specializations for a given source method can be produced obliviously for each
inheriting subclass [Kilian 88, Chambers & Ungar 89, Lea 90, Lim & Stolcke 91]
or they can be produced selectively for groups of inheriting subclasses guided by
execution frequency profiles [Deanet al. 95].

Class hierarchy analysis is another idea for speeding messages. When the compiler
compiles a method, it knows statically that the receiver of the method is some subclassS
of the classC containing the method. Unfortunately, in the absence of additional
information, the compiler cannot optimize messages sent to the method’s receiver,
because the subclassS may override any of C’s dynamically-dispatched methods. Class
hierarchy analysis resolves this dilemma by supplying the compiler with complete
knowledge of the program’s class inheritance graph and the set of methods defined on
each class. In the presence of this global information about the program being compiled,
the compiler can infer statically a specific set of possible classes given that the receiver is
a subclass of the classC, and messages sent to the method’s receiver can be optimized. In
particular, if there are no overriding methods in subclasses, a message sent to the method’s
receiver can be replaced with a direct procedure call and perhaps inlined. This sort of
optimization would be especially important in the case of highly-extensible frameworks,
where a great deal of flexibility is incorporated in the form of dynamically-dispatched
messages within the framework base classes, but where only a limited portion of the
potential flexibility is exploited by any particular application. For example, InterViews



supports the display and manipulation of arbitrary graphical shapes, but if a particular
application only implements a rectangle concrete subclass, then all the dynamically-
dispatched calls within the framework for manipulating arbitrary shapes can be replaced
with direct calls to the appropriate rectangle methods.

Class hierarchy analysis has long been known informally as a possible optimization
among implementors of optimizing compilers for object-oriented languages, but we are
unaware of any previous studies of the effectiveness and costs of this technique.
Moreover, class hierarchy analysis is just one of a number of candidate optimizations that
could be incorporated into an optimizing compiler, and the question remains as to which
is the most cost-effective combination to include. In this paper we perform such a study:

• We describe several implementation techniques for efficiently incorporating class
hierarchy analysis into a compiler, in particular into an existing static class analysis
framework. Our techniques scale to support multi-method-based languages;
efficient compile-time method lookup in the presence of multi-methods is
substantially harder than for mono-methods.

• We address programming environment concerns of achieving fast turnaround for
programming changes and supporting independent development of libraries, which
could be adversely affected by a whole-program analysis such as class hierarchy
analysis.

• We measure the run-time performance benefit and compile-time cost of class
hierarchy analysis on several large programs written in Cecil [Chambers 92,
Chambers 93], a pure object-oriented language with multi-methods. Moreover, we
also measure the run-time performance benefits and compile-time costs of profile-
guided receiver class prediction and method specialization separately and in
combination with class hierarchy analysis.

The next section of this paper describes our integration of class hierarchy analysis into
static class analysis and addresses programming environment concerns. Section  3 reports
on our experimental evaluation of class hierarchy analysis, profile-guided receiver class
prediction, and method specialization. Section 4 describes some related work and Section
5 offers some conclusions.



2 Class Hierarchy Analysis
By exploiting information about the structure of the class inheritance graph, including
where methods are defined (but not depending on the implementation of any method nor
on the instance variables of the classes), the compiler can gain valuable static information
about the possible classes of the receiver of each method being compiled. To illustrate,
consider the following class hierarchy:

Consider the situation where the methodp in the classF contains a send of them message
to self. m is declared to be a virtual function (there are several implementations ofm for
subclasses ofA, and the right implementation should be selected dynamically). As a
result, with only static intraprocedural class analysis them message inF::p must be
implemented as a general message send. However, by examining the subclasses ofF and
determining that there are no overriding implementations ofm, them message can be
replaced with a direct procedure call toC::m and then further optimized with inlining,
interprocedural analysis, or the like. This reasoning depends not on knowing the exact
class of the receiver, as with most previous techniques, but rather on knowing that no
subclasses ofF override the version ofm inherited byF. Class hierarchy analysis is a
direct method for determining this without programmer intervention.

2.1 Alternatives to Class Hierarchy Analysis
Other languages have alternative approaches for achieving a similar effect. In C++ a
programmer can declare whether or not a method is virtual (methods default to being non-
virtual). When a method is not declared to be virtual, the compiler can infer that no
subclass will override the method,1 thus enabling it to implement invocations of the
method as direct procedure calls. However, this approach suffers from three weaknesses
relative to class hierarchy analysis:

• The C++ programmer must make explicit decisions of which methods need to be
virtual, making the programming process more difficult. When developing a
reusable framework, the framework designer must make decisions about which

1. Actually, C++ non-virtual functions can be overridden, but dynamic binding will not
be performed: the static type of the receiver determines which version of the non-vir-
tual method to invoke, not the dynamic class.

class A
method m
method p

class B : A
method m

class C : A
method m

class D : B
...

class E : C
method m

class F : C
method p

class G : F
...

class H : F
...



operations will be overridable by clients of the framework, and which will not. The
decisions made by the framework designer may not match the needs of the client
program; in particular, a well-written highly-extensible framework will often
provide flexibility that goes unused for any particular application, incurring an
unnecessary run-time performance cost. In contrast, class hierarchy analysis is
automatic and adapts to the particular framework/client combination being
optimized.

• The virtual/non-virtual annotations are embedded in the source program. If
extensions to the class hierarchy are made that require a non-virtual function to
become overloaded and dynamically dispatched, the source program must be
modified. This can be particularly difficult in the presence of separately-developed
frameworks which clients may not be able to change. Class hierarchy analysis, as
an automatic mechanism, requires no source-level modifications.

• A function may need to be virtual, because it has multiple implementations that
need to be selected dynamically, but within some particularly subtree of the
inheritance graph, there will be only one implementation that applies. In the
example above, them method must be declared virtual, since there are several
implementations, but there is only one version ofm that is called fromF or any of
its subclasses. In C++,m must be virtual and consequently implemented with a
dynamically-bound message, but class hierarchy analysis can identify when a
virtual function “reverts” to a non-virtual one with a single implementation for a
particular class subtree, enabling better optimization. In particular, it is always the
case that a message sent to the receiver of a method defined in a leaf class will have
only one target implementation and hence can be implemented as a direct procedure
call, regardless of whether or not the target method is declared virtual. For the
benchmark programs discussed in Section 3, slightly more than half of the message
sends that were statically bound through class hierarchy analysis could not have
been made non-virtual in C++ (i.e., had more than a single definition of the routine).

In a similar vein, Trellis [Schaffertet al. 85, Schaffertet al. 86] allows a class to be
declared with theno_subtypes annotation and Dylan [Dyl92] allows a class to be sealed,
both of which inform the compiler that no subclasses exist. These annotations allow the
compiler to treat the class as a leaf class and compile all messages sent to objects statically
known to be of the class as direct procedure calls. Sealing has similar weaknesses relative
to class hierarchy analysis as do non-virtual functions in C++: programmers have to
predict in advance, in the source code, which classes are to be sealed, and opportunities
for static binding will be missed, relative to class hierarchy analysis, when a class has
unknown subclasses but none of the subclasses override certain methods.

2.2 Implementation

To make class hierarchy analysis effective, it must be integrated with intraprocedural
static class analysis. Static class analysis is a kind of data flow analysis that computes a
set of classes for each variable and expression in a method; the compiler uses this
information to optimize dynamically-bound messages, type-case statements as in
Modula-3 and Trellis, and other run-time type checks. Previous frameworks for static



class analysis in dynamically-typed object-oriented languages have defined several
representations for sets of classes [Chambers & Ungar 90]:

Earlier frameworks focused on the singleton class set as the primary source of
optimization: if the receiver of a message is a singleton class set, then the message lookup
can be resolved at compile-time and replaced with a direct procedure call to the target
method. Unions of class sets were optimized only through a type-casing optimization, if
the union combined a small number of classes.

2.2.1 Cone Class Sets

Class hierarchy analysis changes the flavor of static class analysis. The initial class set
associated with the receiver of the method being analyzed is the set of classes inheriting
from the class containing the method; in the earlier example, the receiver ofF’s p method
is associated with the set {F, G, H}. It would be possible to use the Union set
representation to represent the class set of the method receiver, but this could be space-
inefficient for the large receiver class sets of methods declared high up in the inheritance
hierarchy. Consequently we introduce a new representation for the kind of regular class
sets inferred by class hierarchy analysis, the Cone:

Class hierarchy analysis annotates the method’s receiver with a cone set representation for
the class containing the method. A simple optimization of this representation is to use the

Representation Description Source Use

Unknown the set of all classes method arguments;
results of non-
inlined message
sends; contents of
instance variables

Class(C) the singleton set
{ C}

true branch of run-
time class tests; lit-
erals

supports static bind-
ing of sends; elimi-
nating run-time
type checks

Union(S1, ...,Sn) union of class sets control flow merges supports “type-cas-
ing” if small union
of classes

Difference(S1, S2) difference of two
class sets

false branch of run-
time class tests

avoids repeated tests

Representation Description Source Use

Cone(C) the set of all sub-
classes of the class
C, includingC

class hierarchy anal-
ysis of method
receiver; static type
declarations

supports static bind-
ing of sends



Class(C) representation rather than Cone(C) if C is a leaf class. (This framework for
representing static class analysis information is similar to Palsberg and Schwartzbach’s
static type system [Palsberg & Schwartzbach 94].) Cones tend to be concise summaries
of sets of classes: in our implementation, when compiling a 52,000-line benchmark
program with 957 classes, the average cone used for optimization purposes contained 12
concrete classes, and some cones included as many as 93 concrete classes.

In a statically-typed language, cones can be used to integrate static type declarations
into the static class analysis framework: for a variable declared to be of static typeC, any
static class information inferred for the variable is intersected with Cone(C). This
integration is crucial to adapting techniques developed for dynamically-typed object-
oriented languages to work effectively for statically-typed object-oriented languages. For
hybrid languages, built-in non-object-oriented data types like integers and arrays can be
considered their own separate classes, as far as static class analysis is concerned; CLOS
takes a similar view on integrating the standard Lisp data types with user-defined classes.

2.2.2 Method Applies-To Sets

If only singleton class sets support static binding of messages, then only leaf classes
would benefit from class hierarchy analysis. However, this is unnecessarily conservative:
even if the receiver of a message has multiple potential classes, if all the classes inherit
the same method, then the message send can be statically bound and replaced with a direct
procedure call. For instance, in the earlier example, the class set computed for them
message sent to the receiver of theF::p method is {F, G, H}, but all three classes inherit
the same implementation ofm, C::m. Our measurements indicate that nearly 50% of the
messages statically bound using class hierarchy analysis have receiver class sets
containing more than a single class. To receive the most benefit from class hierarchy
analysis, static binding of messages whose receivers are sets of classes should be
supported. One approach would be to iterate through all elements of Union and Cone sets,
performing method lookup for each class, and checking that each class inherits the same
method; however, this could be slow for large sets (e.g., cones of classes with many
subclasses).

We have pursued an alternative approach that compares whole sets of classes at once.
We first precompute for each method the set of classes for which that method is the
appropriate target; we call this set theapplies-to set. (In our compiler, we compute the
applies-to sets of methods on demand, the first time a message with a particular name and
argument count is analyzed, to spread out the cost of this computation.) Then at a message
send, we take the class set inferred for the receiver and test whether this set overlaps each
potentially-invoked method’s applies-to set. If only one method’s applies-to set overlaps
the receiver’s class set, then that is the only method that can be invoked and the message
send can be replaced with a direct procedure call to that method. (To avoid repeatedly
checking a large number of methods for applicability at every call site in the program, our
compiler incorporates a compile-time method lookup cache that memoizes the function
mapping receiver class set to set of target methods. In practice, the size of this cache is
reasonable: for a 52,000-line program, this cache contained 7,686 entries, and a total of
54,211 queries of the cache were made during compilation.)

The efficiency of this approach to compile-time method lookup depends on the ability
to precompute the applies-to sets of each method and the implementation of the set
overlaps test for the different representations of sets. To precompute the applies-to sets,
we first construct a partial order over the set of methods, where one methodM1 is less than



anotherM2 in the partial ordering iffM1 overridesM2. For the running example, we
construct the following partial order:

Then for each method defined on classC, we initialize its applies-to set to Cone(C).
Finally, we traverse the partial order top-down. For each methodM, we visit each of the
immediately overriding methods and subtract off their (initial) applies-to sets fromM’s
applies-to set. In general, the resulting applies-to set for a methodC::M is represented as
Difference(Cone(C), Union(Cone(D1), ..., Cone(Dn))), whereD1, ...,Dn are the classes
containing the directly-overriding methods. If a method has many directly-overriding
methods, the representation of the method’s applies-to set can become quite large. To
avoid this problem, the subtracting can be ignored at any point, it is safe though
conservative for applies-to sets to be larger than necessary.

The efficiency of overlaps testing depends on the representation of the two sets being
compared. Overlaps testing for two arbitrary Union sets of sizeN is O(N2),1 but overlaps
testing among Cone and Class representations takes only constant time (assuming that
testing whether one class can inherit from another takes only constant time [AKet al. 89,
Agrawalet al. 91, Caseau 93]): for example, Cone(C1) overlaps Class(C2) iff C1 = C2
or C2 inherits from C1. Overlaps testing of arbitrary Difference sets is complex and can
be expensive. Since applies-to sets in general are Differences, overlaps testing of a
receiver class set against a collection of applies-to Difference sets could be expensive. To
represent irregular applies-to sets more efficiently, we convert Difference sets into a
flattened BitSet representation. Overlaps testing of two BitSet class sets requiresO(N)
time, whereN is the number of classes in the program. In practice, this check is fast: even
for a large program with 1,000 classes, if bit sets use 32 bit positions per machine word,
only 31 machine word comparisons are required to check whether two bit sets overlap. In
our implementation, we precompute the BitSet representation of Cone(C) for each class
C, and we use these bit sets when computing differences of Cones, overlaps of Cones, and
membership of a class in a Cone.

When compiling a method and performing intraprocedural static class analysis, the
static class information for the method’s receiver is initialized to Cone(C), whereC is the
class containing the method. It might appear that the applies-to set computed for the
method would be more precise initial information. Normally, this would be the case.
However, if an overriding method contains asuper send (or the equivalent) to invoke the
overridden method, the overridden method can be called with objects other than those in
the method’s applies-to set; the applies-to set only applies for normal dynamically-
dispatched message sends. If it is known that none of the overriding methods contain
super sends that would invoke the method, then applies-to would be a more precise and
legal initial class set.

1. Since the set of classes is fixed, Union sets whose elements are singleton classes
could be stored in a sorted order, reducing the overlaps computation to O(N).

A::m

B::m

E::m

C::m F::p

A::p



2.2.3 Support for Dynamically-Typed Languages

In a dynamically-typed language, there is the possibility that for some receiver classes a
message send will result in a run-time message-not-understood error. When attempting to
optimize a dynamic dispatch, we need to ensure that we will not replace such a message
send with a statically bound call even if there is only one applicable source method. To
handle this, we introduce a special “error” method defined on the root class, if there is no
default method already defined. Once error methods are introduced, no special efforts
need be made to handle the possibility of run-time method lookup errors. For example, if
only one (source) method is applicable, but a method lookup error is possible, our
framework will consider this case as if two methods (one real and one error) were
applicable and hence block static binding to the one real method. Similarly, if a message
is ambiguously defined for some class, more than one method will include the class in its
applies-to set, again preventing static binding to either method.

Knowledge of the class hierarchy and the location of defined methods can improve
the results of receiver class prediction, a common technique used when the available static
class information is not precise enough to lead to static binding of a message send. If the
compiler can predict the expected class(es) of the message’s receiver, either based on the
name of the message and a hard-wired table in the compiler (as in Smalltalk-80 and the
Self-91 system) or on dynamic profile data (as in the Self-93 system and Cecil), then it
can insert run-time class tests for the expected classes. The compiler generates a full
message send to handle any unexpected classes that occur at run-time:

In dynamically-typed languages, if the compiler can prove statically that the classes being
tested exhaust the set of classes for which the message is correctly defined, then the final
“unexpected” case can be replaced with a run-time message lookup error trap. (In
statically-typed languages, using class hierarchy information to convert static type
declarations into Cone class set representations accomplishes a similar purpose.) Such a
lookup error trap might take up less compiled code space than a full message send, but
more importantly in some languages it is known not to return to the caller. Thus, the error
branch never merges back into the main stream of the program, and the compiler learns
that only the predicted class(es) are possible after the message. In the above example, if
analysis of the class hierarchy reveals thatRectangle andCircle are the only classes
implementing thearea message, then the third case can be replaced with an error trap.
After thearea message, the compiler will know thats is either aRectangle or aCircle,
enabling it to better implement later messages sent tos. (In a statically-typed language,
class hierarchy analysis coupled with static type declarations would have showns to refer
to either aRectangle or aCircle all along.) In the absence of class hierarchy information,
the compiler must assume that some other class could implement thearea message (or,

Before Class Prediction:
a := s.area();

After Class Prediction:
if (s.class == Rectangle) {

// statically bind to rectangle’s area; inline if small
a := s.Rectangle::area();

} else if (s.class == Circle) {
// statically bind to circle’s area; inline if small
a := s.Circle::area();

} else {
// a full message send to handle unexpected cases
a := s.area();

}



in a statically-typed language, that some other class could be a subtype of theShape static
type), and consequently include support for the third “unexpected” case. When compiling
our 52,000-line benchmark program, elimination of unexpected cases using class
hierarchy analysis occurred 3,232 times; 3,004 of these occurrences optimized basic
messages such asif andnot, which might not be necessary in a less pure language lacking
user-defined control structures.

2.2.4 Support for Multi-Methods

The above strategy for static class analysis in the presence of class hierarchy analysis and/
or static type declarations works for singly-dispatched languages with one message
receiver, but it does not support languages with multi-methods, such as CLOS, Dylan, and
Cecil. To support multi-methods, we associate methods not with sets of classes but sets of
k-tuples of classes, wherek is the number of dispatched arguments of the method.1 To
represent many common sets of tuples of classes concisely, we usek-tuples of class sets:
a k-tuple <S1, ...,Sk>, where theSi are class sets, represents the set of tuples of classes
that is the cartesian product of theSi class sets. To represent other irregular sets of tuples
of classes, we support a union of class set tuples as a basic representation.

Static class analysis is modified to support multi-methods as follows. For each
method, we precompute the method’s applies-totuple of class sets; this tuple describes
the combinations of classes for which the method should be invoked. For a multi-method
specialized on the classesC1, ..., Ck, the method’s applies-to tuple is initialized to
<Cone(C1), ..., Cone(Ck)>. When visiting the directly-overriding methods, the overriding
method’s applies-to tuple is subtracted from the overridden method’s tuple. When
determining which methods apply to a given message, thek-tuple is formed from the class
sets inferred for thek dispatched message arguments, and then the applies-to tuples of the
candidate methods are checked to see if they overlap the tuple representing the actual
arguments to the message.

Efficient multi-method static class analysis relies on efficient overlaps testing and
difference operations on tuples. Testing whether one tuple overlaps another is
straightforward: each element class set of one tuple must overlap the corresponding class
set of the other tuple. Computing the difference of two tuples of class sets efficiently is
trickier. The pointwise difference of the element class sets, though concise, would not be
a correct implementation. One straightforward and correct representation would be a
union ofk k-tuples, where each tuple has one element class set difference taken:

<S1, ...,Sk> − <T1, ...,Tk> ≡ ∪i=1..k <S1, ...,Si-1, Si − Ti, Si+1, ...,Sk>

If the Si − Ti element set is empty, then thei-th k-tuple is dropped from the union: its
cartesian-product expansion is the empty set. Also, if two tuples in the union are identical
except for one position, they can be merged into a single tuple by taking the union of the
element class sets. Both optimizations are important in practice.

1. We assume that the compiler can determine statically which subset of a message’s
arguments can be examined as part of method lookup. In CLOS, for instance, all meth-
ods in a generic function have the same set of dispatched arguments. In Cecil, the com-
piler examines all methods with the same name and number of arguments and finds all
argument positions that any of the methods is specialized upon. It would be possible to
consider all arguments as potentially dispatched, but this would be substantially less ef-
ficient, both at compile-time and at run-time, particularly if the majority of methods are
specialized on a single argument.



For example, consider the following class hierarchy and multi-methods (x@X is the
syntax we use for indicating that thex formal argument of a multi-method is specialized
for the classX):

Under both CLOS’s and Cecil’s method overriding rules, the partial order constructed for
these methods is the following:

The applies-to tuples constructed for these methods, using the formula above, are:

m(@A, @A, @A): <{ � ,� }, { � ,� ,� }, { � ,� ,� }> ∪ <{ � ,� ,� }, { � ,� }, { � ,� ,� }>

m(@B, @C, @A): <{ � }, { � }, { � ,� ,� }>

(The third tuple of the first method’s applies-to union drops out, since one of the tuple’s
elements is the empty class set.)

Unfortunately, for a series of difference operations, as occurs when computing the
applies-to tuple of a method by subtracting off each of the applies-to tuples of the
overriding methods, this representation tends to grow in size exponentially with the
number of differences taken. For example, if a third method is added to the existing class
hierarchy, which overrides the first method:

m(r@C, s@B, t@C) { ... }

then the applies-to tuple of the first method becomes the following:

m(@A, @A, @A): <{ � }, { � ,� ,� }, { � ,� ,� }> ∪ <{ � ,� }, { � ,� }, { � ,� ,� }> ∪
<{ � ,� }, { � ,� ,� }, { � ,� }> ∪ <{ � ,� }, { � ,� }, { � ,� ,� }> ∪
<{ � ,� ,� }, { � }, { � ,� ,� }> ∪ <{ � ,� ,� }, { � ,� }, { � ,� }>

To curb this exponential growth problem, we have developed (with help from William
Pugh) a more efficient way to represent the difference of two overlapping tuples of class
sets:

���
1, ..., � k � − ���

1, ..., � k � ≡ ∪i ���� � � ��� 1 ∩ �
1, ..., � i-1 ∩ �

i-1, � i − �
i,
�

i+1, ..., � k �
By taking the intersection of the firsti-1 elements of theith tuple in the union, we avoid
duplication among the element tuples of the union. As a result, the element sets of the
tuples are smaller and tend to drop out more often for a series of tuple difference
operations. For the three multi-method example, the applies-to tuple of the first method is
simplified to the following:

m(@A, @A, @A): <{A}, { A,B,C}, { A,B,C}> ∪ <{C}, { A,C}, { A,B,C}> ∪
<{C}, { B}, { A,B}> ∪ <{B}, {A,B}, {A,B,C}>

class A

class B : A class C : A

m(r@A, s@A, t@A) { ... }

m(r@B, s@C, t@A) { ... }

m(@A, @A, @A)

m(@B, @C, @A)



As a final guard against exponential growth, we impose a limit on the number of class
set terms in the resulting tuple representation, beyond which we stop narrowing (through
subtraction) a method’s applies-to set. We rarely resort to this final ad hoc measure: when
compiling a 52,000-line Cecil program, only one applies-to tuple, for a message with 5
dispatched argument positions, crossed our implementation’s threshold of 64 terms. The
intersection-based representation is crucial for conserving space: without it, using the
simpler representation described first, many applies-to sets would have exceeded the 64-
term threshold.

2.3 Incr emental Programming Changes

Class hierarchy analysis might seem to be in conflict with incremental compilation: the
compiler generates code containing embedded assumptions about the structure of the
program’s class inheritance hierarchy and method definitions, and these assumptions
might change whenever the class hierarchy is altered or a method is added or removed. A
simple approach to overcoming this obstacle is to perform class hierarchy analysis and its
dependent optimizations only after program development ceases. A final batch optimizing
compilation could be applied to frequently-executed software just prior to shipping it to
users, as a final performance boost.

Class hierarchy analysis can be applied even during active program development,
however, if the compiler maintains enough intermodule dependency information to be
able to selectively recompile those parts of a program invalidated after some change to the
class hierarchy or the set of methods. In previous work, we have developed a framework
for maintaining intermodule dependency information [Chamberset al. 95]. This
framework is effective at representing the compilation dependencies introduced by class
hierarchy analysis.

In the dependency framework, intermodule dependencies are represented by a
directed, acyclic graph structure. Nodes in this graph represent information, including
pieces of the program’s source and information resulting from various interprocedural
analyses such as class hierarchy analysis, and an edge from one node to another indicates
that the information represented by the target node is derived from or depends on the
information represented by the source node. Depending on the number of incoming and
outgoing edges, we classify nodes into three categories:

• Source nodes have only outgoing dependency edges. They represent information
present in the source modules comprising the program, such as the source code of
procedures and the class inheritance hierarchy.

• Target nodes have only incoming dependency edges. They represent information
that is an end product of compilation, such as compiled.o files.

• Internal nodes have both incoming and outgoing edges. They represent information
that is derived from some earlier information and used in the derivation of some
later information.

The dependency graph is constructed incrementally during compilation. Whenever a
portion of the compilation process uses a piece of information that could change, the
compiler adds an edge to the dependency graph from the node representing the

source nodes target nodesinternal nodes



information used to the node representing the client of the information. When changes are
made to the source program, the compiler computes what source dependency nodes have
been affected and propagates invalidations downstream from these nodes. This
invalidates all information (including compiled code modules) that depended on the
changed source information.

In our compiler, static class analysis queries a compile-time method lookup cache to
attempt to determine the outcome of message lookups statically; this cache is indexed
with a message name and a tuple of argument class sets and returns the set of methods that
might be called by such a message. To compute an entry in the method lookup cache, the
compiler tests the applies-to tuples of methods with a matching name, in turn examining
the BitSet representation of the set of classes represented by a Cone class set, which was
computed from the underlying class inheritance graph. To support selective recompilation
of optimized code, dependency graph nodes are introduced to model information derived
from the source code:

• one kind of dependency node represents the BitSet representation of the set of
subclasses of a class (one product of class hierarchy analysis),

• another kind of dependency node represents the set of methods with a particular
name (another product of class hierarchy analysis),

• a third kind of dependency node represents the applies-to tuples of the methods,
which is derived from the previous two pieces of information, and

• a fourth kind of dependency node guards each entry in the compile-time method
lookup cache.

If the set of subclasses of a given class is changed or if the set of methods with a particular
name and argument count is changed, the corresponding source dependency nodes are
invalidated. This causes all downstream dependency nodes to be invalidated recursively,
eventually leading to the appropriate compiled code being invalidated and subsequently
recompiled.

To support greater selectivity and avoid unnecessarily invalidating any compiled
code, some of the internal nodes in the dependency framework arefiltering nodes. When
invalidated, a filtering node will first check whether the information it represents really
has changed; only if the information it represents has changed will a filtering node
invalidate its successor dependency nodes. The compile-time method lookup cache
entries are guarded by such filtering nodes. If part of the inheritance graph is changed or
a new method is added, then downstream method lookup resultsmay have changed, but
often the source changes do not affect all potentially dependent method lookup cache
entries. By rechecking the method lookup when invalidated, and squashing the
invalidation if the method lookup outcome was unaffected by a particular source change,
many unnecessary recompilations are avoided.

Empirical evaluation using a trace of a month’s worth of actual program development
indicates that the dependency-graph-based approach reduces the amount of recompilation
required during incremental compiles by a factor of seven over a coarser-grained C++-
style header file scheme, in the presence of class hierarchy analysis, and by a factor of two

Cone(C) BitSet

Method Set

Applies-To Tuples Lookup Cache Entry Compiled Code

. . .

. . .



over the Self compiler’s previous state-of-the-art fine-grained dependency mechanism
[Chambers & Ungar 91]. Of course, more recompilation occurs in the presence of class
hierarchy analysis than would occur without it, but for these traces the number of files
recompiled after a programming change is often no more than the number of files directly
modified by the changes. A more important concern with our current implementation is
that many filtering nodes may need to be checked after some programming changes, and
even if few compiled files are invalidated, a fair amount of compilation time is expended
in checking caches. The size of the dependency graph is about half as large as the
executable for the program being compiled, which is acceptable in our program
development environment; coarser-grained dependency graphs could be devised that save
space at the cost of reduced selectivity. Further details are available elsewhere [Chambers
et al. 95].

2.4 Optimization of Incomplete Programs

Class hierarchy analysis is most effective in situations where the compiler has access to
the source code of the entire program, since the whole inheritance hierarchy can be
examined and the locations of all method definitions can be determined; having access to
all source code also provides the compiler with the option of inlining any routine once a
message send to the routine has been statically-bound. Although today’s integrated
programming environments make it increasingly likely that the whole program is
available for analysis, there are still situations where having source code for the entire
program is unrealizable. In particular, a library may be developed separately from client
applications, and the library developer may not wish to share source code for the library
with clients. For example, many commercial C++ class libraries provide only header files
and compiled.o files and do not provide complete source code for the library.

Fortunately, having full source code access is not a requirement for class hierarchy
analysis: as long as the compiler has knowledge of the class hierarchy and where methods
are defined in the hierarchy (but not their implementations), class hierarchy analysis can
still be applied, and this information usually is available in the header files provided for
the library. When compiling the client application, the compiler can perform class
hierarchy analysis of the whole application, including the library, and statically bind calls
within the client application. If source code for some methods in the library is unavailable,
then statically-bound calls to those methods simply won’t be able to be inlined. Static
binding alone still provides significant performance improvements, particularly on
modern RISC processors, where dynamically-dispatched message send implementations
stall the hardware pipeline. Furthermore, some optimizing linkers are able to optimize
static calls by inlining the target routine’s machine code at link time [Fernandez 95],
although the resulting code is not as optimized as what could be done in the compiler.

Using class hierarchy analysis when compiling a library in isolation is more difficult,
since the client program might create subclasses of library classes that override methods
defined in the library. The sealing approach of Dylan and Trellis can provide the compiler
with information about what library classes won’t be subclassed by client applications,
supporting class hierarchy-based optimizations for those classes at the cost of reduced
extensibility. Alternatively, the compiler could choose to compile specialized versions of
methods applicable only to classes present in the library. For example, in a data structure
library, the compiler could compile specialized versions of methods for array, string, hash
table, and other frequently-used classes; generic versions of methods would also be
compiled to support any subclasses of these library classes defined by client applications.
In previous work, we have developed a profile-guided algorithm that examines the
potential targets of sends in a routine and derives a set of profitable specializations based



on where in the class hierarchy these target routines are defined [Deanet al. 95]. This
specialization algorithm detects call sites where class hierarchy analysis is insufficient to
statically-bind message sends, and produces versions of methods specialized to truncated
cones of the class hierarchy. Empirical measurements indicate that this algorithm applied
to a complete 52,000-line Cecil program improves performance by 50% or more with only
a 5% to 10% compiled code space increase, although we would expect a larger relative
space overhead if the algorithm were applied to a library in isolation.

In summary, although class hierarchy analysis is most effective when the whole
program is available, it can still be applied in situations where only portions of the
program are available. Using the techniques described above, it can be applied to
incomplete programs and to libraries independent of client applications, at some cost in
missed optimization opportunities and/or increased compiled code space.

3 Empirical Assessment

Class hierarchy analysis, method specialization, and profile-guided receiver class
prediction are all techniques for increasing the amount of class information available to
the optimizer at compile time. All three represent different, and partially overlapping,
approaches to solving the same fundamental problem: enabling the static binding of
dynamic dispatches. In this section, we examine the effectiveness of these three
approaches in isolation and in combination, focusing on the following questions:

• What is the impact of class hierarchy analysis on program performance?

• How effective is class hierarchy analysis in comparison to specialization? Can
additional benefit be gained from combining class hierarchy analysis and
specialization?

• How much benefit does class hierarchy analysis confer to a system that already
performs profile-guided receiver class prediction?

We examine these issues in the context of the Vortex optimizing compiler for Cecil, a pure
object-oriented language with multi-methods. Table 1 describes the five medium-to-large
Cecil programs that we used as benchmarks. Appendix A includes the raw performance
data.

a. Not including 8,500-line standard library.
b. The typechecker and compiler share approximately 12,000 lines of code.

Table 1: Cecil Benchmarks

Program Linesa Description

Richards (Rich) 400 Operating systems simulation

Deltablue (Delta) 650 Incremental constraint solver

InstrSched (Instr) 2,400 MIPS global instruction scheduler

Typechecker (Type) 17,000b Cecil static typechecker

Compiler (Comp) 43,800b Vortex optimizing compiler



3.1 Effectiveness of Class Hierarchy Analysis

Since class hierarchy analysis provides the compiler with additional information about the
classes of program variables (in particular the receiver(s) of the message being compiled),
we would expect that the compiler would be able to statically bind more dynamic
dispatches. Additionally, as discussed in Section 2.2.3, in some situations the compiler
can determine when unexpected cases of a message send are guaranteed to fail, thus
improving the quality of static analysis downstream of the send.

To measure the impact of class hierarchy analysis, we compiled the benchmark
programs using the following set of compiler optimizations:

• unopt: No optimizations.

• std: Standard static intraprocedural analyses, including iterative intraprocedural
class analysis, inlining, hard-wired class prediction for a small set of common
messages, closure optimizations, extended splitting [Chambers & Ungar 90] and
other standard intraprocedural optimizations such as CSE, constant folding and
propagation, and dead code elimination.

• cha-ct-only: Standard (std) augmented by a limited usage of class hierarchy
analysis. The results of class hierarchy analysis are used only to optimize the
uncommon cases after run-time class tests, as described in Section 2.2.3.

• cha: Standard augmented by class hierarchy analysis. Class hierarchy analysis is
used to provide class information about the receiver(s) of a method and to determine
when messages sends are guaranteed to fail.

Figure 1 shows the dynamic number of dynamic dispatches and the execution speeds of
the benchmark programs, normalized to those ofstd. Augmenting standard
intraprocedural techniques with class hierarchy analysis resulted in a 23% to 89%
improvement in execution speed for these applications. Since the performance difference
betweenstd andcha-ct-only was negligible, we can conclude that almost all of the runtime
benefits seen incha are due to additional receiver class information and not from
optimizing the unexpected branches of class tests inserted by hard-wired class prediction,
therefore we expect the improvements due to class hierarchy analysis to be significant
even in object-oriented languages lacking used-defined control structures.

Figure 1: Number of dynamic dispatches and execution speed

Rich Delta Instr Type Comp
0.0

0.5

1.0

N
or

m
al

iz
ed

 D
is

pa
tc

he
s

Dynamic Dispatches

Rich Delta Instr Type Comp
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 S
pe

ed

Execution Speed
2.7 1.9 2.0 2.1 2.0

Unopt
Std
CHA-ct-only
CHA



In addition to improving execution speed, class hierarchy analysis reduces compiled
code size, as shown in figure 2. Executables compiled with class hierarchy analysis were
12% to 21% smaller thanstd executables. By comparing the relative heights of the bars
we can see that most of this reduction in code space was due to the replacement of call
sites which are guaranteed to result in a message-not-understood error by a simple call to
an error routine. Such call sites mainly occurred in the off branches of class tests inserted
by hard-wired class prediction and thus, one would expect that class hierarchy analysis
would have a smaller impact on compiled code space in languages without user-defined
control structures.

3.2 Class Hierarchy Analysis and Specialization

Method specialization creates multiple copies of a single source method, each one of
which is compiled with more precise static class information about the method receiver(s)
thus enabling static binding and inlining of messages sent toself. Class hierarchy analysis
makes a similar contribution. In some sense, specialization and class hierarchy analysis
are competing approaches to gaining the same sort of information. An important question,
then, is “what are the relative benefits and costs of the two techniques?” Since a
specialized method has exact class information about the receiver(s) of the method, we
would expect that specialization would yield better results than class hierarchy analysis,
but specialization accrues its benefits at the cost of increased compiled code space. In this
section, we examine the impact of class hierarchy analysis and method specialization,
both in isolation and in combination, using the following set of compiler optimizations:

• std: Standard static intraprocedural analyses, as described in Section 3.1.

• cha: Standard augmented by class hierarchy analysis.

• cust-k: Standard augmented by thecustomization form of method specialization.
Customization is the specialization strategy used in Self, Trellis, and Sather
implementations where a specialized version of a method is generated for each
inheriting subclass. We extended customization to handle multi-methods by
specializing on all combinations of subclasses of the dispatched arguments.1

1. We used profile data to determine which of the specializations produced bycust-k
actually needed to be generated, since it was infeasible to actually compile them all. In
effect, this simulates Self-style dynamic compilation.

Figure 2: Compiled Code Space
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• cust-1: Standard augmented by customization on only the first receiver.
Customization on only the first receiver is more feasible in practice than
customizing on all combinations of receivers in the case of multi-methods.

• cha-1: Standard augmented by class hierarchy analysis for only the first receiver, to
compare againstcust-1.

• cust+cha: Standard augmented with bothcust-k and class hierarchy analysis.
• selective: Standard augmented with class hierarchy analysis and a selective

specialization algorithm that combines a profile-derived weighted call graph and
class hierarchy analysis to select candidates for specialization [Deanet al. 95].

Figure 3 shows the normalized number of dynamic dispatches and execution speeds for
the benchmark programs compiled with these seven configurations. As expected, in most
cases customization had a larger impact than class hierarchy analysis, speeding up
programs by 48% to 87%. Combining class hierarchy analysis and naive customization
(cust+cha) yielded only small additional benefits. However, the runtime benefits of
customization came at the cost of a large increase in compiled code space and compile
time. Cust-1 executables were 2.5 to 3.5 times larger thanstd executables andcust-k
executables are too large to actually be built using standard static compilation techniques;
even in a system with dynamic compilation,cust-k would require compiling roughly 1.5
to 2 times as many methods asstd. In contrast,cha executables were 12% to 21% smaller
thanstd. By far, the best results were achieved byselective,which increased execution
speed by 52% to 210% while increasing compiled code space by only 4% to 10%.

3.3 Class Hierarchy Analysis and Profile-Guided Receiver Class
Prediction

Profile-guided receiver class prediction has been shown to substantially improve the
performance of applications written in pure object-oriented languages. It is unclear
whether or not adding class hierarchy analysis to a system that already performs profile-
guided receiver class prediction would result in any significant improvements [Hölzle
94]. To examine this question, we utilized the following compiler configurations:

• std: Standard intraprocedural optimizations as described in Section 3.1.
• cha: Standard augmented by class hierarchy analysis

Figure 3: Number of dynamic dispatches and execution speed
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• profile: Standard augmented with profile-guided receiver class prediction.

• profile+cha: Standard augmented with profile-guided receiver class prediction and
class hierarchy analysis.

Figure 4 shows the normalized number of dynamic dispatches and execution speeds of the
applications. These numbers show that profile-guided receiver class prediction is the most
effective of the three techniques in isolation, improving application execution speeds by
90% to 410% over std. However, augmenting profile-guided receiver class prediction
with class hierarchy analysis (profile+cha) yielded surprisingly large additional
improvements of 45% to 125%over profile alone. Part of this improvement can be
explained by a reduction in the number of call sites at which the compiler, due to a lack
of sufficient static class information, is forced to fall back on profile information and
insert explicit class tests. However, the improvements can not solely be explained by this
effect, since combining the two optimizations yields larger benefits than can be explained
even by assuming that their benefits in isolation are completely additive. For example, in
theCompiler benchmark,cha is 41% faster thanstd andprofile is 142% faster thanstd.
Multiplying these two speedups results in a projected speedup of 241% overstd, which is
smaller than the observed speedup of 272%. By examining the number of dynamic
dispatches, we can see that it is not the case thatprofile+cha is able to eliminate more
dispatches than the sum ofprofile andcha (in theCompiler benchmark,cha eliminated
45% of the dynamic dispatches present instd andprofile eliminated 58%, butprofile+cha
only eliminated 88%). We believe that the large speedups observed inprofile+cha are due
to the increased effectiveness of other compiler optimizations, such as CSE and register
allocation, that was enabled by the simplified control flow graphs produced by this
configuration.

In our implementation of profile-guided receiver class prediction, we only insert class
tests if the target method is a desirable candidate for inlining; if the target method is not
going to be inlined, then we leave the call site unchanged. In theRichards benchmark,
several of the frequently-called methods are too large to be inlined, but can be statically-
bound by class hierarchy analysis. This explains whyprofile eliminated fewer dynamic
dispatches thancha for theRichards benchmark.

Figure 4: Number of dynamic dispatches and execution speed
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4 Other Related Work

An alternative to performing whole-program optimizations such as class hierarchy
analysis at compile-time is to perform optimizations at link-time. Recent work by
Fernandez has investigated using link-time optimization of Modula-3 programs to convert
dynamic dispatches to statically bound calls when no overriding methods were defined
[Fernandez 95]. This optimization is similar to class hierarchy analysis. An advantage of
performing optimizations at link-time is that, because the optimizations operate on
machine code, they can be applied to the whole program, including libraries for which
source code is unavailable. However, there are two drawbacks of link-time optimizations.
First, because the conversion of message sends to statically-bound calls happens in the
linker, rather than the compiler, the compiler’s optimization tools cannot be brought to
bear on the now statically-bound call site; the indirect benefits of post-inlining
optimizations in the compiler can be more important than the direct benefit of eliminating
procedure call/return sequences. Second, care must be taken to prevent linking from
becoming a bottleneck in the edit-compile-debug cycle. For example, Fernandez’s link-
time optimizer for Modula-3 performs code generation from a machine-independent
intermediate representation for the entire program at every link; Fernandez acknowledges
that this design penalizes turnaround time for small programming changes. Additional
link-time optimizations would only increase this penalty. In contrast, class hierarchy
analysis coupled with a selective invalidation mechanism supports incremental
recompilation, fast linking, and compile-time optimization of call sites where source code
of target methods is available.

Srivastava has developed an algorithm to prune unreachable procedures from C++
programs at link-time [Srivastava 92]. Although the described algorithm is only used to
prune code and not to optimize dynamic dispatches, it would be relatively simple to
convert some virtual function calls into direct procedure calls using the basic
infrastructure used to perform the procedure pruning.

Interprocedural class analysis algorithms are an important area of current research
[Palsberg & Schwartzbach 91, Oxhøjet al. 92, Agesenet al. 93, Plevyak & Chien 94].
By examining the whole program and solving an interprocedural data flow problem to
determine the set of classes that might be stored in each program variable, these
algorithms can provide more accurate class sets than intraprocedural static class analysis
or class hierarchy analysis. However, current interprocedural class analysis algorithms are
relatively expensive to run, assume access to the source code of the entire program
(including method bodies), and are not incremental in the face of programming changes.
Nevertheless, as these algorithms mature, it will be interesting to compare the run-time
benefits and compile-time costs of interprocedural class analysis against class hierarchy
analysis and the other techniques examined in Section 3. Agesen and Hölzle have
compared the effectiveness of profile-guided receiver class prediction alone to
interprocedural class analysis alone for a suite of small-to-medium sized Self programs,
but they did not report on the effectiveness of combining the two techniques [Agesen &
Hölzle 95].

5 Conclusions

Class hierarchy analysis is a promising technique for eliminating dynamically-dispatched
message sends automatically. Unlike language-level mechanisms such as non-virtual
functions in C++ and sealed classes in Dylan, class hierarchy analysis improves
performance while preserving the source-level semantics of message passing and the
ability for clients to subclass any class. To integrate class hierarchy analysis effectively



into existing static class analysis frameworks, we introduced the cone representation for
a class and its subclasses and constructed applies-to sets for each method to support
compile-time method lookup in the presence of cones and other unions of classes. Cones
also provide a means for static type declarations to be integrated into static class analysis.
Class hierarchy analysis imposes some requirements on the underlying programming
environment, particularly to support incremental compilation, but these costs appear to be
manageable in practice. These techniques have been implemented in the Vortex compiler
for Cecil since the Spring of 1994. In this compiler class hierarchy analysis is always
performed as a matter of course, and intermodule dependency links support selective
recompilation. The Vortex compiler is itself a 52,000-line Cecil program, undergoing
rapid continuous development and extension, providing some evidence that class
hierarchy analysis is compatible with a program development environment.

Class hierarchy analysis is only one of a number of optimizations proposed for object-
oriented languages; others include method specialization and profile-guided receiver class
prediction. We implemented and measured these techniques separately and in
combination, on a collection of medium-to-large Cecil programs, to try to determine
which techniques are most effective and where the techniques could profitably be
combined. Of the techniques that we examined, profile-guided class prediction was the
most effective in isolation at improving program performance. However, performing
class hierarchy analysis in addition to profile-guided class prediction provided substantial
performance improvements over profile-guided class prediction alone. Class hierarchy
analysis consumed far less compiled code space than customization, but with smaller
performance gains; the best results are achieved by a profile-guided selective
specialization algorithm integrated with class hierarchy analysis.

There are two interesting future directions for this work. First, it would be very
interesting to extend this performance study to include interprocedural static class
analysis algorithms as they mature. Second, the effectiveness of these techniques in pure
object-oriented languages like Cecil has been demonstrated, but their effectiveness and
relative value when applied to hybrid, statically-typed object-oriented languages such as
C++ and Modula-3 remains an open question. We are in the process of porting compiler
front-ends for C++ and Modula-3 to the Vortex optimizing compiler back-end in order to
be able to perform such experiments.
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Appendix A Raw Data

Table 2: Execution Times (seconds)

Configuration Richards Deltablue InstSched Typechecker Compiler

unopt 13.410 31.830 25.080 294 2314

std 1.780 11.880 11.870 113 1176

cha-ct-only 1.830 11.490 11.960 110 1152

cha 0.940 8.940 9.670 81 834

cust-1 0.950 7.620 8.710 73 735

cha-1 1.060 9.160 10.030 83 852

cust-k 0.950 8.050 8.870 73 712

cust-k+cha 0.910 6.220 8.160 71 700

selective 0.560 3.810 6.850 68 650

profile 0.930 2.310 5.830 48 484

profile+cha 0.380 1.200 4.000 40 316

Table 3: Dynamically Dispatched Message Sends (x1000)

Configuration Richards Deltablue InstSched Typechecker Compiler

unopt 10,006 13,461 7,505 75,053 470,488

std 3,697 6,980 4,676 36,131 231,659

cha-ct-only 3,697 6,980 4,664 36,028 231,529

cha 1,583 4,668 3,004 18,566 128,400

cust-1 1,414 3,874 2,655 19,301 129,729

cha-1 1,583 4,668 3,192 20,632 143,578

cust-k 1,414 3,874 2,637 19,341 129,701

cust-k+cha 1,414 3,624 2,516 19,156 125,095

selective 1,278 3,021 1,969 15,478 101,929

profile 619 159 1,890 15,426 98,435

profile+cha 545 157 474 3,902 28,640


