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Abstract: Classifiers are divided into linear and nonlinear classifiers. The linear classifiers are built
on a basis of some hyper planes. The nonlinear classifiers are mainly neural networks. In this paper,
we propose a novel neighborhood granule classifier based on a concept of granular structure and
neighborhood granules of datasets. By introducing a neighborhood rough set model, the condition
features and decision features of classification systems are respectively granulated to form some
condition neighborhood granules and decision neighborhood granules. These neighborhood granules
are sets; thus, their calculations are intersection and union operations of sets. A condition
neighborhood granule and a decision neighborhood granule form a granular rule, and the collection
of granular rules constitutes a granular rule library. Furthermore, we propose two kinds of distance
and similarity metrics to measure granules, which are used for the searching and matching of
granules. Thus, we design a granule classifier by the similarity metric. Finally, we use the granule
classifier proposed in this paper for a classification test with UCI datasets. The theoretical analysis and
experiments show that the proposed granule classifier achieves a better classification performance
under an appropriate neighborhood granulation parameter.

Keywords: neighborhood granule classifiers; neighborhood rough sets; granular structures;
granular distances; granular computing

1. Introduction

Classification is a supervised learning method. It establishes a mapping from a feature space onto
classes so that things can be classified and identified. Many classification problems are encountered
in various fields, including graphic images [1], medicine [2], economics [3], finance [4], cyber
security [5], etc. In order to improve the performance and accuracy of classification, many classification
methods have been proposed. Classification methods mainly focus on statistical analysis [6,7], neural
networks [8–10], rule reasoning [11,12], etc.

In the classification methods of statistical analysis theory, scholars have developed many
classification techniques and models, such as decision trees [13], random forests [14], Bayesian
models [15], logistic regression models [16], k-Nearest Neighbor classification [17,18], etc. These
classical statistical classification methods are built on the basis of the Bayesian decision theory [19].
The theoretical premise is that the prior probability should be known. However, the prior probability
is often difficult to be truly obtained.

Many scholars turned to study classification technologies involving neural networks. Vapnik et al.
proposed the support vector machine (SVM) [20–22], which is a shallow neural network model.
Based on the theory of structural risk minimization, the optimal hyper plane is constructed in the
feature space, which makes the classifier globally optimized and achieves excellent classification
performance in a small sample environment. SVM has been widely applied in face recognition [23,24],
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image segmentation [25], pedestrian detection [26], gene selection [27,28], and so on. In recent years,
the shallow neural networks have developed into deep neural networks. Hinton et al. proposed the
concept of deep learning in 2006 [29,30], which solved the optimization problems caused by deep
structures to a certain extent. Deep learning has achieved a great success in computer vision [31–33],
speech recognition [34], and natural language processing [35]. However, with the number of deep
neural network layers and the number of neurons in each layer increasing, the parameters of the
inter-layer connections become very large, which result in being slow in the global convergence speed.
The neural network is a black box and lacks theoretical explanations and guidance. Parameter tuning
often relies on experience.

It is well known that fuzzy logic can deal with uncertainty and fuzziness [36,37]. The classification
rules derived from fuzzy logic have good interpretability. The use of rules like “if-then” provides
a good insight into the structure of the classifier, which makes the classification results have good
interpretability. However, the formation of the rule base is inseparable from the domain knowledge of
experts, and the speed of searching and matching in the rule base is slow, while the learning ability
is weak.

The classifiers are divided into linear classifiers and nonlinear classifiers. The linear classifiers are
established on the basis of the hyper planes. The nonlinear classifiers are built on neural networks.
In this paper, we propose a new classifier model based on the set theory and the neighborhood
information granulation. The concept of information granulation was introduced by Zadeh [38], and
the concept of granular computing was proposed by T.Y. Lin [39,40]. Yao studied the neighborhood
systems and neighborhood granular computing [41–43], the applications of which were developed by
Hu in neighborhood reduction and classification [44–46]. Morente-Molinera proposed a multigranular
linguistic modeling with fuzzy entropy for supervised classification learning purposes [47]. Pedrycz
developed a certain category of granule classifiers referred to as hyper box-driven classifiers [48–50].
We focus on the neighborhood granulation of classification systems and propose a granular structure,
granular distance, and granular rule by a neighborhood granulation, so as to build a new granule
classifier model. Since the granules are formed with sets, the granule classifier is a set-based classifier.
Furthermore, we present the granular similarity for searching and matching in a granular rule base,
design a granule classifier, and verify it experimentally. Theoretical analysis and experimental results
show that the proposed classifier can achieve a better classification performance under a suitable
granulating parameter.

The paper is structured as follows. First, in Section 2, we introduce the neighborhood granulation
of classification systems. Then, we propose a new neighborhood granule classifier in Section 3.
In Section 4, we present experimental results. Conclusions and future works are covered in Section 5.

2. Neighborhood Granulation of a Classification System

The rough set theory (RST) [51] proposed by Pawlak, a mathematician of Poland, is a widely
used model in classification systems. In a classification system, the data with real values need to
be discretized, but the process of discretization easily leads to a loss of classification information.
Aiming at the limitation of Pawlak RST, a neighborhood RST is introduced to granulate these
real-value data. In RST, an equivalence class is regarded as a granule. As for neighborhood RST,
neighborhood granules are constructed.

Suppose CS = (U, A, D, δ) is a classification system, where U = {x1, x2, ..., xn} is a set of samples
or objects; A = {a1, a2, ..., am} is a set of condition features or attributes; D = {d} represents a decision
feature or attribute; δ ∈ [0, 1] is a neighborhood parameter [44]. The data of samples in the condition
feature set A are real values, and the data of samples in the decision feature D are symbolic or
discrete values.
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Suppose CS = (U, A, D, δ) is a classification system. For any sample x, y ∈ U and a feature subset
P ⊆ A, where P = {a1, a2, ..., am}, a distance function on the feature subset P is defined as [44]:

∆P(x, y) = (
m

∑
i=1

(v(x, ai)− v(y, ai))
s)1/s, (1)

where v(x, ai) represents the value of the sample x on a feature ai. If s = 1, it is named the Manhattan
distance, and if s = 2, it is named the Euclidean distance.

Suppose CS = (U, A, D, δ) is a classification system. For any sample x ∈ U and a condition
feature subset P ⊆ A, the δ neighborhood granule of x on P is formed by:

gδ
P(x) = {y|x, y ∈ U, ∆P(x, y) ≤ δ}, (2)

which is called a process of neighborhood granulation.
The data on decision features in classification systems are symbolic values. The samples are

divided into equivalent classes on the decision features and the neighborhood parameter δ = 0.
Therefore, these samples are granulated into equivalent granules, which are called decision equivalent
granules, and they are expressed as:

g0
D(x) = {y|x, y ∈ U, ∆D(x, y) = 0}. (3)

It is obvious that a neighborhood granule is degenerated into an equivalent granule when the
neighborhood parameter δ is zero. Therefore, the equivalent granule is a special neighborhood granule.
In a classification system, for any sample x ∈ U and a condition feature subset P ⊆ A, it determines a
neighborhood relation, which is defined as:

NRδ(P) = {(x, y) ∈ U ×U|∆P(x, y) ≤ δ}. (4)

The U/NRδ(P) is called a covering of the domain U, which is induced by a neighborhood relation,
and the covering is a collection of neighborhood granules. The neighborhood relation is a kind of
similarity relation that satisfies reflexive and symmetric properties, rather than the equivalence relation.
When a neighborhood parameter δ is equal to zero, the neighborhood relation is degenerated into an
equivalence relation. Therefore, the equivalence relation is a special neighborhood relation. The rough
sets based on neighborhood relations can handle the real-value data, while the rough sets based on
equivalence relations can only deal with the symbolic data.

A classification system is CS = (U, A, D, δ). For any sample x ∈ U and a feature subset P ⊆ A,
let gδ

P(x) be a neighborhood granule, then the size of granule gδ
P(x) is defined as:

Size(gδ
P(x)) =

|gδ
P(x)|
|U| , (5)

where |.| represents the cardinality of a set. It is easy to know that the size of the neighborhood granule
holds the property: 1

|U| ≤ Size(gδ
P(x)) ≤ 1.

Example 1. A classification system CS = (U, A, D, δ) is shown in Table 1. Suppose U = {x1, x2, x3, x4}
is the sample set, A = {a, b, c} is the feature set, and the neighborhood granulation parameter δ = 0.1. This
example uses the Euclidean distance for neighborhood granulation.
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Table 1. A classification system.

U a b c ⇒ d

x1 0.1 0.2 0.1 1
x2 0.2 0.5 0.2 1
x3 0.3 0.3 0.3 0
x4 0.7 0.1 0.3 0

The domain is U = {x1, x2, x3, x4}. We can granulate the samples on feature subset P = {a}.
These neighborhood granules are g1 = g0.1

P (x1) = {x1, x2}, g2 = g0.1
P (x2) = {x1, x2, x3},

g3 = g0.1
P (x3) = {x2, x3}, and g4 = g0.1

P (x4) = {x4}.
The sizes of condition granules are calculated as: Size(g1) = Size(g3) = 1/2, Size(g2) = 3/4,

Size(g4) = 1/4.
According to the neighborhood granulation of feature subset Q = {a, b}, the condition

neighborhood granules are: g5 = g0.1
Q (x1) = {x1}, g6 = g0.1

Q (x2) = {x2}, g7 = g0.1
Q (x3) = {x3},

g8 = g0.1
Q (x4) = {x4}.

The sizes of condition granules are calculated as: Size(g5) = Size(g6) = Size(g7) = Size(g8) =

1/4. It is easy to know that if P ⊆ Q, then Size(g0.1
P (x1)) > Size(g0.1

Q (x1)). The decision equivalent
granules are d1 = g0

d(x1) = {x1, x2}, d2 = g0
d(x2) = {x1, x2}, d3 = g0

d(x3) = {x3, x4}, d4 = g0
d(x4) =

{x3, x4}.

3. The Model of Neighborhood Granule Classifiers

A granular rule is defined in this paper, which is constructed by a condition granule and a
decision granule, being formed by a neighborhood granulation of a sample. The condition granule
is a precursor of the granular rule, while the decision granule is a consequence of the granular rule.
The granular rules of all the samples constitute a granular rule base. Then, two kinds of granular
distances and granular similarity measures are defined so that the searching and matching of granules
can be performed. A test sample is granulated into a condition granule as a test granule. The test
granule is matched with the precursor of a granular rule in a granular rule base. The label of the most
numerous classes in the matched granular rules is the predictive label of the test sample.

3.1. Neighborhood Granular Structure

Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A, ∀x ∈ U, there exists a
neighborhood granule gδ

B(x) on B. The set of all neighborhood granules on B is called the neighborhood
granular swarm, which is defined as:

Gδ
B = {gδ

B(x)|∀x ∈ U}. (6)

Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A, let Gδ
B be a neighborhood

granular swarm; the size of neighborhood granular swarm Gδ
B is defined as:

GM(Gδ
B) =

1
|U|

|U|

∑
i=1

Size(gδ
B(xi)) =

1
|U|2

|U|

∑
i=1
|gδ

B(xi)|. (7)

It is easy to know that the size of neighborhood granular swarm holds the property:
1
|U| ≤ GM(Gδ

B) ≤ 1.
Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A, ∀x ∈ U, there exists a

neighborhood granule gδ
B(x) on B and a decision equivalent granule g0

D(x) on D. A neighbor granular
rule is defined as an ordered pair: rB(x) =< gδ

B(x), g0
D(x) >. The neighborhood granular rule base is

defined as: KB = {rB(x)|∀x ∈ U}.
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The samples of a classification system are granulated into neighborhood granules by
neighborhood parameters, and the set of neighborhood granules constitutes a neighborhood granular
swarm. Condition granules and decision granules form a granular rule, and the collection of granular
rules constitutes a granular rule base. Therefore, the process of classification can be transformed into
the process of reasoning, searching, and matching in the granular rule base.

3.2. Granular Distance between Neighborhood Granules

Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A and ∀x, y ∈ U, suppose
p = gδ

B(x), q = gδ
B(y) are two neighborhood granules, then the relative distance between two

neighborhood granules is defined as:

d(p, q) =
|p⊕ q|
|p ∨ q| =

|(gδ
B(x) ∪ gδ

B(y))− (gδ
B(x) ∩ gδ

B(y))|
|gδ

B(x) ∪ gδ
B(y)|

. (8)

Example 2. There are two neighborhood granules such as g1 = {x1, x2} and g2 = {x1, x2, x3}, respectively.
We can obtain their relative granular distance: d(g1, g2) =

|g1⊕g2|
|g1∨g2|

= |({x1,x2}∪{x1,x2,x3})−({x1,x2}∩{x1,x2,x3})|
|{x1,x2}∪{x1,x2,x3}|

= |{x3}|
|{x1,x2,x3}|

= 1/3.

Proposition 1. The relative distance between two neighborhood granules is a distance metric, which satisfies
the following three properties:

(1) d(p, q) ≥ 0, non-negativity;
(2) d(p, q) = d(q, p), symmetry;
(3) d(p, k) + d(k, q) ≥ d(p, q), triangle inequality.

Proof. The two properties of (1) and (2) are easily proven by the definition of the relative distance of
neighborhood granules. The following proves the property (3).

Given any a, b, c, let a ≥ b > 0, c ≥ 0, then b
a ≤

b+c
a+c . According to the definition of

the relative distance between neighborhood granules, we can know d(p, k) + d(k, q) − d(p, q) =
|p∪k|−|p∩k|
|p∪k| + |k∪q|−|k∩q|

|k∪q| − |p∪q|−|p∩q|
|p∪q| = 1− |p∩k|

|p∪k| − f rac|k ∩ q||k ∪ q|+ |p∩q|
|p∪q| ≥ 1− |p∩k|+(|q|−|q∩(p∪k)|)

|p∪k|+(|q|−|q∩(p∪k)|) −
|k∩q|+(|p|−|p∩(k∪q)|)
|k∪q|+(|p|−|p∩(k∪q)|) + |p∩q|

|p∪k∪q| = 1 − |p∩k|+|q|−(|p∩q|+|k∩q|−|p∩k∩q|)
|p∪k∪q| − |k∩q|+|q|−(|p∩k|+|p∩q|−|p∩k∩q|)

|p∪k∪q| +

|p∩q|
|p∪k∪q| = 1 − |p|+|q|−|p∩q|

|p∪k∪q| + 2(|p∩q|−|p∩k∩q|)
|p∪k∪q| ≥ 0. Therefore, d(p, k) + d(k, q) − d(p, q) ≥ 0. That is

d(p, k) + d(k, q) ≥ d(p, q).

Proposition 2. The granular relative distance of any two neighborhood granules satisfies: 0 ≤ d(p, q) ≤ 1.

Proof. According to the definition of the relative distance of neighborhood granules, it is easy to prove.
Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A and ∀x, y ∈ U, suppose

p = gδ
B(x), q = gδ

B(y) are two neighborhood granules, then the absolute distance between two
neighborhood granules is defined as:

h(p, q) =
|p⊕ q|
|U| =

|(gδ
B(x) ∪ gδ

B(y))− (gδ
B(x) ∩ gδ

B(y))|
|U| . (9)

Example 3. There are two neighborhood granules such as g1 = {x1, x2} and g2 = {x1, x2, x3}, respectively.
The sample domain is U = {x1, x2, x3, x4}. We can obtain their absolute granular distance: h(g1, g2) =
|g1⊕g2|
|U| = |({x1,x2}∪{x1,x2,x3})−({x1,x2}∩{x1,x2,x3})|

|U| = |{x3}|
|{x1,x2,x3,x4}|

= 1/4.

Proposition 3. The absolute distance between two neighborhood granules satisfies: 0 ≤ h(p, q) ≤ 1.
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Proof. According to the definition of the absolute distance of neighborhood granules, it is easy
to prove.

These granular distances of neighborhood granules can be used as the similarity measures of
granules, which indicate the degree of similarity of neighborhood granules. The smaller the granular
distance is, the greater the similarity is. On the contrary, the larger the granular distance is, the smaller
the similarity is.

3.3. Neighborhood Granule Classifiers

Suppose CS = (U, A, D, δ) is a classification system. For ∀B ⊆ A and ∀x, y ∈ U, suppose
p = gδ

B(x), q = gδ
B(y) are two neighborhood granules, then the similarity measures between two

neighborhood granules are defined as:
Relative similarity measure: simd(p, q) = 1− d(p, q).
Absolute similarity measure: simh(p, q) = 1− h(p, q).

Suppose CS = (U, A, D, δ) is a classification system. S ⊆ U is a training sample set, and T ⊆ U is
a test sample set. For ∀x ∈ S, rA(x) =< gδ

A(x), g0
D(x) > is a granular rule, and KA = {rA(x)|∀x ∈ S}

is a granular rule base. For ∀y ∈ T, gδ
A(y) is a test neighborhood granule, which is granulated by the

training sample set. Suppose η ∈ [0, 1] is a similarity parameter, ∀x ∈ S, if simd(gδ
A(y), gδ

A(x)) ≥ η or
simh(gδ

A(y), gδ
A(x)) ≥ η, then a granular rule is matched from the granular rule base, and the decision

granule of the granular rule is merged into a decision granule set. This matching process is a granular
search and is expressed as follows:
Using the relative similarity measure: Ld(y) = {g0

D(x)|∀x ∈ S, simd(gδ
A(y), gδ

A(x)) ≥ η}.
Using the absolute similarity measure: Ld(y) = {g0

D(x)|∀x ∈ S, simh(gδ
A(y), gδ

A(x)) ≥ η}.
Suppose CS = (U, A, D, δ) is a classification system. S ⊆ U is a training sample set, and T ⊆ U is

a test sample set. For ∀y ∈ T, Ld(y) is the decision granule set of the test sample y, then the label of
the test sample y is the most numerous granule label in Ld(y).

4. Design of a Neighborhood Granule Classifier

A neighborhood granule is a set. The neighborhood granule classifier is a classifier with set
operations. The classifier is divided into the granulation process and the classification process. In this
section, we discuss the principle of the neighborhood granule classifier and give the algorithm of the
neighborhood granule classification.

4.1. Granulation and Classification of Neighborhood Granules

The neighborhood granule classifier has only the granulation and the classification steps, and it
has no training process. The granulation process includes: data preprocessing, partitioning of a training
set and a test set, the training set granulated into a granular rule base, and the test set granulated
into a set of test granules. The classification process includes: searching and matching in the granular
rule base for test granules and determining the labels of test granules. The detailed granulation and
classification processes are presented as follows:

1. Data preprocessing: deleting the data with missing values and normalizing the data with the
interval 0 1.

2. Divided with a training set and a test set: 80% is the training set, and 20% is the test set.
3. The neighborhood granulation of the training set: a granular rule base is constructed according

to the Euclidean distance and neighborhood parameters.
4. The neighborhood granulation of the test set: for a test sample, computing the Euclidean distance

between the test sample and each training sample to form a test granule, and all the test samples
are granulated into the test granular set.

5. Searching and matching for the test granule: setting the value of a similarity parameter, for the
test granule, computing the similarity between the test granule and the condition granule of a
rule in the granular rule base, getting all the granular rules whose similarities are larger than the
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similarity threshold, and collecting the decision granules of matched granular rules to form a set
of decision granules. Note:the elements of a decision granular set may be identical.

6. Judging the label of the test granule: The label of the test granule is the most numerous granule
label in the decision granule set.

From the above analysis, it can be known that the neighborhood granule classifier is similar to the
KNN classifier, and it is a lazy learning algorithm.

4.2. The Algorithm for Neighborhood Granule Classification

From the analysis of a structure of neighborhood granules, we propose the distance and similarity
measures for neighborhood granules. Therefore, we can design a neighborhood granule classifier.
The detailed neighborhood granule classification algorithm is described as follows:

Algorithm 1: Neighborhood granule classification (NGC).
Input: A training set S = (U, A, D), a test sample t, a neighborhood parameter δ ∈ [0, 1],

and a similarity parameter η ∈ [0, 1].
Output: The label of a test sample t.

(1) Normalization: U ∈ [0, 1], t ∈ [0, 1].
(2) For each training sample x ∈ U
(3) Compute a neighborhood granule gδ

A(x) by the neighborhood parameter δ;
(4) Achieve an equivalence granule g0

D(x);
(5) Form a granular rule rA(x) =< gδ

A(x), g0
D(x) >, and insert it into a granular rule base L;

(6) End for.
(7) For the test sample t, granulate it as gδ

A(t) according to the training set.
(8) For each granular rule < gδ

A(x), g0
D(x) >∈ L

(9) Compute the granular distance d(gδ
A(x), gδ

A(t));
(10) Compute the granular similarity degree simd(gδ

A(x), gδ
A(t)) = 1− d(gδ

A(x), gδ
A(t));

(11) If simd(gδ
A(x), gδ

A(t)) ≥ η, then achieve the granular rule < gδ
A(x), g0

D(x) >, and
insert the decision granule g0

D(x) into a target base T;
(12) End for.
(13) The label of the test sample t is the label of a granule from T, and its quantity is the

maximum.
(14) Return label.

In the NGC algorithm, the neighborhood granulation process is mainly involved. In Step 3, the
time complexity of neighborhood granulation is O(m ∗ n), while the number of features is m, and that
of training samples is n. Therefore, the time complexity of neighborhood granulation for training
samples is O(m ∗ n2) in Steps 2–6. Step 7 is the neighborhood granulation of the test set, and its time
complexity is O(m ∗ t2), while t is the number of test samples and t < n. Steps 8–14 have linear
complexity. Therefore, in the worst case, the time complexity of the NGC algorithm is O(m ∗ n2).

5. Experimental Analyses

This paper used four datasets from the UCI machine learning repository http://archive.ics.uci.
edu/ml/index.php as experimental data sources, which are shown in Table 2.

Due to the different range of values of the datasets, the datasets needed to be normalized and
preprocessed. Since values of neighborhood parameter varied between zero and one, we use the

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
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max-min normalization method to ensure that all data could be converted into values between [0, 1].
The formula of max-min normalization is the following:

f (xi) =
xi − xmin

xmax − xmin
. (10)

Table 2. Datasets used in the experiments.

Datasets Samples Features Classes

Glass 214 9 6
Pima 768 8 2

Segmentation 210 19 7
Wine 178 13 3

All the classification experiments were implemented by a five-fold cross-validation on the
four datasets. We split the dataset into five equally-sized subsets. Of the five subsets, a single
subset was retained as the testing data, and the remaining four subsets were used as training data.
The cross-validation process was then repeated five times, with each of the five subsets used exactly
once as the testing data. The classification accuracy was the mean of five tests. In order to test the
classification accuracy of our proposed granule classifier, the values of neighborhood granulation
parameters were varied from 0.55–0.95 with an interval of 0.05, which involved a total of nine times for
testing. The neighborhood granule classifier needed to set thresholds of granular similarity measure,
which started from 0.55–0.95 by intervals of 0.05 with a total of nine changes. The granular similarity
measures in these experiments used the absolute similarity measure. The experimental results are
shown in Figures 1–4.
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Figure 1. Classification accuracy for the glass dataset.

As can be seen from Figure 1, for the glass dataset, when the neighborhood parameter δ was
0.95 and the similarity threshold α was 0.95, the classification accuracy reached a maximum of 0.6038.
The next values of classification accuracy in maximum were mainly distributed in the corners where
granular similarity thresholds and neighborhood granulation parameters were both large. The smallest
values of classification accuracy were mainly distributed on the plane with smaller granular similarity
thresholds and larger neighborhood granular parameters.
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Figure 2. Classification accuracy for the pima dataset.

As can be seen from Figure 2, for the pima dataset, when the neighborhood parameter δ was
0.55 and the similarity threshold α was 0.85, the classification accuracy reached a maximum of 0.75.
The second largest values of the classification accuracy were basically distributed on the whole plane.
The minimum value of classification accuracy was 0.3906, and it was distributed at the point where
(δ, α) was (0.60, 0.95).
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Figure 3. Classification accuracy for the segmentation dataset.

As can be seen from Figure 3, for the segmentation dataset, when the (δ, α) was (0.55,
0.95), the classification accuracy reached a maximum of 0.8095. The second largest values were
mainly distributed on the band plane with larger similarity thresholds. The minimum values
of the classification accuracy were mainly distributed on the plane where similarity thresholds
and neighborhood parameters were small at the same time, and the sub-minimum values of the
classification accuracy were mainly distributed on the band plane where the similarity threshold
was small.
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Figure 4. Classification accuracy for the wine dataset.
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As can be seen from Figure 4, for the wine dataset, there were 11 maximum values of classification
accuracy which were equal to 0.9773, mainly distributed on the plane between the neighborhood
parameters ranging from 0.70–0.90 and the similarity thresholds ranging from 0.6–0.85. The minimum
values of classification accuracy were mainly distributed in corners with neighborhood parameters
being smaller and similarity thresholds being smaller at the same time.

From the above experiments, we can see that, when the dataset had a large number of categories,
such as glass and segmentation, the classification accuracy was mainly related to the granular similarity
threshold. The similarity threshold was larger, and the classification effect was better. When the dataset
had a large number of features, such as segmentation and wine, the classification accuracy was mainly
related to the neighborhood granulation parameter, and the smaller the neighborhood granulation
parameter, the worse the classification effect.

In order to compare our algorithms with other classifiers, we ran some experiments on only
four datasets. The classification algorithm uses traditional K-Nearest Neighbor (KNN) classifier, and
our proposed Neighborhood Granule Classifier was based on Relative (NGCR) distance and the
Neighborhood Granule Classifier on Absolute (NGCA) distance. In Table 3, the compared results are
shown with a fivefold cross-validation testing for the wine dataset. The test average results of the four
UCI datasets are illustrated in Figures 5–8.

Table 3. Classification experiment results for Wine data set.

Testing KNN NGCR NGCA

Accuracy-1 0.9545 0.9545 1
Accuracy-2 0.9636 1 0.9545
Accuracy-3 0.9773 0.9773 1
Accuracy-4 0.9477 0.9545 0.9545
Accuracy-5 0.9294 1 0.9773

Average 0.9545 0.9773 0.9773
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Figure 5. Classification accuracy for the glass dataset.

As can be seen from Figure 5, for the glass dataset, the classification accuracy of KNN was 0.6415,
the maximum classification accuracy of NGCR 0.6981, and the maximum classification accuracy of
NGCA 0.6038. For the NGCR classifier, the classification accuracy was higher than KNN when the
value of neighborhood parameter was 0.9. The NGCR was better than NGCA in any neighborhood
parameter value.
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Figure 6. Classification accuracy for the pima dataset.

As can be seen from Figure 6, for the pima dataset, the classification accuracy of KNN was 0.7448.
The classification accuracy of NGCR reached a maximum value of 0.7656, when the value of the
neighborhood parameter was 0.6; and the classification accuracy of NGCA reached a maximum of
0.75, when the value of the neighborhood parameter was 0.55. Therefore, the NGCR and NGCA
granule classifiers were better than the traditional KNN classifier under a suitable neighborhood
parameter value.
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Figure 7. Classification accuracy for the segmentation dataset.

For the segmentation dataset in Figure 7, the classification accuracy of KNN was 0.7857; while
the value of the neighborhood parameter was 0.55; the classification accuracy of NGCR reached a
maximum value of 0.8095; and that result was the same as NGCA. It can be seen that NGCR and
NGCA were better than the traditional KNN under a suitable neighborhood parameter value. The
performance of NGCR was better than that of NGCA.
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Figure 8. Classification accuracy for the wine dataset.

As for the wine dataset in Figure 8, the classification accuracy of KNN was 0.9545; the classification
accuracy of NGCR reached the maximum value of 0.9773, while the neighborhood parameter values
were 0.75, 0.90 and 0.95; and while the neighborhood parameter values were 0.75–0.9, the classification
accuracy of NGCA reached the maximum value of 0.9773. It can be seen that NGCR and NGCA were
better than the traditional KNN under suitable neighborhood parameter values.

6. Conclusions and Discussion

The traditional classifiers are built on the basis of numerical calculations, rather than operations
of sets. In this paper, by the neighborhood granulation of samples, a new granule classifier is proposed,
which is constructed on the operations of sets. First, the method of neighborhood rough set granulation
is introduced to build condition neighborhood granules and decision equivalent granules in decision
systems. The size of a granule is defined, the inclusion relationship between the condition granule and
the decision granule analyzed, and the granular rule base constructed. Furthermore, we propose two
kinds of distance and similarity measures of granules and design an algorithm for a neighborhood
granule classifier. Experimental results show that the proposed classifier can successfully classify
samples and achieve better classification performance under suitable granulation parameters.

In the future work, a neural network will be introduced to fine-tune the neighborhood granulation
parameters that are used for the construction of a classifier. We can also study the granulation of local
data to build local neighborhood granules, so as to apply the proposed granule classification method
to big data fields.
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