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Abstract: In 2020, a global pandemic was declared following the spread of SARS-CoV-2, the pathogen
responsible for COVID-19. The risk of infection is high due to the ease of transmission, which
can occur orally, through droplets, or via contact with contaminated surfaces and objects. It has
also been demonstrated that the ocular surface can constitute a transmission route, especially in
hospital settings, where health care workers can become a dangerous source of infection. In order to
increase prevention and reduce the spread of the virus on the ocular surface, the antiviral activity
of already-marketed eye drops against SARS-CoV-2 was evaluated. Iodim, Ozodrop, Septavis, and
Dropsept were tested against SARS-CoV-2 in plaque-assay experiments at different stimulation times.
Furthermore, the expression levels of early and late genes were evaluated through molecular assays.
Results indicated that three of the four ophthalmic solutions showed a considerable dose-dependent
inhibition of viral replication, highlighting their use as potential antiviral drugs against SARS-CoV-2
and preventing other ocular infections.

Keywords: ophthalmic solutions; ocular transmission; antiviral activity; SARS-CoV-2; ocular surface

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coron-
avirus responsible for coronavirus disease 2019 (COVID-19). It belongs to the Betacoro-
navirus genus of Coronaviridae family, which is the same as that of both severe acute
respiratory syndrome 1 (SARS-CoV-1) and Middle East respiratory syndrome (MERS), the
two coronaviruses that caused epidemics in 2003 and 2014, respectively. SARS-CoV-2 was
first reported in China in December 2019, and then spread widely all around the world,
leading the World Health Organization (WHO) to declare a global pandemic in March
2020 [1–3]. To date, there have been almost 168 million cases worldwide and the death toll
is expected to be around 3.5 million people. SARS-CoV-2 appears to be less lethal than
SARS-CoV-1 or MERS, although its transmissibility is higher and occurs before, during, and
after the acute clinical phase of illness. It spreads primarily through respiratory droplets—
released while talking, coughing, and sneezing—or by direct or indirect contact of nasal,
oral, and ocular mucosa with contaminated surfaces [4–6]. Before the entire population
receives the vaccine and in the absence of a specific therapy against the virus, it is vital to
restrict its spread and look for new antiviral therapies. There are some measures suggested
to prevent the virus from spreading [7–9]: first of all, social distancing; secondly, the use of
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Personal Protection Equipment (PPE)—masks, eyewear, and visors—in order to create a
physical barrier to viral transmission; finally, hand-washing and disinfection of surfaces in
order to chemically remove the virus and avoid its transmission to new hosts [4,10].

To date, the possibility of spreading through the ocular route has been widely dis-
cussed [11,12]. The presence of the virus on the ocular surface has been demonstrated
using PCR in various studies and ophthalmologists are playing an essential role during this
pandemic [13–18]. Three possible mechanisms of transmission through the ocular route
have been suggested: (i) the ocular surface could represent the primary site of infection
and replication of the virus; (ii) the virus could move from the ocular surface to the nasal
and oral cavity via the nasolacrimal duct; and (iii) infection could occur at the lacrimal
gland and be followed by hematic dissemination [17,19–22].

Several studies have demonstrated the efficacy of antiseptic solution to inactivate
SARS-CoV-2 in vitro: J.S. Pelletier et al. demonstrated the importance of Povidone-Iodine
(PVP-I) for use in the nasal passages, nasopharynx, and oral cavities [5,23–25]. S. Frank
et al. demonstrated the complete inactivation of SARS-CoV-2 using concentrations of the
nasal antiseptic PVP-I as low as 0.5% after 15 s of contact [26–29]. Hydrogen peroxide,
at the recommended oral rinse concentrations of 1.5% and 3.0%, was minimally effective
as a viricidal agent after contact times not less than 30 s [30–33]. The use of antiseptic
solution could be fundamental to reducing viral infection, especially for specific categories
of people exposed to this route of transmission, such as health care workers, among which
the incidence of ocular infections is higher. For this reason, the aim of our study is to
evaluate the efficacy of commercial ophthalmic solutions (Iodim, Ozodrop, Dropsept, and
Septavis) to inactivate virus replication and prevent its transmission.

2. Materials and Methods
2.1. Test Compounds

Ozodrop, Dropsept, Septavis, and Iodim are eye drops that are already marketed
and used as ophthalmic solutions for the protection of eyes. Lipozoneye (Ozodrop, FB
Vision, Ascoli Piceno, Italy) is a solution made up of ozonated vegetable oil, hydroxypropyl
methylcellulose, liposomes, boric acid, sodium tetraborate, disodium edetate sodium,
PHMG, and deionized water. Vitamin E TPGS (Dropsept, IROMED group s.r.l., Roma,
Italy) contains vitamin E TPGS, dibasic sodium phosphate, monobasic sodium phosphate,
sodium chloride, chlorhexidine digluconate, and purified water. Sodium hypochlorite
(Septavis, MEDIVIS, Catania, Italy) is a mixture of sodium hypochlorite, sodium chloride,
sodium phosphate, hydrochloric acid, and water. Iodine (Iodim, MEDIVIS, Catania, Italy)
is composed of medium chain triglycerides, sodium hyaluronate, glycerol, vitamin E TPGS,
potassium citrate, sodium chloride, citric acid monohydrate, PVP-I 0.6%, and pure water.

2.2. Cytotoxic Activity

To evaluate the cytotoxic activity of ophthalmic solutions, a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed. The day before treat-
ment, 2 × 104 Vero cells/well were seeded in a 96-well plate. Subsequently, the eye drops,
positive control (medium and cells), and negative control (DMSO) were added to the cell
monolayer. Different volumes of solutions (100–50–25–12.5 µL) were evaluated at different
times of stimulation (15 s, 30 s, 1 min, 10 min, 30 min, 1 h, 2 h). After that, MTT solution was
added to the cells and they were incubated for 3 h (as reported in the datasheet). A total of
100 µL of DMSO was added to each well to solubilize the formazan and the viability was
assessed at 570 nm through a Bio-Rad microplate reader (Bio-Rad Laboratories, Hercules,
CA, USA).

2.3. Viral Strains and Cell Culture Conditions

SARS-CoV-2 (strain VR PV10734, kindly donated by the Lazzaro Spallanzani Hospital
of Rome, Italy) was propagated on Vero cells, epithelial kidney cells of Cercopithecus aethiops
(ATCC CCL-81) that are very susceptible to SARS-CoV-2 infection. The culture medium
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used for cell growth was Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L glucose,
along with 2 mM L-Glutamine, 100 IU/mL penicillin-streptomycin solution, and 10% Fetal
Bovine Serum (FBS). All materials used for cell culture were acquired from Thermo Fisher
(Waltham, MA, USA).

2.4. Plaque Reduction Assays

To evaluate the effect of the eye drops on SARS-CoV-2 infectivity, four different plaque
reduction assays were performed [34]: (a) co-treatment, in which each eye-drop and virus
at 0.01 multiplicity of infection (MOI) were simultaneously incubated on the cell monolayer
(2.8 × 105 cells in each well); (b) virus pre-treatment, in which each eye-drop was first
put together with the virus at 0.1 MOI for different times of stimulation, as shown below,
and the mixture was then diluted on the target cells (2.8 × 105 cells for well) for 2 h (viral
absorption time); (c) cell pre-treatment, in which 2.8 × 105 cells were pre-treated with each
ophthalmic solution and then infected with the virus at 0.01 MOI; and d) post treatment,
an assay in which cells (2.8 × 105) were infected with the virus (0.01 MOI) for 2 h and then
incubated with each compound at several time points of the stimulation (15 s, 30 s, 1 min,
5 min, 10 min, 15 min, 30 min, 1 h, and 2 h). For all the experiments, different volumes of
compounds (12.5, 25, 50, and 100 µL) were used for each time point. At the end of each
treatment, the cell monolayer was washed with Phosphate Buffered Saline (PBS) 1X and
incubated for 48 h in DMEM supplemented with carboxymethylcellulose (CMC) 5%. After
2 days, the cells were fixed and stained with 0.5% crystal violet, and the plaques were
counted. The experiments were performed in triplicate. Ivermectin, an anti-parasitic agent,
was used as a positive control (CTR+). The percentage of viral inhibition was calculated
compared to the untreated SARS-CoV-2 control (CTR-) as follows:

% Viral inhibition = [100 − (plaques counted in the test sample)/(plaques counted in the negative control)] × 100.

2.5. Real-Time PCR

The antiviral potential of eye drops was also investigated through molecular tests.
The virus pre-treatment assay described above was performed, with identical conditions.
After 24 and 48 h post-infection, the total RNA was isolated using TRIzol reagent (Thermo
Fisher, Waltham, MA, USA) and quantified through its absorbance at 260/280 nm (Nan-
oDrop 2000, Thermo Fisher Scientific, Waltham, MA, USA). Then, 1 µg of total RNA
was converted to cDNA by 5× All-In-One RT Master Mix (Applied Biological Materials,
Richmond, VA, Canada). Quantitative polymerase chain reaction was run in triplicate
using a CFX Thermal Cycler (Bio-Rad, Hercules, CA, USA). A total of 2 µL of cDNA was
amplified using BrightGreen 2× qPCR MasterMix-No Dye (Applied Biological Materi-
als, Richmond, VA, Canada) and 0.1 µM of primer. The relative target threshold cycle
(Ct) values of the spike protein (S) and nucleocapsid protein (N) were normalized to
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), used as a housekeeping gene.
The mRNA levels of cells treated with the eye drops were expressed using the 2-∆∆Ct
method. Thermocycler conditions for the real-time PCR were as follows: 95 ◦C for 10 min
and 95 ◦C for 15 s, plus 60 ◦C for 1 min for 40 cycles. The primers used for real-time
PCR are as follows: S Forward (5′-AGGTTGATCACAGGCAGACT-3′), S Reverse (5′-
GCTGACTGAGGGAAGGAC-3′), N Forward (5′-GGGGAACTTCTCCTGCTAGAAT-3′),
N Reverse (5′-CAGACATTTTGCTCTCAAGCTG-3′), GAPDH Forward (5′-CCTTTCATT-
GAGCTCCAT-3′) and GAPDH Reverse (5′-CGTACATGGGAGCGTC-3′).

2.6. Statistical Analysis

All tests were performed in triplicate and expressed as mean ± Standard Deviation
(SD) calculated by GraphPad Prism (version 5). Statistical differences were evaluated
via two-way ANOVA followed by a Bonferroni post hoc test; a value of p ≤ 0.05 was
considered significant.
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3. Results
3.1. Cytotoxic Activity

In order to evaluate the potential cytotoxicity of ophthalmic solutions, an MTT assay
was performed. This is shown in Figure 1, reporting the percentage of viability of oph-
thalmic solutions on Vero cells. Data showed that a considerable reduction in viability
was not observed for all the compounds. In detail, setting 50% cell viability as a threshold
line (CC50), Iodim, Ozodrop, and Dropsept showed the highest viability from 15 s to 30
min, and about 70–80% of the viability was observed at the other two times (1 and 2 h). In
contrast, only Septavis exhibited 100% cell viability for all the times and volumes analyzed.
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Figure 1. Viability assay. Cytotoxicity was assessed via MTT assay after different stimulation times. Vero cells were exposed
to different volumes of Iodim (A), Ozodrop (B), Dropsept (C), and Septavis (D) for 15 s, 30 s, 1 min, 30 min, 1 h, and 2 h. ****
p < 0.0001; ns: non-significant.

3.2. Antiviral Activity against SARS-CoV-2

The antiviral effect of the eye drops was evaluated against SARS-CoV-2, since many
studies have reported that the viral infection can also be characterized by severe ocular
disease. The ability to interfere with SARS-CoV-2 life cycle through a co-treatment assay
was preliminarily investigated for all compounds. The virus and each eye drop at the
indicated volumes were incubated together on the cells for different times, from 2 h to
15 s, at 37 ◦C. Setting 50% viral inhibition as the threshold line, Septavis was the least
effective against SARS-CoV-2, while the other three eye drops showed a considerable dose-
dependent inhibition of the viral replication. They showed similar inhibitory activity at
the highest time point: Iodim, Ozodrop, and Dropsept exhibited a half-maximal inhibitory
concentration (IC50) at 12.5 µL until 15 s, and they were able to totally inhibit SARS-CoV-2
infection at the higher volume of 50 µL (Figure 2).
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Figure 2. Co-treatment assay. Antiviral activity against SARS-CoV-2 of eye drops at different times of stimulation. Iodim
(A), Ozodrop (B), Dropsept (C), and Septavis (D) were incubated simultaneously with SARS-CoV-2 on the cell culture for
the several time points. Iodim, Ozodrop, and Dropsept inhibited the early stages of infection. On the contrary, Septavis was
not able to block the viral replication. **** p < 0.0001; ns: non-significant.

To evaluate the mechanism of action of these compounds in detail, a virus pre-
treatment test was also performed. In this approach, the virus was incubated with the eye
drops for 1 h, 30 min, 10 min, 1 min, 30 s, and 15 s at 37 ◦C; the mixture was then diluted
and added to the Vero cell monolayer. As reported in Figure 3A,B, only two eye drops
(Iodim and Ozodrop) showed strong virucidal activity against SARS-CoV-2. In particular,
“Iodim” and “Ozodrop” exhibited high antiviral activity with a 98% inhibition of virus
plaques at 50 µL until 15 s, while “Dropsept” showed a 77% inhibition against SARS-CoV-2
at 50 µL until 15 s (Figure 3C). Finally, “Septavis” did not exhibit any activity in the same
conditions (Figure 3D).

Furthermore, a cell pre-treatment assay was carried out to evaluate if compounds
could also act on the cell surface, perhaps by interacting with cellular receptors and blocking
the virus–cell fusion. In this case, Vero cell monolayers were precooled and incubated
with the eye drops for different times (1 h, 30 min, 10 min, 1 min, 30 s, and 15 s) at 4 ◦C;
afterwards, cell monolayers were infected with SARS-CoV-2. As reported in Figure 4,
the data indicated that compounds were not involved in any cell surface mechanism of
SARS-CoV-2 infection.
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Microorganisms 2021, 9, 1550 7 of 11

Finally, to investigate if the ophthalmic solutions act on viral replication, a post-
treatment assay was performed. In this approach, different volumes of eye drops were
added to the cell monolayer for different times after infection with SARS-CoV-2. All
samples did not act inside the cell by interfering with the viral replication phase, as shown
in Figure 5.

Microorganisms 2021, 9, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Post-treatment assay. Antiviral activity against SARS-CoV-2 of eye drops at different times of stimulation. Cells 
were first infected with SARS-CoV-2 and then treated with Iodim (A), Ozodrop (B), Dropsept (C), and Septavis (D). 
Iodim, Ozodrop, Dropsept, and Septavis were not able to act on the viral replication mechanism. * p = 0.001; ** p < 0.001; 
*** p = 0.0001; **** p < 0.0001; ns: non-significant. 

3.3. Real-Time PCR 
To determine whether treatment with the eye drops could interfere with active viral 

replication, real-time PCR was carried out. 
First, the different levels of total viral DNA were analyzed following treatment with 

eye drops compared to untreated SARS-CoV-2 at 24 and 48 h post-infection at different 
times of stimulation (15 s, 30 s, 1 min, 10 min, 30 min, 1 h, 2 h).  

The expression of the nucleocapsid protein (N), which is an early gene, and the spike 
glycoprotein (S), involved in the entry of the virus into the cell, was investigated. The 
results showed that all compounds blocked the expression of N and reduced the S ex-
pression at all stimulation times analyzed, from 15 s to 2 h (Figure 6).  

Figure 5. Post-treatment assay. Antiviral activity against SARS-CoV-2 of eye drops at different times of stimulation.
Cells were first infected with SARS-CoV-2 and then treated with Iodim (A), Ozodrop (B), Dropsept (C), and Septavis (D).
Iodim, Ozodrop, Dropsept, and Septavis were not able to act on the viral replication mechanism. * p = 0.001; ** p < 0.001;
*** p = 0.0001; **** p < 0.0001; ns: non-significant.

3.3. Real-Time PCR

To determine whether treatment with the eye drops could interfere with active viral
replication, real-time PCR was carried out.

First, the different levels of total viral DNA were analyzed following treatment with
eye drops compared to untreated SARS-CoV-2 at 24 and 48 h post-infection at different
times of stimulation (15 s, 30 s, 1 min, 10 min, 30 min, 1 h, 2 h).

The expression of the nucleocapsid protein (N), which is an early gene, and the
spike glycoprotein (S), involved in the entry of the virus into the cell, was investigated.
The results showed that all compounds blocked the expression of N and reduced the S
expression at all stimulation times analyzed, from 15 s to 2 h (Figure 6).

These data indicate that the eye drops have an early action, functioning outside the
cell, preventing the virus from entering the cell, thus blocking the virus directly.
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Figure 6. Molecular assay. Real-time PCR was performed to evaluate the effect of eye drops on the viral gene expression.
Iodim (A), Ozodrop (B), Dropsept (C), and Septavis (D) were tested at different volumes (from 100 to 12.5 uL), for 2 h
stimulation at 24 and 48 h p.i. The expression of the spike glycoprotein (S) (A,B) and nucleocapsid protein (N) (C,D) was
analyzed. Ctr- refers to infected but not treated cells.

4. Discussion

In 2020, a global pandemic was declared following the spread of SARS-CoV-2, the
pathogen responsible for COVID-19 [35]. The risk of infection is high due to the ease of
transmission, which can occur orally, through droplets, or via contact with contaminated
surfaces and objects. It has also been demonstrated that the ocular surface can also consti-
tute a transmission route, especially in hospital settings, where health care workers can
become a dangerous source of infection.

The global pandemic caused by the marked spread of SARS-CoV-2 has caused an
increase in the mortality rate worldwide. It is therefore of fundamental importance to
reduce the infection and increase prevention to limit viral spread.

Our goal was to provide antiseptic solutions able to limit SARS-CoV-2 transmission
through the ocular surface. We also aimed to assess which solution tested was the most
successful in reducing viral replication. Four commercial eye drops were tested.

As reported in the literature, several studies have been conducted to evaluate the
antimicrobial activity of eye drops, both in vitro and in vivo. Celenza et al. examined the
antifungal activity of ozone-based eye drops on different strains of Candida, finding a
significant inhibition [36–40].

The bactericidal activity of Ozodrop was also evaluated in vivo in patients (both
animals and humans) with ocular infections caused by Gram-positive and Gram-negative
bacteria (such as S. aureus and P. aeruginosa) [41–45]. Ozodrop contains ozonated oils, the
antiviral activity of which was recently described, finding that it was due to the oxidation
of specific viral receptors [46]. Furthermore, for Iodim the antibacterial and antifungal
activities were examined at different times, showing the inhibition of bacterial and fungal
growth after 5 min and 24 h of incubation, respectively. PVP-I, present in Iodim, has been
largely reported on for its antiviral potential against human immunodeficiency virus (HIV)
type 1 and also human and avian influenza A viruses [47]. In detail, Sriwilaijaroen et al. [48]
demonstrated that 1.56 mg/mL of PVP-I reduced the infection of 8 human and 5 avian
influenza A strains, including H1N1, H3N2, H5N3, and H9N2. This inhibitory action
ranged from 23.0 to 97.5% and has been ascribed to the effect on hemagglutination and
sialidase activities. Very recently, Singh et al. investigated the PVP-I activity against two
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RNA viruses, Zika and Chikungunya [49]. It was demonstrated that PVP-I at 0.01% was
very effective in reducing the viral replication in corneal and retinal cells. As our active
eye drops, it showed a very strong virucidal action after only one minute of incubation,
without causing a relevant toxicity on the treated cells. Caruso C., et al. demonstrated
the efficacy of Vitamin E TPGS (Dropsept) for treating Acanthamoeba keratitis (AK), a rare
infection of the cornea caused by the ubiquitous protozoan [50]. Another component of
Dropsept, the chlorhexidine-digluconate, has been known to possess a relevant antiviral
action against several enveloped viruses since 1990 [51].

The antimicrobial activity of Septavis is not known and has not been reported in the
literature [45,52,53]. Comparing these data with the antiviral activity evaluated in this study,
the efficacy of the eye drops is also confirmed at the antiviral level with about 50% inhibition
at the minimum time tested (15 s). We hypothesized that ophthalmic solutions could act
and prevent the initial phases of SARS-CoV-2 infection, such as the viral attachment and
entry to the target cell, thus interfering with the downstream infection process.

These data were also confirmed by carrying out molecular tests, in which the com-
pounds inhibited the expression of N proteins and reduced the expression of S proteins.

Together, these findings showed that the eye drops may act on virus attachment
to the host cell by directly blocking the virus particle as a virucide and deactivating it
irreversibly. Following the remarkable inhibitory effect shown by the eye drops against the
virus, it is possible to deduce that these solutions could represent a preventive resource for
ocular infections.
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