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Abstract: The motors’ flux-linkage, current and angle obtained from the system with sensors were
chosen as the sample data, and the estimation model of rotor position based on relevance vector
machine (RVM) was built by training the sample data. The kernel function parameter in RVM
model was optimized by the particle swarm algorithm in order to increase the fitting precision
and generalization ability of RVM model. It achieved higher prediction accuracy with staying at
the same on-line testing time as the RVM. And because the short on-line computation, the motor
can operate at 3000 r/min in sensorless control with particle swarm optimization-relevance vector
machine (PSO-RVM), which is higher than support vector machine (SVM) and neural network (NN).
By simulation and experiment on the test motor, it is verified that the proposed estimation model can
obtain the angle of full electrical period accurately under low speed and high speed operations in
current chopped control and angle position control, which has satisfactory estimation precision.

Keywords: relevance vector machine (RVM); particle swarm; switched reluctance motor; estimation
model; self-sensing

1. Introduction

Switched reluctance motor (SRM) is widely used in many fields, such as hauling, aircraft, mining
and textile industries, because of its high efficiency, low cost, simple mechanism, great reliability and
wide regulating range. Generally, SRM under position closed-loop speed control is equipped with
a position sensor to directly measure rotor position signals. However, mechanical sensor not only
has raised the system cost and complexity, but also has affected the overall reliability of the SRM
drive system [1]. Therefore, both domestic and foreign researchers have spent considerable time and
efforts exploring the SRM rotor position self-sensing technology. However, the nonlinear flux-linkage
characteristics of switched reluctance motor make it difficult to detect the rotor position.

A large number of methods for the rotor position self-sensing of switched reluctance motors are
studied in recent years. In [2], a linear frequency modulated converter is used to measure inductance,
whose output is decoded to get the rotor angle. But because the detection signal is easily disturbed,
this method has low precision. In [3], a single high-frequency pulse is injected in the non-conducting
phase to estimate the rotor angle, which neglects the influence of the back electromotive force (EMF)
and the winding equivalent voltage and has estimation precision influenced by speed. In [4,5],
the observer-based method is used to obtain the rotor angle of full electrical period. However, the
observer relies on more complex mathematical models, and the algorithm is complex and difficult to
be widely used. In [6], a look-up table with flux linkage, current and angle is proposed to estimating
continuous rotor position, but it has a long look-up time and requires large memory. In [7,8], improved
simplified flux method with flux-linkage and current at the maximum inductance position is presented,
which has less memory and shorter computing time. However, all these methods about look-up table
require chopped current control, not fit for angle position control. In all the methods, the flux-linkage
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is used most in the rotor position self-sensing because it is the fundamental characteristic of SRM.
So many studies are focused on obtain accurate flux-linkage characteristic in SRM sensorless control.

In [9–15], neural network (NN) and support vector machine (SVM) are used to predict rotor
position of SRM, some achievements have been acquired. But the NN prediction process takes up a lot
of resources and has long training time, and there are some defects such as local minimum, over fitting.
With the increase of training samples, the training time becomes longer with the SVM, and the adaptive
ability is poor and the robustness is not strong. Because of the long online decision-making time,
the position sensorless SRM based on the NN and SVM methods proposed in the above-mentioned
studies works at the maximal rotational speed of 1500 r/min only.

Relevance vector machine (RVM) is a non-linear probability model [16,17] put forward by Tipping.
Compared to SVM, RVM uses Bayesian methods for reasoning where the kernel function is not
necessarily required to fulfill Mercer’s condition—which consequently widen the range of eligible
kernel function; more importantly, because the model parameters (relevance vectors) slowly increase
as the sample size grows, there are sparser solutions while the model is less complex and the time of
decision making is shorter. Thus, RVM is more suitable for the scenarios requiring real-time results.
When it is used in rotor position self-sensing, SRM can operate at a higher speed compared to the
NN and SVM.

Despite RVM’s advantages, its performance depends on the optimum selection of parameters of
kernel function and yet, there are no unified optimum standards [18]. The commonly methods used
mesh parameterization require a large amount of computation and long-time searching; besides, the
least square method is largely restricted by the initial iterative value. Hence, it is likely to result in
locally optimal solutions. In recent years, the particle swarm optimization (PSO) algorithm [19] and the
genetic algorithm (GA) [20] have been employed to optimize the parameters of RVM’s kernel function,
which have effectively reduced the time of searching and the dependence on the initial iterative value.
The PSO algorithm and the GA are both optimization algorithms based on the swarm and adaptation
concepts, with the difference between the two lying in that the PSO algorithm enables memorization
of optimal particle positions and inter particle information sharing mechanism whereas GA involves
complicated genetic operations, such as selection, crossing-over, variation and so on. The former
algorithm has the advantage over the latter in convergence, rule setting and implementation. Therefore,
in this paper, the PSO algorithm was used for the optimization of RVM parameters.

To fulfill the real-time requirements for rotor position self-sensing, this paper presented
an RVM-based SRM rotor position estimation method. From SRM’s non-linear flux-linkage
characteristic, an RVM-based rotor position estimation model was built through sampled data training.
Considering that the kernel function parameters of the RVM model were difficult to determine, the PSO
algorithm was introduced to optimize the parameters of the RVM model to further improve the model’s
precision of estimation. It proved that the PSO-RVM model has a higher prediction precision, a shorter
on-line testing time than the RVM and SVM model by the simulation. The experiment results show
that the motor can operate at 1500 r/min and 3000 r/min steadily in sensorless control.

2. Flux-Linkage Characteristic of SRM

SRM is a brushless stator-rotor double salient pole variable reluctance machine, of which the
flux-linkage shows time-dependent unidirectional pulse changes while the air-gap field is of pulsation.
The non-linear geometric structure and magnetic circuit make SRM’s single-phase winding flux-linkage
ψ a non-linear function of the phase winding current i and the rotor position angle θ:

ψ = ψ(i, θ) (1)

It can be proved that the equation above has a unique uniform reciprocal function [9]:

θ = θ(ψ, i) (2)
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Such that θ at a time can be calculated according to the known ψ and i at the such time.
As to a three-phase 12/8 SRM, assumed the stator pole and the rotor pole in an aligned position, i.e.,
θ = 0◦, and the stator pole and the rotor slot in an aligned position, i.e., θ = 22.5◦, according to the
symmetry of the SRM structure, the motor’s magnetic characteristic can be reflected by measuring the
flux-linkage value of the rotor in the semi-cycle ranging from 0–22.5◦, as shown in Figure 1. It can be
seen that: (1) As the excitation current becomes stronger, the rotor position angle decreases, the stator
and the rotor gradually align with each other, the magnetic field reaches the state of saturation and the
growth of flux-linkage turns increasingly slow in a non-linear manner; (2) There are unique mapping
relationships among flux-linkage, phase current and rotor position angle.
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Figure 1. Switched reluctance motor (SRM) flux-linkage character.

3. RVM-Based Regression Modeling with PSO Algorithm

Considering SRM’s non-linear magnetic characteristic, only simplified model of magnetic linkage
can be built through regular modeling by mechanism. If the running parameters and status of the
SRM system change, the simplified model will bring lower precision, in which case, the precision
of using the simplified model for rotor position estimation will decrease accordingly. To prevent
model bias and parameter uncertainties that may influence the rotor position estimation model and to
improve the precision and self-adaptation of rotor position estimation, in this paper, RVM’s universal
approximation of any functions was utilized to identify the SRM rotor position angle.

3.1. RVM Regression Modeling

Given that the input vector set and output vector set of the training samples are {xi|i = 1, . . . , N}
and {yi|i = 1, . . . , N} respectively, the objective function yi is defined to be derived from a model
with noise:

yi =
N

∑
i=1

ωiK(x, xi) + ω0 + εi (3)

where the noise εi is subject to the Gaussian distribution with the mean as zero and the variance as σ2;
ω = (ω0, . . . , ωN)

T represents the weight vector; K(x, xi) expresses the kernel function (not necessarily
to satisfy Mercer’s condition). The likelihood function of the training sample set can be described as:

p(y|ω, σ2) = (2πσ2)
− N

2 exp

(
−‖y−Φω‖2

2σ2

)
(4)

where y = [y1, . . . , yN ]
T; Φ means the basis function matrix that can be expressed by:
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Φ =


1 K(x1, x1) · · · K(x1, xN)

1 K(x2, x1) · · · K(x2, xN)
...

...
...

1 K(xN , x1) . . . K(xN , xN)

 (5)

The Gaussian framework was employed to generalize the RVM regression model. The prior
distribution of parameters is defined as:

p(ω|α) = (2π)−
N
2

N

∏
i=0

α
1
2
i exp

(
−

αiω
2
i

2

)
(6)

where α = [α0, . . . , αN ] is a hyper-parameter.
Based on the prior distribution and plausible reasoning distribution, the posterior distribution of

weight can be known through Bayesian inference. The posterior distribution can be expressed by:

p(ω|y,α, σ2) =
p(y|ω, σ2)p(ω|α)

p(y|α, σ2)
= (2π)−

N+1
2 |R|−

1
2 exp

{
−1

2
(ω− µ)TR−1(ω− µ)

}
(7)

where the posterior covariance can be represented by:

R = (σ−2ΦTΦ + A)
−1

(8)

The posterior mean can be described as:

µ = σ−2RΦTt (9)

where A = diag(α0, . . . , αN).
The equation of likelihood function (4) of sample set training was used for integration of weight

variables and the α and σ2 -dependent marginal distribution of plausible values can be described as:

p(y|α, σ2) = (2π)−
N
2 |Ω|−

1
2 exp

(
−yTΩ−1y

2

)
(10)

where Ω = σ2I + ΦA−1ΦT; I represents an n-order unit matrix.
Because the maximum α and σ2 cannot be obtained by Equation (10) with the analytical method,

iterative estimation was adopted. Taking a derivative of α based on Equation (10) to make α to zero,
the updated value of αi can be expressed by:

αi,new =
γi

µ2
i

(11)

where γi = 1− αiRii, Rii is the ith diagonal element of the posterior weight covariance matrix R,
the calculation result of the known α and σ2 according to Equation (8); µi denotes the ith posterior
mean that can be calculated based on Equation (9).

Taking the above-mentioned method to take a derivative of µi, the equation can be rewritten as:

σ2
new =

‖y−Φµ‖2

N −
N
∑

i=1
γi

(12)

Knowing the parameters αi,new and σ2
new, the weighted posterior mean and variance were

recalculated. During iteration, most of αi tend to approach infinity, indicating that the corresponding
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ωi values equal zero. In this case, the corresponding basis function can be deleted to achieve sparsity.
When other αi values approach infinity in a steady manner, the corresponding xi is defined as
a relevance vector.

In RVM regression modeling, Gaussian kernel function K(x, xi) = exp
(
−‖x−xi‖2

2δ2

)
was applied to

the high-dimensional mapping in this study. The RVM regression model can be rewritten as:

yi =
N

∑
i=1

ωi exp

(
−‖x− xi‖2

2δ2

)
+ ω0 (13)

where δ represents the width of the Gaussian kernel function that reflects the radius of the
closed boundary.

3.2. PSO-RVM Model Parameters

The PSO algorithm is an iterative optimization algorithm which is first proposed by Kennedy and
Eberhart in 1995. This algorithm is a simulation of social behavior of birds, which is an optimization
algorithm based on group (population), similar to GA. Each particle adjusts its evolutionary direction
through information interaction with other particles, and avoids falling into local optimum. In addition,
PSO algorithm adopts random search strategy different from GA, which is much simpler than GA.
Therefore, it shows better performance when solving some optimization problems.

According to Equation (13), when the training samples are determined, the generalization and
estimation precision of the RVM regression model depend on the parameter δ2 of the kernel function
and yet, there is no unified principle regarding the selection of δ2 [13]. Therefore, this paper utilized
the global searching function of the PSO algorithm to optimize the kernel function parameter δ2 and
improve the generalization and estimation performance of RVM.

In a complex m-D space, the PSO algorithm implements searching through loop iteration.
In each loop, the velocity and position of particle i are updated by dynamic tracking of its
optimal value pbest = {pi1, pi2, · · ·, pim} and that of the swarm gbest = {g1, g2, · · ·, gm}. Assumed
that vi = {vi1, vi2, · · ·, vim} and xi = {xi1, xi2, · · ·, xim} are respectively the velocity and position of
particle i, vi and xi can be updated according to the equations as follows:

vk+1
i = ωvk

i + c1r(·)(pbest − xk
i ) + c2r(·)(gbest − xk

i ) (14)

xk+1
i = xk

i + vk+1
i (15)

− vmax < vk+1
i < vmax (16)

where k means the number of iterations,ωmeans the inertia weight coefficient, r(·) expresses a random
value between (0, 1) and c1 and c2 denote learning factors. vmax is the predetermined maximum velocity.

The application of the foregoing PSO algorithm to the optimization of the RVM model parameter
δ2 is as shown in Figure 2.

In the iteration process, the fitness function is defined as:

f (δ2) =

N
∑

i=1
Inv(abs(yi − y))

N
, i = 1, 2, . . . , N (17)

where yi =
N
∑

i=1
ωi exp

(
−‖x−xi‖2

2δ2

)
+ ω0 is the predictive value given by the RVM model while y is the

actual value.
The suspensive condition of the iterative algorithm is k ≥ kmax or f (δ2) ≤ fmin, where kmax means

the maximum number of iteration and f min represents the minimum adaptive threshold.
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4. PSO-RVM-Based SRM Rotor Position Self-Sensoring

According to Equation (2), i and ψ are inputs of PSO-RVM learning while the corresponding θ is
the output. With a limited number of learning samples, the PSO-RVM after learning can reflect the
non-linear functional relations and estimate the rotor position.

First, the SRM experiment system was used for sampling to fetch learning samples. Specifically,
the phase current and rotor position can be directly detected with sensors while the phase flux-linkage
can be indirectly obtained through phase voltage and phase current sampling.

The jth phase winding voltage loop equation of SRM can be described as:

uj = ijr +
dψj

dt
(18)

where uj, ij and ψj respectively represent the voltage, current and flux-linkage of the jth phase and r
denotes the phase winding resistance. Based on Equation (17), the flux-linkage can be expressed by:

ψj =
∫ t

0
(uj − ijr)dt + ψj(0) (19)

where ψj(0) means the initial flux-linkage value. The flux-linkage in the discrete sampling control
system can be described as:

ψj(k) = ψj(k− 1) + 0.5T
[
uj(k)− rij(k)+ uj(k− 1)− rij(k− 1)

]
(20)

where ψj(k) and ψj(k− 1) denote the flux-linkage values of the kth and the k − 1th sampling
respectively; uj(k), uj(k− 1), ij(k), ij(k− 1) are the corresponding voltage, detected current of the kth
and the k−1th sampling; T represents the sampling time.

Then, according to the algorithm flow as shown in Figure 2, the software Matlab was applied to
PSO-RVM training in order to obtain the optimal kernel function parameter δmax best and relevance
vector and build a PSO-RVM model for SRM rotor position estimation as shown in Figure 3, where:
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The input variable can be expressed by: xj = [ψj, ij]
T.

The Gaussian kernel function after optimizing the kernel width with the PSO algorithm can be

described as: K(x, xi) = exp
(
−‖x−xi‖2

2δ2
best

)
(i = 1, 2, . . . , N).

The output variable can be defined as: yj = θ̂j =
N
∑

i=1
ωiK(x, xi) + ω0.
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Figure 3. The model structure of relevance vector machine (RVM) and PSO-RVM. (a) The RVM
structure; (b) The PSO-RVM structure.

Lastly, the PSO-RVM-based estimation model that was built offline was applied to real-time
control. The real-time phase current and phase voltage were detected with sensors while the
flux-linkage was calculated according to Equation (20). Subsequently, the current and flux-linkage
values were input into the PSO-RVM-based rotor position prediction model to calculate the rotor
position at the exact time point and ultimately realize SRM rotor position self-sensoring.

5. Simulation and Experiment

5.1. Self-Sensing Control Algorithm

The rotor self-sensing control system is built by Matlab as shown in Figure 4. The PSO-RVM
estimator calculates the output ψ by the input i and θ. The commutation controller calculates the duty
cycle according to calculated θ and reference value θon and θoff. The PWM signals are generated by the
duty cycle controller. The current controller generates chopping current signals according to the tested
i and the speed error. The power converters generate driving signal of each phase winding according
to the chopping signals and PWM signals.Energies 2018, 11, 66 8 of 14 
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Figure 4. Simulation diagram of rotor position self-sensing.

Flowchart of the control algorithm is shown in Figure 5. The first initial phase is chosen by detect
the phase current i. The phase voltage u and i are sampled to calculate the ψ and estimate θ by setting
the main timer (Timer 1). When the estimate θ is near the setting θ, the θon and θoff are captured by
setting another timer (Timer 2). In order to avoid overcurrent, the sampled i and the referenced i
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are compared. The estimated ω is calculated in every electrified cycle 45◦ and the referenced ω is
−30◦. As ω changes, the setting of the Timer 1 is also changed. Usually, when ω increases, the Timer 1
interrupt period will get shorter [12].
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5.2. PSO-RVM-Based Estimation Model Training

Parameters of the prototype three-phase 12/8 structure SRM are given in Table 1, with the
prototype SRM’s rated power of 2 kW, rated RPM of 3000 r/min, rated voltage of 110 V and rotary
inertia of 0.008 kg·m2. Considering the instable open-loop control of SRM, the training and test sample
sets were both obtained under closed-loop control. To ensure that the sampled data could cover the
non-linear characteristic of the SRM flux-linkage, the overload coefficient in practical operation of
SRM was also used to determine the range of winding current detection: 0 A~20 A. Through testing,
500 sample sets were obtained and the sampled data were processed by means of normalization by
decimal scaling. Among the 500 sample sets, 300 were selected to be the training sample sets for offline
training of the PSO-RVM-based rotor position estimation model while the other 200 were used as test
sample sets to examine the estimation precision of the model.

In offline training, the initial values of α were set as follows: αi = 0.1, σ2 = 0, convergence
condition of the RVM algorithm: |ln α− ln αnew| < 10−6, number of particles: 30, number of circulation:
100, minimum adaptive threshold: fmin = 1× 10−6, inertia weight ω ranging from 0.45 to 0.95 along
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with the linear increase of circulating number, learning factor c1 = c2 = 2.05, iterative initial value
δ2 = 46.1 based on empirical selection and the δ2 optimization space as [0.01, 100] [21,22].

Table 1. Partial specification of SRM.

Parameters Value

Stator outer diameter (mm) 110
Stator inner diameter (mm) 54
Rotor outer diameter (mm) 53.4
Rotor inner diameter (mm) 34

Air gap (mm) 0.3
Stator/rotor pole arc (◦) 15

Number of phases 3

5.3. PSO-RVM-Based Estimation Model Evaluation

To examine the effectiveness of PSO-RVM in building the SRM rotor position estimation model,
a comparative analysis among PSO-RVM, RVM and SVM was performed and the kernel function
parameters δ2 of the RVM and SVM were obtained through GA. The maximum absolute error εmae

and the mean absolute percentage error εMAPE were adopted as performance indicators to measure the
model’s precision. These indicators are defined as:

εmae = max
j

∣∣∣y′j − yj

∣∣∣ (21)

εMAPE =
1
n

n

∑
j=1

∣∣∣∣∣y
′
j − yj

y′j

∣∣∣∣∣× 100% (22)

where y′j represents the predictive value and yj denotes the actual value.
With the same training and test sample sets, the performance indicators of the PSO-RVM, RVM and

SVM algorithms, such as the kernel function parameter δ2, εmae, εMAPE, number of vectors and time of
decision making, are listed in Table 2, wherein RVs and SVs represent the number of relevance vectors
and the number of support vectors, respectively.

Table 2. Compare of PSO-RVM, RVM and SVM. SVM: support vector machine

Parameter PSO-RVM RVM SVM

δ2 4.12 3.25 6.79
εmae (◦) 0.11 0.83 1.32

εMAPE (%) 0.025 0.06 0.172
RVS/SVS 5 5 23
Time (ms) 0.15 0.15 1.84

From Table 2, it is found that:

(1) The optimal kernel function parameter δ2 of PSO-RVM and that of RVM given by the PSO
algorithm and GA differ from each other. Since these optimization algorithms are subject to
different principles, it is difficult to compare the corresponding optimization results. Yet, the εmae

and εMAPE values produced by the PSO-RVM model are both smaller than those of the
RVM model, showing that the PSO algorithm outperforms GA in searching optimal kernel
function parameter.

(2) The εmae and εMAPE values given by the PSO-RVM and RVM models are smaller than those of
the SVM model because the SVM model builds a learning machine in the principle of structural
risk minimization and thus the learning machine only allows dependency acceptance or rejection.
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In contrast, the Bayes’ theorem is applied to RVM for probabilistic forecasting, which enables
quantitative evaluation of the dependency of test results. Therefore, the RVM method, compared
to SVM, has a higher degree of likelihood precision and greater generalization performance in
training sampled data.

(3) The number of relevance vectors of the SVM model is 3–4 times more than that of the PSO-RVM
model and the RVM model respectively. Because the number of relevance vectors (support
vectors) determines the computation speed in the decision-making stage of a model, the decision
making of the RVM method is shorter than that of SVM, which suggests that the results produced
by the RVM method show a higher level of sparsity and the model has a simpler structure and
shorter online computation. In general, RVM is more suitable for SRM at high speed operation.

5.4. Real-Time Estimation Effects

As to the SRM parameters listed in Table 1, the 3D finite element simulation software
Ansoft/Maxwell was used for building an SRM electromagnetic field model and carry out dynamic
simulation study in the Matlab/Simulink environment.

Figure 6a presents a comparison between the actual and estimated SRM rotor positions at
3000 r/min while Figure 6b records the rotor position estimation error. It can be seen that, at 3000 r/min,
the maximum estimation error is 360◦ × 0.011 rad/2π = 0.63◦. The minor error will not affect the phase
inversion of SRM.
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When t = 0.7 s, the disturbance torque of 0.25 Nm is added and the SRM torque-RPM response
curve is shown in Figure 7. According to Figure 7, under the circumstance of sudden load disturbance,
the motor still maintains steady operation at the given RPM and torque output promptly increases
with slight pulsation, which verified the stability of the control system.
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5.5. Experiment

The SRM rotor position self-sensoring control system is as shown in Figure 8, which is comprised
of a power converter, a digital signal processing (DSP) control and drive circuit, a voltage-current
detector, a motor and a protective circuit. Particularly, insulated gate bipolar transisor (IGBT) is
set as the main switch of the power converter; the TMS320F28335 chip of the DSP is provided by
Texas Instruments, which enables sampling of voltage, current and angular signals, flux-linkage
estimation, RVM model training, rotor position identification, motor control algorithm and PWM
signal output. In Figure 8, ADC is the analog to digital converter and SCI is the serial peripheral
interface. During experiment, a rotor-position sensor was installed to detect the actual rotor position
and improve the verification of the effectiveness of the PSO-RVM estimation model by comparing the
PSO-RVM estimated rotor position with the actual rotor position.
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Figure 9a shows the operation curve of the protocol at 1500 r/min under chopped current control,
where the current and voltage are actual values, the flux-linkage is the DSP calculation result and the
angle is a predictive value given by the PSO-RVM model; Figure 9b presents the PSO-RVM estimated
rotor position angle, actual rotor position angle through detection with sensors and estimation error,
where the maximum system position error is 1.3◦. With the same experimental methods, the operation
curve and estimation error when the protocol is at 3000 r/min and under angular position control are
shown in Figure 10a,b where the maximum system position error is 1.7◦. The experimental results with
the protocol at varied RPMs and under control by different methods suggest that the PSO-RVM-based
rotor position self-sensoring method shows a high degree of detection precision and allows SRM
position sensorless control.
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6. Conclusions

This paper realized SRM rotor position self-sensoring by using PSO-RVM as a learning machine,
building an SRM rotor position non-linear estimation model and implementing rotor position
estimation. With the optimized kernel function parameter in RVM, the PSO-RVM model can predict the
rotor position more accurate than conventional RVM model. And the proposed method has a shorter
on-line testing time compared with the SVM and NN self-sensing, which makes the motor operating
in higher speed such as 3000 r/min. Moreover, the PSO-RVM model can obtain continuous rotor angle
in the full cycle, so the motor can be operated in both current chopped control and angle position
control. Finally, the SRM rotor position self-sensoring control system is built by DSP. The simulation
and experimental results verify the effectiveness of the proposed method.
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