Logic for Communicating Automata with Parameterized Topology

Benedikt Bollig

Laboratoire Spécification et Vérification

Séminaire Vérification LIAFA
27 janvier 2014
Introduction

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.
Introduction

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.
Introduction

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot ’60s)

Every MSO formula is equivalent to some finite automaton, and vice versa.
Introduction

Objective

A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot ’60s)

Every MSO formula is equivalent to some finite automaton, and vice versa.
Introduction

Objective
A Büchi-Elgot-Trakhtenbrot theorem for communicating automata with parameterized topology.

Bridges the gap between high-level specifications and system models.

Theorem (Büchi-Elgot-Trakhtenbrot ’60s)
Every MSO formula is equivalent to some finite automaton, and vice versa.

Has been extended to trees, graphs, weighted automata, …
... and communicating automata (CA)
... and communicating automata (CA)

Büchi-Elgot-Trakthenbrot theorems:
∀-bounded channels
[Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
∃-bounded channels
[Genest-Kuske-Muscholl 2004]
unbounded channels (but weaker logic)
[B.-Leucker 2004]

But ... all results require communication topology to be fixed!
... and communicating automata (CA)

∀x(?b(x) → ∃y(x ⊳^*_{proc} y ∧ !b(y))
... and communicating automata (CA)

\[\forall x (?b(x) \rightarrow \exists y (x \triangleleft_{\text{proc}}^* y \land !b(y)) \]

Büchi-Elgot-Trakthenbrot theorems:

- **∀-bounded channels** [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
- **∀-bounded channels** [Kuske 2002]
- **∃-bounded channels** [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]
... and communicating automata (CA)

∀x(?b(x) → ∃y(x ⊳^*_proc y ∧ !b(y))

Büchi-Elgot-Trakthenbrot theorems:
- ∀-bounded channels [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
- ∀-bounded channels [Kuske 2002]
- ∃-bounded channels [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]

But ...

... all results require communication topology to be fixed!
... and communicating automata (CA)

∀x(?b(x) → ∃y(x ≺^*_proc y ∧ !b(y))

Büchi-Elgot-Trakthenbrot theorems:

- ∀-bounded channels [Henriksen-Mukund-Kumar-Sohoni-Thiagarajan 2000]
- ∀-bounded channels [Kuske 2002]
- ∃-bounded channels [Genest-Kuske-Muscholl 2004]
- unbounded channels (but weaker logic) [B.-Leucker 2004]

But ...

... all results require communication topology to be fixed!
Towards a parameterized version

Parameterized realizability

Let φ be a formula and \mathcal{T} be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $\mathcal{T} \in \mathcal{T}$?
Towards a parameterized version

Parameterized realizability

Let φ be a formula and \mathcal{T} be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $T \in \mathcal{T}$?

More precisely:

- φ is an MSO formula over MSCs (directed acyclic graphs)
- \mathcal{T} is a class of topologies of bounded degree (such as pipelines, trees, grids, and rings)
Towards a parameterized version

Parameterized realizability

Let φ be a formula and \mathcal{X} be a class of topologies.

Is there a CA that is equivalent to φ on all topologies $\mathcal{T} \in \mathcal{X}$?

More precisely:

- φ is an MSO formula over MSCs (directed acyclic graphs)
- \mathcal{X} is a class of topologies of bounded degree
 (such as pipelines, trees, grids, and rings)

Need for new notions

- Topologies (of bounded degree)
- Parameterized communicating automata (PCA)
Outline

- Topologies and MSCs
Outline

- Topologies and MSCs
- Parameterized communicating automata
Negative results: There is a formula $\varphi \in C$ that is not realizable for T.

Positive results: All formulas $\varphi \in C$ are realizable for T.

Outline

- Topologies and MSCs
- Parameterized communicating automata
- MSO logic
Outline

- Topologies and MSCs
- Parameterized communicating automata
- MSO logic
- Negative results:
 There is a formula $\varphi \in C$ that is not realizable for \mathcal{T}.
Outline

- Topologies and MSCs
- Parameterized communicating automata
- MSO logic

Negative results:

There is a formula $\varphi \in C$ that is not realizable for \mathcal{I}.

Positive results:

All formulas $\varphi \in C$ are realizable for \mathcal{I}.
Topologies and MSCs
Topologies

Topology

\[
b \quad a
\]
Topologies

Topology

\[a \quad b \quad a \quad b \quad a \quad b \quad a \quad b \]
Topologies

Topology

$\begin{array}{c}
a \quad b \quad a \quad b \quad a \quad b \quad a \quad b
\end{array}$
Topologies and MSCs
Topologies

Pipeline

\[
\begin{align*}
& a \quad b \\
& a \quad b
\end{align*}
\]
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over \mathcal{N} is a pair $\mathcal{T} = (P, \rightarrow)$ where

- P is the nonempty finite set of processes
- $\rightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Topologies and MSCs
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A **topology** over \mathcal{N} is a pair $\mathcal{T} = (P, \rightarrow)$ where

- P is the nonempty finite set of processes
- $\rightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \xrightarrow{a \ b} q$, the following hold:
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A **topology** over \mathcal{N} is a pair $\mathcal{T} = (P, \longrightarrow)$ where

- P is the nonempty finite set of processes
- $\longrightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \xleftarrow{a \ b} q$, the following hold:

1. $p \neq q$
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A **topology** over \mathcal{N} is a pair $\mathcal{T} = (P, \rightarrow)$ where

- P is the nonempty finite set of processes
- $\rightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \xrightarrow{a\ b} q$, the following hold:

1. $p \neq q$
2. $q \xrightarrow{b\ a} p$
Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A topology over \mathcal{N} is a pair $\mathcal{T} = (P, \rightarrow)$ where

- P is the nonempty finite set of processes
- $\rightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \xrightarrow{a \ b} q$, the following hold:

1. $p \neq q$
2. $q \xrightarrow{b \ a} p$
3. $p \xrightarrow{a' \ b'} q'$ implies $(a = a' \iff q = q')$
Topologies

Pipeline

Fix finite set $\mathcal{N} = \{a, b, c, \ldots\}$ of interface names.

Definition

A **topology** over \mathcal{N} is a pair $T = (P, \rightarrow)$ where

- P is the nonempty finite set of processes
- $\rightarrow \subseteq P \times \mathcal{N} \times \mathcal{N} \times P$ is the edge relation

Whenever $p \xrightarrow{a \ b} q$, the following hold:

1. $p \neq q$
2. $q \xleftarrow{b \ a} p$
3. $p \xrightarrow{a' \ b'} q'$ implies $(a = a' \iff q = q')$
Topologies

Pipeline $\mathcal{T}_{\text{lin}}^5$

Diagram:

- A linear pipeline with five nodes labeled a, b, a, b, a, b. Each node is connected to the next in a linear sequence.
Topologies

Pipeline $\mathcal{T}_{\text{lin}}^5$

Tree

Topologies and MSCs
Topologies

Pipeline $\mathcal{T}_{\text{lin}}^5$

```
  a  b  a  b  a  b  a  b
```

Tree

```
  a  
 /   
 b  c  d  
   |   |   
   a  b  a
```

Grid $\mathcal{T}_{\text{grid}}^{3,4}$

```
  a  b  a  b  a  b  a  b
  c  c  c  c  c  c  c  c
da  d  d  d  d  d  d  d
  a  b  a  b  a  b  a  b
  c  c  c  c  c  c  c  c
da  d  d  d  d  d  d  d
  a  b  a  b  a  b  a  b
  c  c  c  c  c  c  c  c
```

Topologies and MSCs
8 / 34
Topologies

Pipeline $\mathcal{T}_{\text{lin}}^5$

Grid $\mathcal{T}_{\text{grid}}^{3,4}$

Tree

Ring $\mathcal{T}_{\text{ring}}^5$
Message Sequence Charts (MSCs)

MSC

Definition
An MSC over $\mathcal{T} = (\mathcal{P},\mathcal{E})$ is a triple $\mathcal{M} = (\mathcal{E}, \prec, \ell)$ where

- \mathcal{E} is the nonempty finite set of events
- $\prec = \prec_{\text{proc}} \sqcup \prec_{\text{msg}} \subseteq \mathcal{E} \times \mathcal{E}$ is acyclic
- $\ell : \mathcal{E} \to \mathcal{P}^+$ some extra conditions
Message Sequence Charts (MSCs)

Definition

An **MSC** over $\mathcal{T} = (P, \rightarrow)$ is a triple $M = (E, \prec, \ell)$ where
Definition

An **MSC** over $\mathcal{T} = (P, \rightarrow)$ is a triple $M = (E, \triangleleft, \ell)$ where

- E is the nonempty finite set of events
Message Sequence Charts (MSCs)

MSC

Definition

An MSC over $T = (P, \longrightarrow)$ is a triple $M = (E, \triangleleft, \ell)$ where

- E is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\text{proc}} \cup \triangleleft_{\text{msg}} \subseteq E \times E$ acyclic
Message Sequence Charts (MSCs)

Definition

An MSC over $\mathcal{T} = (P, \rightarrow)$ is a triple $M = (E, \triangleleft, \ell)$ where

- E is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\text{proc}} \cup \triangleleft_{\text{msg}} \subseteq E \times E$ acyclic
- $\ell : E \rightarrow P$
Message Sequence Charts (MSCs)

Definition

An MSC over $\mathcal{T} = (P, \rightarrow)$ is a triple $M = (E, \triangleleft, \ell)$ where

- E is the nonempty finite set of events
- $\triangleleft = \triangleleft_{\text{proc}} \cup \triangleleft_{\text{msg}} \subseteq E \times E$ acyclic
- $\ell : E \rightarrow P$
Message Sequence Charts (MSCs)

Definition

An **MSC** over \(\mathcal{T} = (P, \longrightarrow) \) is a triple \(M = (E, \triangleleft, \ell) \) where

- \(E \) is the nonempty finite set of events
- \(\triangleleft = \triangleleft_{\text{proc}} \cup \triangleleft_{\text{msg}} \subseteq E \times E \) acyclic
- \(\ell : E \rightarrow P \)

+ some extra conditions
Parameterized Communicating Automata (PCA)
Parameterized communicating automata (PCA)

Parameters communicating automata \(A \) over \(\{a, b\} \)

\[
\begin{align*}
\{a\} & \xrightarrow{!\text{req}\, a} s_1 & \xrightarrow{?\text{ack}\, a} s_2 & \xrightarrow{!\text{req}\, a} t_4 & \xrightarrow{?\text{ack}\, b} t_3 & \xrightarrow{!\text{ack}\, b} u_2 \\
\{a, b\} & \xrightarrow{?\text{req}\, b} t_0 & \xrightarrow{!\text{req}\, a} t_1 & \xrightarrow{?\text{req}\, b} u_0 & \xrightarrow{?\text{ack}\, a} t_2 & \xrightarrow{?\text{ack}\, b} u_1 \\
\{b\} & \xrightarrow{?\text{req}\, b} u_1 & \xrightarrow{?\text{ack}\, b} \end{align*}
\]
Parameterized Communicating Automata (PCA)

PCA \mathcal{A} over $\{a, b\}$

$\{a\} \quad \{a, b\} \quad \{b\}$

- $s_0 \xrightarrow{!\text{req}a} s_1 \xrightarrow{?\text{ack}a} s_2 \xrightarrow{!\text{ack}a} t_3 \xrightarrow{!\text{ack}b} t_4$
- $t_0 \xrightarrow{?\text{req}b} t_1 \xrightarrow{!\text{req}a} t_2 \xrightarrow{?\text{req}b} u_0 \xrightarrow{!\text{ack}b} u_1 \xrightarrow{!\text{ack}b} u_2$

PCA \mathcal{A} running on $\mathcal{T}_{\text{lin}}^5$

- $a \quad b \quad a \quad b \quad a \quad b \quad a \quad b$
Parameterized communicating automata (PCA)

PCA \mathcal{A} over $\{a, b\}$

- $\{a, b\}$
- $\{b\}$

\mathcal{A} running on T_{lin}^5

- $a \rightarrow b \rightarrow a \rightarrow b \rightarrow a \rightarrow b$
- $s_0 \rightarrow s_1 \rightarrow s_2$
Parameterized communicating automata (PCA)

PCA \mathcal{A} over $\{a, b\}$

PCA \mathcal{A} running on $\mathcal{T}_{\text{lin}}^5$
Parameterized communicating automata (PCA)

PCA \(A \) over \(\{a, b\} \)

- \[\{a, b\} \]
- \(t_0 \)
- \(?_{\text{req}}b\)
- \(t_1 \)
- \(!_{\text{req}}a\)
- \(t_2 \)
- \(?_{\text{ack}}a\)
- \(t_3 \)
- \(!_{\text{ack}}b\)
- \(t_4 \)

PCA \(A \) running on \(\mathcal{T}_{\text{lin}}^5 \)

- \(a \) \(b \)
- \(s_0 \)
- \(t_0 \)
- \(?_{\text{req}}b\)
- \(s_1 \)
- \(t_1 \)
- \(!_{\text{req}}a\)
- \(s_2 \)
- \(t_2 \)
- \(?_{\text{ack}}a\)
- \(s_3 \)
- \(t_3 \)
- \(!_{\text{ack}}b\)
- \(s_4 \)
- \(t_4 \)

- \(u_0 \)
- \(?_{\text{req}}b\)
- \(u_1 \)
- \(!_{\text{ack}}b\)
- \(u_2 \)

Accepted language \(L_{\mathcal{T}_{\text{lin}}^n}(A) = \{M_{\text{lin}}^n\} \) for all \(n \geq 2 \)
Parameterized communicating automata (PCA)

PCA \mathcal{A} over $\{a, b\}$

PCA \mathcal{A} running on T_{lin}^5

Accepted language $L_{T_{\text{lin}}}^n(\mathcal{A}) = \{M_{\text{lin}}^n\}$ for all $n \geq 2$.
Parameterized communicating automata (PCA)

Parameterized Communicating Automata (PCA)

\[\text{PCA } A \text{ running on } \mathcal{T}_{\text{lin}}^5 \]

![Diagram of PCA A running on T_{lin}^5](image-url)
Parameterized communicating automata (PCA)

PCA \(A \) running on \(\mathcal{T}_{\text{lin}}^5 \)

![Diagram of a parameterized communicating automaton running on a linear trace of length 5](image)

- States: \(s_0, s_1, s_2, u_0, u_1, u_2 \)
- Transitions:
 - \(s_0 \to t_0 \): \(a \), \(b \)
 - \(t_0 \to t_1 \): \(a \), \(b \)
 - \(t_1 \to t_2 \): \(a \), \(b \)
 - \(t_2 \to t_3 \): \(a \), \(b \)
 - \(t_3 \to t_4 \): \(a \), \(b \)
 - \(t_4 \to u_0, u_1, u_2 \): \(a \), \(b \)

- Inputs:
 - \(!\text{req} a, !\text{req} b \)
 - \(?\text{ack} a, ?\text{ack} b \)

- Accepted language:
 - \(L_{\text{lin}}(A) = \{ M_{\text{lin}} \} \) for all \(n \geq 2 \)
Parameterized communicating automata (PCA)

PCA \mathcal{A} running on $\mathcal{T}_{\text{lin}}^5$
Parameterized communicating automata (PCA)

\[M_{\text{lin}}^5 = \in L_{T_{\text{lin}}^5}(A) \]
Parameterized communicating automata (PCA)

Accepted language

\[L_{\mathcal{T}_{\text{lin}}}^n (A) = \{ M_{\text{lin}}^n \} \]
for all \(n \geq 2 \)

\[M_{\text{lin}}^5 = \]

\[\in L_{\mathcal{T}_{\text{lin}}}^5 (A) \]
Parameterized communicating automata (PCA)

PCA \(\mathcal{A} \) over \(\{a, b\} \)

- **\(s_0 \)**
 - \(\text{!req } a \)
 - \(\text{?ack } a \)

- **\(s_1 \)**
 - \(\text{?req } b \)
 - \(\text{!req } a \)

- **\(s_2 \)**
 - \(\text{?ack } a \)
 - \(\text{?req } b \)

- **\(t_0 \)**
 - \(\text{?req } b \)

- **\(t_1 \)**
 - \(\text{!req } a \)
 - \(\text{!ack } a \)

- **\(t_2 \)**
 - \(\text{?ack } a \)

- **\(t_3 \)**
 - \(\text{!ack } b \)

- **\(t_4 \)**

- **\(u_0 \)**
 - \(\text{?req } b \)

- **\(u_1 \)**
 - \(\text{!req } a \)

- **\(u_2 \)**

\(S \) finite set of states
\(\text{Msg} \) finite set of messages
\(I : (2^N \backslash \{\emptyset\}) \rightarrow 2^S \) initial states
\(\Delta \) the set of transitions
\(F \) a boolean combination of statements

\[\langle \#(s) \geq k \rangle \] with \(s \in S \) and \(k \in \mathbb{N} \)

\(s \) occurs at least \(k \) times as the terminal state of an active process.
Parameterized communicating automata (PCA)

Definition

A PCA over \(\mathcal{N} \) is a tuple \((S, \text{Msg}, \Delta, I, F)\):

- \(S \) finite set of states
Parameterized communicating automata (PCA)

Definition

A PCA over \(N \) is a tuple \((S, \text{Msg}, \Delta, I, F)\):

- \(S \) finite set of states
- \(\text{Msg} \) finite set of messages

\[F = \bigwedge_{s \in S \setminus \{s_2, t_4, u_2\}} \neg \langle #(s) \geq 1 \rangle \]

\(s \) occurs at least \(k \) times as the terminal state of an active process

PCA \(A \) over \(\{a, b\} \)

- **States**
 - \(s_0 \)
 - \(s_1 \)
 - \(s_2 \)
 - \(t_0 \)
 - \(t_1 \)
 - \(t_2 \)
 - \(t_3 \)
 - \(t_4 \)
 - \(u_0 \)
 - \(u_1 \)
 - \(u_2 \)

- **Transitions**
 - \(!\text{req} a \) from \(s_0 \) to \(s_1 \)
 - \(?\text{ack} a \) from \(s_1 \) to \(s_2 \)
 - \(?\text{req} b \) from \(s_0 \) to \(t_0 \)
 - \(?\text{ack} a \) from \(t_0 \) to \(t_1 \)
 - \(!\text{req} a \) from \(t_1 \) to \(t_2 \)
 - \(?\text{ack} b \) from \(t_2 \) to \(t_3 \)
 - \(!\text{req} b \) from \(s_1 \) to \(u_0 \)
 - \(?\text{ack} b \) from \(u_0 \) to \(u_1 \)
 - \(!\text{ack} b \) from \(u_1 \) to \(u_2 \)
 - \(!\text{ack} b \) from \(u_2 \) to \(t_4 \)
Parameterized communicating automata (PCA)

Definition

A PCA over \(\mathcal{N} \) is a tuple \((S, \text{Msg}, \Delta, I, F)\):

- **S** finite set of states
- **\text{Msg}** finite set of messages
- **I** : \((2^\mathcal{N} \setminus \{\emptyset\}) \rightarrow 2^S\) initial states

\[I = \bigwedge_{s \in S \setminus \{s_2, t_4, u_2\}} \neg \langle \#(s) \geq 1 \rangle \]
Parameterized communicating automata (PCA)

Definition

A PCA over \mathcal{N} is a tuple $(S, \text{Msg}, \Delta, I, F)$:
- S finite set of states
- Msg finite set of messages
- $I : (2^\mathcal{N} \setminus \{\emptyset\}) \rightarrow 2^S$ initial states
- Δ the set of transitions
Parameterized communicating automata (PCA)

Definition

A PCA over \mathcal{N} is a tuple (S, Msg, Δ, I, F):

- S finite set of states
- Msg finite set of messages
- $I : (2^\mathcal{N} \setminus \{\emptyset\}) \to 2^S$ initial states
- Δ the set of transitions
- F a boolean combination of statements
 $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$
Parameterized communicating automata (PCA)

PCA \mathcal{A} over $\{a, b\}$

- $\{a\} \rightarrow s_0 \rightarrow t_0 \rightarrow u_0 \rightarrow \{b\}$
 - s_0
 - t_0
 - u_0

- $\{a, b\} \rightarrow t_1 \rightarrow u_1 \rightarrow \{a\}$
 - t_1
 - u_1

- $\{a\} \rightarrow s_1 \rightarrow t_2 \rightarrow u_2 \rightarrow \{b\}$
 - s_1
 - t_2
 - u_2

- $\{b\} \rightarrow s_2 \rightarrow t_3 \rightarrow u_3 \rightarrow \{a\}$
 - s_2
 - t_3
 - u_3

Definition

A PCA over \mathcal{N} is a tuple $(S, \text{Msg}, \Delta, I, F)$:

- S finite set of states
- Msg finite set of messages
- $I : (2^N \setminus \{\emptyset\}) \rightarrow 2^S$ initial states
- Δ the set of transitions
- F a boolean combination of statements $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$
 - “s occurs at least k times as the terminal state of an active process”
Parameterized communicating automata (PCA)

Definition

A PCA over \mathcal{N} is a tuple $(S, \text{Msg}, \Delta, I, F)$:

- S finite set of states
- Msg finite set of messages
- $I : (2^\mathcal{N} \setminus \{\emptyset\}) \rightarrow 2^S$ initial states
- Δ the set of transitions
- F a boolean combination of statements $\langle \#(s) \geq k \rangle$ with $s \in S$ and $k \in \mathbb{N}$

 “s occurs at least k times as the terminal state of an active process”

$$F = \bigwedge_{s \in S \setminus \{s_2, t_4, u_2\}} \neg \langle \#(s) \geq 1 \rangle$$
Parameterized communicating automata (PCA)

A PCA cannot say “the topology has at least 5 processes”
Parameterized communicating automata (PCA)

A PCA cannot say “the topology has at least 5 processes”

A PCA can say “at least 5 processes of type \{a, b\} are active”
A PCA cannot say “the topology has at least 5 processes”

A PCA can say “at least 5 processes of type \{a, b\} are active”

A PCA cannot distinguish between:

\[\begin{array}{c}
\text{a} \quad \text{b} \\
\downarrow \quad \downarrow \\
\text{a} \quad \text{b} \\
\end{array} \]
Parameterized communicating automata (PCA)

A PCA cannot say “the topology has at least 5 processes”

A PCA can say “at least 5 processes of type \{a, b\} are active”

A PCA cannot distinguish between:
Parameterized communicating automata (PCA)

A PCA cannot say “the topology has at least 5 processes”

A PCA can say “at least 5 processes of type \{a, b\} are active”

A PCA cannot distinguish between:

```
a  b  a  b  a  b  a  b  a  b  a  b
```

```
a  b  a  b  a  b  a  b  a  b  a  b
```

```
a  b  a  b  a  b  a  b  a  b  a  b
```

```
a  b  a  b  a  b  a  b  a  b  a  b
```
Parameterized communicating automata (PCA)

- A PCA cannot say “the topology has at least 5 processes”
- A PCA can say “at least 5 processes of type \{a, b\} are active”
- A PCA cannot distinguish between:

![Diagram showing the inability to distinguish between two similar topologies]
MSO Logic
MSO logic

\[\varphi ::= !a(x) \mid ?a(x) \mid a \in \text{type}(x) \mid \]
\[x \triangleleft_{\text{proc}} y \mid x \triangleleft_{\text{proc}}^{*} y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft^{*} y \mid x \sim y \mid \]
\[x = y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi \]

where \(a \in \mathcal{N} \)
MSO logic

\[\varphi ::= !a(x) \mid ?a(x) \mid a \in \text{type}(x) \mid \]

\[x \triangleleft_{\text{proc}} y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft_{\ast} y \mid x \sim y \mid \]

\[x = y \mid x \in X \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \exists X \varphi \]

where \(a \in \mathcal{N} \)

\(x \sim y \) says that \(x \) and \(y \) are located on the same process.
MSO logic

\[\varphi ::= !a(x) \mid ?a(x) \mid a \in \text{type}(x) \mid \]
\[x \preceq_{\text{proc}} y \mid x \preceq_{\text{proc}}^* y \mid x \preceq_{\text{msg}} y \mid x \preceq^* y \mid x \sim y \mid \]
\[x = y \mid x \in X \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \exists X \varphi \]

where \(a \in \mathcal{N} \)

\(x \sim y \) says that \(x \) and \(y \) are located on the same process.

Define fragments:
- FO: first-order logic, without \(\exists X \varphi \)
MSO Logic

MSO logic

$$\varphi ::= !a(x) \mid ?a(x) \mid a \in \text{type}(x) \mid$$

$$x \triangleleft_{\text{proc}} y \mid x \triangleleft^*_{\text{proc}} y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft^* y \mid x \sim y \mid$$

$$x = y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi$$

where \(a \in \mathcal{N} \)

\(x \sim y \) says that \(x \) and \(y \) are located on the same process.

Define fragments:

- **FO**: first-order logic, without \(\exists X \varphi \)
- **EMSO**: formulas of the form \(\exists X_1 \ldots \exists X_n \varphi \) with \(\varphi \in \text{FO} \)
MSO logic

\[\varphi ::= !a(x) \mid ?a(x) \mid a \in \text{type}(x) \mid \]

\[\sigma \subseteq x \triangleleft_{\text{proc}} y \mid x \triangleleft_{\text{proc}}^* y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft^* y \mid x \sim y \mid \]

\[x = y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi \]

where \(a \in \mathcal{N} \)

\(x \sim y \) says that \(x \) and \(y \) are located on the same process.

Define fragments:

- **FO**: first-order logic, without \(\exists X \varphi \)
- **EMSO**: formulas of the form \(\exists X_1 \ldots \exists X_n \varphi \) with \(\varphi \in \text{FO} \)
- **FO[\(\sigma \)]** and **EMSO[\(\sigma \)]** (e.g., FO[\(\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}} \)])
MSO logic

MSO logic

\[\varphi ::= \!a(x) \mid \?a(x) \mid a \in \text{type}(x) \mid \]

\[\sigma \subseteq x \triangleleft_{\text{proc}} y \mid x \triangleleft_{\text{proc}}^* y \mid x \triangleleft_{\text{msg}} y \mid x \triangleleft^* y \mid x \sim y \mid \]

\[x = y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi \]

where \(a \in \mathcal{N} \)

\(x \sim y \) says that \(x \) and \(y \) are located on the same process.

Define fragments:

- FO: first-order logic, without \(\exists X \varphi \)
- EMSO: formulas of the form \(\exists X_1 \ldots \exists X_n \varphi \) with \(\varphi \in \text{FO} \)
- FO[\(\sigma \)] and EMSO[\(\sigma \)] (e.g., FO[\(\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}} \)])

Let \(L_{\mathcal{T}}(\varphi) \) be the set of MSCs over \(\mathcal{T} \) that are a model of \(\varphi \).
MSO logic

MSC M^6_{lin}
MSC M^6_{lin}

$M^6_{\text{lin}} \models \forall x (?b(x) \rightarrow \exists y (x \triangleleft^*_\text{proc} y \land !b(y)))$
MSO logic

MSC M_{lin}^6

$M_{\text{lin}}^6 \models \forall x(\exists y(x \triangleleft^*_\text{proc} y \land \neg b(y))) \in FO[\triangleleft^*_\text{proc}]$
\(M_{\text{lin}}^6 \models \forall x (\neg b(x) \rightarrow \exists y (x \triangleleft^* y \land \neg b(y))) \in \text{FO}[\triangleleft^*_\text{proc}] \)

\(M_{\text{lin}}^6 \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x) \)
MSC M_{lin}^6

- $M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \triangleleft^*_{\text{proc}} y \land !b(y))) \in \text{FO}[\triangleleft^*_{\text{proc}}]$
- $M_{\text{lin}}^6 \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x)$
- $M_{\text{lin}}^6 \not\models \exists x \exists y (b \not\in \text{type}(x) \land a \not\in \text{type}(y) \land x \triangleleft_{\text{msg}} y)$
MSC M_{lin}^6

$M_{\text{lin}}^6 \models \forall x (?b(x) \rightarrow \exists y (x \triangleleft^*_{\text{proc}} y \land !b(y))) \in \text{FO}[\triangleleft^*_{\text{proc}}]$,

$M_{\text{lin}}^6 \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x)$,

$M_{\text{lin}}^6 \not\models \exists x \exists y (b \not\in \text{type}(x) \land a \not\in \text{type}(y) \land x \triangleleft_{\text{msg}} y) =: \varphi$
MSC M^6_{lin}

- $M^6_{\text{lin}} \models \forall x (\exists b(x) \rightarrow \exists y (x \triangleleft^*_{\text{proc}} y \land \neg b(y))) \in \text{FO}[\triangleleft^*_{\text{proc}}]$
- $M^6_{\text{lin}} \models \forall x \forall y (x \triangleleft^* y \lor y \triangleleft^* x)$
- $M^6_{\text{lin}} \not\models \exists x \exists y (b \notin \text{type}(x) \land a \notin \text{type}(y) \land x \triangleleft_{\text{msg}} y) =: \varphi$
- $M^6_{\text{lin}} \models \varphi \iff n = 2$
Positive results

Theorem

For every PCA \mathcal{A}, there is a formula $\varphi \in \text{EMSO}[^{\ll}_{\text{proc}}, ^{\ll}_{\text{msg}}]$ that is equivalent to \mathcal{A} on all topologies.
Positive results

Theorem

For every PCA \mathcal{A}, there is a formula $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$ that is equivalent to \mathcal{A} on all topologies.

Proof

Standard.
Negative Results
Restrictions on topologies are necessary

Theorem

There exists a sentence \(\varphi \in \text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}] \) over \(\{a, b\} \) such that, for all PCA \(\mathcal{A} \), there is a ring forest \(\mathcal{T} \) with \(L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi) \).
Restrictions on topologies are necessary

Theorem
There exists a sentence $\varphi \in \text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}]$ over $\{a, b\}$ such that, for all PCA \mathcal{A}, there is a ring forest \mathcal{T} with $L_{\mathcal{T}}(\mathcal{A}) \neq L_{\mathcal{T}}(\varphi)$.

Proof

$$\varphi = \forall x \exists x_1, \ldots, x_6 (x \in \{x_1, \ldots, x_6\} \land \text{cycle}(x_1, \ldots, x_6))$$
Restrictions on topologies are necessary

Suppose there is A such that $L_T(A) = L_T(\phi)$ for all ring forests T. We have $M = \ldots M \sqcup \ldots \sqcup M$ for all $n \in L_T$ ring $\ldots \sqcup T \ldots$ ring (A) for all $n \geq 1$. For large enough n, there is a run of A that behaves the same on two copies of M. Replace the two copies with MSc over T. Contradiction. □

Lesson learned: PCA have limited ability to "detect" cycles.
Restrictions on topologies are necessary

Suppose there is \mathcal{A} such that $L_{\mathcal{T}}(\mathcal{A}) = L_{\mathcal{T}}(\varphi)$ for all ring forests \mathcal{T}.

\[M = \]

- Lesson learned: PCA have limited ability to "detect" cycles.
Restrictions on topologies are necessary

\[M = \]

- Suppose there is \(\mathcal{A} \) such that \(L_T(\mathcal{A}) = L_T(\varphi) \) for all ring forests \(T \).
- We have \(\biguplus_{n} M \in \mathcal{L}(\mathcal{T}^{3}_{\text{ring}} \uplus \ldots \uplus \mathcal{T}^{3}_{\text{ring}}(\mathcal{A})) \) for all \(n \geq 1 \).
Restrictions on topologies are necessary

\[M = \]

- Suppose there is \(\mathcal{A} \) such that \(L_T(\mathcal{A}) = L_T(\varphi) \) for all ring forests \(T \).
- We have \(M \uplus \ldots \uplus M \in L_{T_{\text{ring}}}^3 \uplus \ldots \uplus T_{\text{ring}}^3 (\mathcal{A}) \) for all \(n \geq 1 \).
- For large enough \(n \), there is a run of \(\mathcal{A} \) that behaves the same on two copies of \(M \).
Restrictions on topologies are necessary

Suppose there is \mathcal{A} such that $L_{\mathcal{T}}(\mathcal{A}) = L_{\mathcal{T}}(\varphi)$ for all ring forests \mathcal{T}.

We have $M \uplus \ldots \uplus M \in L_{\mathcal{T}_{\text{ring}}^3 \uplus \ldots \uplus \mathcal{T}_{\text{ring}}^3}(\mathcal{A})$ for all $n \geq 1$.

For large enough n, there is a run of \mathcal{A} that behaves the same on two copies of M.

Replace the two copies with MSC over $\mathcal{T}_{\text{ring}}^6$. Contradiction. □
Restrictions on topologies are necessary

Suppose there is \mathcal{A} such that $L_T(\mathcal{A}) = L_T(\varphi)$ for all ring forests T.

We have $M \uplus \ldots \uplus M \in L_{T^{3}}_{\text{ring}} \uplus \ldots \uplus T_{\text{ring}}^{3}(\mathcal{A})$ for all $n \geq 1$.

For large enough n, there is a run of \mathcal{A} that behaves the same on two copies of M.

Replace the two copies with MSC over T^{6}_{ring}. Contradiction.

Lesson learned

PCA have limited ability to “detect” cycles.
Restrictions on logic are necessary

Theorem

There exists a sentence $\varphi \in \text{FO}[\triangleleft^*_{\text{proc}}, \triangleleft_{\text{msg}}, \triangleleft^*]$ over $\{a, b, c, d\}$ such that, for all PCA A, there is a tree T with $L_T(A) \neq L_T(\varphi)$.
Restrictions on logic are necessary

Theorem

There exists a sentence \(\varphi \in \text{FO}[\langle \mathsf{proc}^*, \mathsf{msg}^*, \mathsf{msg}^* \rangle] \) over \(\{a, b, c, d\} \) such that, for all PCA \(A \), there is a tree \(T \) with \(L_T(A) \neq L_T(\varphi) \).

Proof (idea goes back to [Thomas 1996])

\[
\begin{pmatrix}
\bullet & \circ & \circ & \circ \\
\circ & \circ & \bullet & \circ
\end{pmatrix}
\]
Restrictions on logic are necessary

Theorem

There exists a sentence \(\varphi \in FO[\preceq^\ast_{\text{proc}}, \preceq_{\text{msg}}, \preceq^\ast]\) over \{a, b, c, d\} such that, for all PCA \(A \), there is a tree \(T \) with \(L_T(A) \neq L_T(\varphi) \).

Proof (idea goes back to [Thomas 1996])

Lesson learned

Look at more “local” logics.
Positive Results
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \text{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula \(\varphi \in \text{FO}[\sigma] \) is equivalent to a formula of the form
\[
\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]
\]
where \(\psi \) is \(r \)-local around \(y \), for some \(r \geq 1 \) (quantification is restricted to elements of distance \(\leq r \) from \(y \)).
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \text{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \text{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

$r = 3$

Positive Results
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \text{FO}[\sigma]$ is equivalent to a formula of the form $\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).
Locality of FO logic

Theorem [Schwentick-Barthelmann 1999]

Every formula $\varphi \in \text{FO}[\sigma]$ is equivalent to a formula of the form

$\exists x_1 \ldots \exists x_n \forall y \psi \in \text{FO}[\sigma]$ where ψ is r-local around y, for some $r \geq 1$ (quantification is restricted to elements of distance $\leq r$ from y).

\[
r = 3 \\
\lceil r/2 \rceil = 2 \ \ \ \ \ \ \ [r/2] = 2
\]
Positive results

Theorem

Let \(\varphi \in \text{EMSO}[\prec^*_\text{proc}, \prec_\text{msg}], \ B \geq 1, \) and \(\mathcal{T} \) be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \(A \) such that, for all \(\mathcal{T} \in \mathcal{T} \), we have \(L_B^\mathcal{T}(A) = L_B^\mathcal{T}(\varphi) \).

Here, \(L_B^\mathcal{T}(A) \) is the restriction of \(L_T^A \) to \(B \)-bounded MSCs.

Theorem

Let \(\varphi \in \text{EMSO}[\prec^*_\text{proc}, \prec_\text{msg}], \ B \geq 1, \) and \(\mathcal{T} \) be a \((r_\varphi + 2)\)-unambiguous set of topologies. There is a PCA \(A \) such that, for all \(\mathcal{T} \in \mathcal{T} \), we have \(L_B^\mathcal{T}(A) = L_B^\mathcal{T}(\varphi) \).

Here, \(r_\varphi \) is the radius associated with the first-order kernel of \(\varphi \).
Positive results

Theorem

Let $\varphi \in \text{EMSO}[\langle^*_\text{proc}, \langle_\text{msg}\rangle], B \geq 1$, and \mathcal{T} be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA A such that, for all $T \in \mathcal{T}$, we have $L_B^T(A) = L_B^T(\varphi)$.
Here, $L_B^T(A)$ is the restriction of $L_T(A)$ to B-bounded MSCs.
Positive results

Theorem

Let \(\varphi \in \text{EMSO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}] \), \(B \geq 1 \), and \(\mathcal{T} \) be any of the following:
- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \(A \) such that, for all \(T \in \mathcal{T} \), we have \(L_B^T(A) = L_B^T(\varphi) \).

Here, \(r_\varphi \) is the radius associated with the first-order kernel of \(\varphi \).
Positive results

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$, $B \geq 1$, and \mathcal{T} be any of the following:
- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA A such that, for all $\mathcal{T} \in \mathcal{S}$, we have $L^B_\mathcal{T}(A) = L^B_\mathcal{T}(\varphi)$.

Here, $L^B_\mathcal{T}(A)$ is the restriction of $L_\mathcal{T}(A)$ to B-bounded MSCs.
Positive results

Corollary

Let $\varphi \in \text{EMSO}[\triangleleft^*_\text{proc}, \triangleleft_\text{msg}], \ B \geq 1,$ and \mathcal{T} be any of the following:
- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{Z},$ we have $L^B_{\mathcal{T}}(\mathcal{A}) = L^B_{\mathcal{T}}(\varphi).$

Here, $L^B_{\mathcal{T}}(\mathcal{A})$ is the restriction of $L_{\mathcal{T}}(\mathcal{A})$ to B-bounded MSCs.
Positive results

Corollary

Let $\varphi \in \text{EMSO}[\prec^*_{\text{proc}}, \prec_{\text{msg}}]$, $B \geq 1$, and \mathcal{I} be any of the following:

- the set of pipeline topologies,
- the set of grid topologies,
- the set of tree topologies,
- the set of ring topologies.

There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{I}$, we have $L_B^\mathcal{T}(\mathcal{A}) = L_B^\mathcal{T}(\varphi)$.

Here, $L_B^\mathcal{T}(\mathcal{A})$ is the restriction of $L_\mathcal{T}(\mathcal{A})$ to B-bounded MSCs.

Theorem

Let $\varphi \in \text{EMSO}[\prec^*_{\text{proc}}, \prec_{\text{msg}}]$, $B \geq 1$, and \mathcal{I} be a $(r_\varphi + 2)$-unambiguous set of topologies. There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{I}$, we have $L_B^\mathcal{T}(\mathcal{A}) = L_B^\mathcal{T}(\varphi)$.

Here, r_φ is the radius associated with the first-order kernel of φ.
Unambiguous topology classes

Definition

Let \(k \in \mathbb{N} \). A class \(\mathcal{F} \) of topologies is *\(k \)-unambiguous* if, for all \(w \in (\mathcal{N} \times \mathcal{N})^* \) with \(|w| \leq k\), all \((P, \rightarrow), (P', \rightarrow') \in \mathcal{F}\), and all processes \(p, q \in P \) and \(p', q' \in P' \) such that \(p \xrightarrow{w} q \) and \(p' \xrightarrow{w'} q' \), we have \(p = q \) iff \(p' = q' \).
Unambiguous topology classes

Definition
Let $k \in \mathbb{N}$. A class \mathcal{T} of topologies is k-unambiguous if, for all $w \in (\mathcal{N} \times \mathcal{N})^*$ with $|w| \leq k$, all $(P, \rightarrow), (P', \rightarrow') \in \mathcal{T}$, and all processes $p, q \in P$ and $p', q' \in P'$ such that $p \xrightarrow{w} q$ and $p' \xrightarrow{w'} q'$, we have $p = q$ iff $p' = q'$.

In other words:
If w forms a cycle in a topology from \mathcal{T}, then it forms a cycle anywhere, in any topology of \mathcal{T} (if it is applicable).
Unambiguous topology classes

- **Pipelines** k-unambiguous for all $k \in \mathbb{N}$

- **Trees** k-unambiguous for all $k \in \mathbb{N}$

- **Grids** k-unambiguous for all $k \in \mathbb{N}$

- **Rings** not k-unambiguous for all $k \geq 3$

But:
The class of rings of size $\geq k + 1$ is k-unambiguous, for all $k \in \mathbb{N}$.

Every single ring is k-unambiguous, for all $k \in \mathbb{N}$.
Unambiguous topology classes

Pipelines

- k-unambiguous for all $k \in \mathbb{N}$

Trees

- k-unambiguous for all $k \in \mathbb{N}$

Rings

- Not k-unambiguous for all $k \geq 3$

But:
The class of rings of size $\geq k + 1$ is k-unambiguous, for all $k \in \mathbb{N}$.

Every single ring is k-unambiguous, for all $k \in \mathbb{N}$.
Unambiguous topology classes

Pipelines \checkmark k-unambiguous for all $k \in \mathbb{N}$

Trees \checkmark k-unambiguous for all $k \in \mathbb{N}$

Grids \checkmark k-unambiguous for all $k \in \mathbb{N}$

$w = (a, b)(c, d)(b, a)(d, c)$
Unambiguous topology classes

Pipelines \checkmark k-unambiguous for all $k \in \mathbb{N}$

Trees \checkmark k-unambiguous for all $k \in \mathbb{N}$

Grids \checkmark k-unambiguous for all $k \in \mathbb{N}$

Rings \times not k-unambiguous for all $k \geq 3$

$w = (a, b)(c, d)(b, a)(d, c)$
Unambiguous topology classes

Pipelines ✓ k-unambiguous for all $k \in \mathbb{N}$

![Diagram of pipelines]

Trees ✓ k-unambiguous for all $k \in \mathbb{N}$

![Diagram of trees]

Grids ✓ k-unambiguous for all $k \in \mathbb{N}$

![Diagram of grids]

Rings ✗ not k-unambiguous for all $k \geq 3$

![Diagram of rings]

\[w = (a, b)(c, d)(b, a)(d, c) \]

But:

- The class of rings of size $\geq k + 1$ is k-unambiguous, for all $k \in \mathbb{N}$.
Unambiguous topology classes

Pipelines \checkmark k-unambiguous for all $k \in \mathbb{N}$

Trees \checkmark k-unambiguous for all $k \in \mathbb{N}$

Grids \checkmark k-unambiguous for all $k \in \mathbb{N}$

Rings \times not k-unambiguous for all $k \geq 3$

$w = (a, b)(c, d)(b, a)(d, c)$

But:

- The class of rings of size $\geq k + 1$ is k-unambiguous, for all $k \in \mathbb{N}$.
- Every single ring is k-unambiguous, for all $k \in \mathbb{N}$.
Unambiguous topology classes

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}], B \geq 1$, and \mathcal{T} be a $(r_\varphi + 2)$-unambiguous set of topologies. There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{T}$, we have $L^B_{\mathcal{T}}(\mathcal{A}) = L^B_{\mathcal{T}}(\varphi)$.

Proof

Translate φ into normal form

$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$

where ψ is r_φ-local around y.

Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$.[Gastin-Kuske 2010]

Construct fixed-topology CA \mathcal{A}^{θ} for formula $\forall y \psi$ over all topology neighborhoods θ of radius $\lceil r_\varphi / 2 \rceil$.[Genest-Kuske-Muscholl 2004]

Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.
Unambiguous topology classes

Theorem

Let $\varphi \in \text{EMSO}[\preceq^*_\text{proc}, \preceq_{\text{msg}}]$, $B \geq 1$, and \mathcal{S} be a $(r_\varphi + 2)$-unambiguous set of topologies. There is a PCA A such that, for all $T \in \mathcal{S}$, we have $L^B_T(A) = L^B_T(\varphi)$.

Proof

- Translate φ into normal form

 $$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

 where ψ is r_φ-local around y.

Positive Results
Unambiguous topology classes

Theorem

Let \(\varphi \in \text{EMSO}[\prec_\text{proc}, \preceq_\text{msg}] \), \(B \geq 1 \), and \(\mathcal{T} \) be a \((r_\varphi + 2)\)-unambiguous set of topologies. There is a PCA \(A \) such that, for all \(\mathcal{T} \in \mathcal{T} \), we have \(L^B_T(A) = L^B_T(\varphi) \).

Proof

- **Translate \(\varphi \) into normal form**

 \[
 \exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi
 \]

 where \(\psi \) is \(r_\varphi \)-local around \(y \).

- **Existential quantification \(\Rightarrow \) projection & guessing of truth values for propositions involving only free variables of \(\forall y \psi \)** [Gastin-Kuske 2010].
Unambiguous topology classes

Theorem

Let \(\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}] \), \(B \geq 1 \), and \(\mathcal{S} \) be a \((r_\varphi + 2)\)-unambiguous set of topologies. There is a PCA \(A \) such that, for all \(T \in \mathcal{S} \), we have \(L_T^B(A) = L_T^B(\varphi) \).

Proof

- Translate \(\varphi \) into normal form

 \[\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi \]

 where \(\psi \) is \(r_\varphi \)-local around \(y \).

- Existential quantification \(\Rightarrow \) projection & guessing of truth values for propositions involving only free variables of \(\forall y \psi \) [Gastin-Kuske 2010].

- Construct fixed-topology CA \(A_\theta \) for formula \(\forall y \psi \) over all topology neighborhoods \(\theta \) of radius \(\lceil r_\varphi / 2 \rceil \) [Genest-Kuske-Muscholl 2004].
Unambiguous topology classes

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$, $B \geq 1$, and \mathcal{T} be a $(r_{\varphi} + 2)$-unambiguous set of topologies. There is a PCA A such that, for all $T \in \mathcal{T}$, we have $L_T^B(A) = L_T^B(\varphi)$.

Proof

- Translate φ into normal form

$$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

where ψ is r_{φ}-local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].

- Construct fixed-topology CA A_θ for formula $\forall y \psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [Genest-Kuske-Muscholl 2004].

- Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.
Unambiguous topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$
Unambiguous topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lfloor r_\varphi/2 \rfloor = 2$
Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$.

Unambiguous topology classes

Since $|w| = 4 \leq r_\varphi + 2$, and T is $(r_\varphi + 2)$-unambiguous, w forms a cycle in the topology as well.

Every process has to simulate several automata.
Unambiguous topology classes

Proof (cntd.) suppose \(r_\varphi = 3 \) so that \(\lceil r_\varphi/2 \rceil = 2 \)
Proof (cntd.) suppose \(r_\varphi = 3 \) so that \(\lceil r_\varphi / 2 \rceil = 2 \)

- Process \(p = (2, 3) \) guesses topology neighborhood \(\theta \) and simulates local automaton \(A_\theta[2', 3'] \).
Unambiguous topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$

- Process $p = (2, 3)$ guesses topology neighborhood θ and simulates local automaton $A_\theta[2', 3']$.
- Process p sends $(\theta, (2', 3'))$ to $(2, 2)$.

Positive Results
Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$

- Process $p = (2, 3)$ guesses topology neighborhood θ and simulates local automaton $A_\theta[2', 3']$.
- Process p sends $(\theta, (2', 3'))$ to $(2, 2)$.
- Process $(2, 2)$ receives $(\theta, (1', 2'))$ from $(1, 2)$ and simulates $A_\theta[2', 2']$.

Topology admits $w = (b, a)(d, c)(a, b)(c, d)$-path from p. Since $|w| = 4 \leq r_\varphi + 2$, and T is $(r_\varphi + 2)$-unambiguous, w forms a cycle in the topology as well.
Unambiguos topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$

- Process $p = (2, 3)$ guesses topology neighborhood θ and simulates local automaton $A_\theta[2', 3']$.
- Process p sends $(\theta, (2', 3'))$ to $(2, 2)$.
- Process $(2, 2)$ receives $(\theta, (1', 2'))$ from $(1, 2)$ and simulates $A_\theta[2', 2']$.
- \Rightarrow Topology admits $w = (b, a)(d, c)(a, b)(c, d)$-path from p.

\[\text{Positive Results} \]
Unambiguous topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$

- Process $p = (2, 3)$ guesses topology neighborhood θ and simulates local automaton $A_\theta[2', 3']$.
- Process p sends $(\theta, (2', 3'))$ to $(2, 2)$.
- Process $(2, 2)$ receives $(\theta, (1', 2'))$ from $(1, 2)$ and simulates $A_\theta[2', 2']$.
- \Rightarrow Topology admits $w = (b, a)(d, c)(a, b)(c, d)$-path from p.
- Since $|w| = 4 \leq r_\varphi + 2$, and \mathcal{T} is $(r_\varphi + 2)$-unambiguous, w forms a cycle in the topology as well.
Unambiguous topology classes

Proof (cntd.) suppose $r_\varphi = 3$ so that $\lceil r_\varphi / 2 \rceil = 2$

- Process $p = (2, 3)$ guesses topology neighborhood θ and simulates local automaton $A_\theta[2', 3']$.
- Process p sends $(\theta, (2', 3'))$ to $(2, 2)$.
- Process $(2, 2)$ receives $(\theta, (1', 2'))$ from $(1, 2)$ and simulates $A_\theta[2', 2']$.
- \Rightarrow Topology admits $w = (b, a)(d, c)(a, b)(c, d)$-path from p.
- Since $|w| = 4 \leq r_\varphi + 2$, and \mathcal{T} is $(r_\varphi + 2)$-unambiguous, w forms a cycle in the topology as well.
- Every process has to simulate several automata.

Positive Results
Unambiguous topology classes

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let \(\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}, \sim] \), and \(\mathcal{T} \) be a \((r_\varphi + 2)\)-unambiguous set of topologies. There is a PCA \(A \) such that, for all \(T \in \mathcal{T} \), \(L_T(A) = L_T(\varphi) \).
Unambiguous topology classes

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}, \sim]$, and \mathcal{I} be a $(r_{\varphi} + 2)$-unambiguous set of topologies. There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{I}$, $L_\mathcal{T}(\mathcal{A}) = L_\mathcal{T}(\varphi)$.

Proof

- Translate φ into normal form

 $$\exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi$$

 where ψ is r_{φ}-local around y.

- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].

- Construct **fixed-topology CA** \mathcal{A}_θ for formula $\forall y \psi$ over all topology neighborhoods θ of radius $\lceil r_{\varphi}/2 \rceil$ [Genest-Kuske-Muscholl 2004].

- Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.

Positive Results
Unambiguous topology classes

Almost the same proof works for a weaker logic without channel bound:

Theorem

Let $\varphi \in \text{EMSO}[\ll_{\text{proc}}, \ll_{\text{msg}}, \sim]$, and \mathcal{T} be a $(r_\varphi + 2)$-unambiguous set of topologies. There is a PCA \mathcal{A} such that, for all $\mathcal{T} \in \mathcal{T}$, $L_\mathcal{T}(\mathcal{A}) = L_\mathcal{T}(\varphi)$.

Proof

- Translate φ into normal form
 \[
 \exists X_1 \ldots \exists X_m \exists x_1 \ldots \exists x_n \forall y \psi
 \]
 where ψ is r_φ-local around y.
- Existential quantification \Rightarrow projection & guessing of truth values for propositions involving only free variables of $\forall y \psi$ [Gastin-Kuske 2010].
- Construct fixed-topology CA \mathcal{A}_θ for formula $\forall y \psi$ over all topology neighborhoods θ of radius $\lceil r_\varphi / 2 \rceil$ [B.-Leucker 2004].
- Glue fixed-topology CA together to obtain a PCA for $\forall y \psi$.

Positive Results
An orthogonal approach

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$. There is a PCA \mathcal{A} that is equivalent to φ on all pipelines, trees, and grids.
An orthogonal approach

Theorem

Let $\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$. There is a PCA A that is equivalent to φ on all pipelines, trees, and grids.

Proof

$\varphi \in \text{EMSO}[\prec_{\text{proc}}, \prec_{\text{msg}}]$.

A is equivalent to φ on all pipelines, trees, and grids.

$\varphi = \prec_{\text{proc}}, \prec_{\text{msg}}$

Exploit sphere automaton from [B.-Leucker] to compute $\{\prec_{\text{proc}}, \prec_{\text{msg}}\}$-neighborhoods.

Positive Results
An orthogonal approach

Theorem

Let $\varphi \in \text{EMSO}[\sqsubseteq_{\text{proc}}, \sqsubseteq_{\text{msg}}]$. There is a PCA \mathcal{A} that is equivalent to φ on all pipelines, trees, and grids.

Proof

Exploit sphere automaton from [B.-Leucker] to compute $\{\sqsubseteq_{\text{proc}}, \sqsubseteq_{\text{msg}}\}$-neighborhoods.
Summary of results

Negative results

- There is an $\text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}]$-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Positive results

Under a channel bound, every $\text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}]$-formula is realizable for the classes of pipelines, trees, grids, and rings.

Every $\text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}, \sim]$-formula is realizable for the classes of pipelines, trees, grids, and rings.

Open problems

- Is every $\text{FO}[\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}]$-formula realizable without channel bound?
- Is every $\text{FO}[\triangleleft_{\text{msg}}]$-formula realizable (for interesting classes of topologies)?
Summary of results

Negative results

- There is an FO[$\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}$]-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Positive results

- Under a channel bound, every FO[$\triangleleft^*_{\text{proc}}, \triangleleft_{\text{msg}}$]-formula is realizable for the classes of pipelines, trees, grids, and rings.
- Every FO[$\triangleleft_{\text{proc}}, \triangleleft_{\text{msg}}, \sim$]-formula is realizable for the classes of pipelines, trees, grids, and rings.
Summary of results

Negative results

- There is an FO[≺_{proc}, ≺_{msg}]-formula that is not realizable for the class of ring forests.
- There is an FO-formula that is not realizable for the class of trees.

Positive results

- Under a channel bound, every FO[≺^{*}_{proc}, ≺_{msg}]-formula is realizable for the classes of pipelines, trees, grids, and rings.
- Every FO[≺_{proc}, ≺_{msg}, ~]-formula is realizable for the classes of pipelines, trees, grids, and rings.

Open problems

- Is every FO[≺^{*}_{proc}, ≺_{msg}]-formula realizable without channel bound?
- Is every FO[≺^{*}]-formula realizable (for interesting classes of topologies)?
Related work

- Parameterized synthesis [Jacobs-Bloem 2012]
- Distributed algorithms [Grumbach-Wu 2010], [Chalopin-Das-Kosowski 2010]
- Automata from normal forms [Schwentick-Barthelmann 1999], [Gastin-Kuske 2010]
Conclusion

Contribution

- A notion of communicating automaton that is independent of a concrete topology
- Büchi-Elgot-Trakhtenbrot theorems for PCA
Conclusion

Contribution

- A notion of communicating automaton that is independent of a concrete topology
- Büchi-Elgot-Trakhtenbrot theorems for PCA

Future work

- Topologies of unbounded degree (unranked trees, star architectures)
- Parameterized verification
Thank You!