
NoCAlert: An On-Line and Real-Time Fault Detection
Mechanism for Network-on-Chip Architectures

Andreas Prodromou, Andreas Panteli,
Chrysostomos Nicopoulos, Yiannakis Sazeides

Presenters: Babak Zamirai, Jiecao Yu
EECS 573

Sep 28th, 2015

Outline

2

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Outline

3

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Core Number Increases

4

Increase clock frequency
Instruction-Level Parallelism (ILP)
 More cores to take advantage of specified parallelism

Intel 4004
4-bit

1971

…

2000

*Pictures from author

Core Number Increases

5

1971

…

2000 2007

Intel Core 2 Duo
2 Cores

*Pictures from author

Intel Core i7 (Nehalem)
4 Cores

Core Number Increases

6

1971

…

2000 2007

Intel Core 2 Duo
2 Cores

2008

*Pictures from author

Core Number Increases

7

1971

…

2000 2007 2008 2009 2010 2011 2012

…

Near Future

Intel Single-Chip Cloud Computer
48 Cores

Intel Polaris Chip
80 Cores

*Pictures from author

Network-on-Chip (NoC)

8

• On-chip interconnection network to connect all nodes

- Packet-based communication

• Node: router + processing element

• Modular design - structured interconnect layout

• Scalable and efficient

It’s already happening!

9

• NoCs are becoming necessary
• Router is becoming part of the core design

Tilera-MXTM– 100 Cores

• 2D mesh NoC comprising
• 25Tbps of aggregate

bandwidth
- SkyMesh protocol

Outline

10

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

NoC Reliability

11

• A single fault in the NoC can cause:
- Network disconnections

- Deadlocks (Network and Protocol-level)

- Lost packets

- Degraded performance

 A single fault can disable the entire system (CMP)

• Protecting the NoC is of prime importance

• Fault recovery
- ECC: inter-router faults

- Bulletproof: online repair and recovery

• Fault detection
- Test vectors / BIST

- Boot-up only or interrupt at running time

• ForEVeR framework
- Checker network

- Counter in destination node reaches zero at least once

✗ False positive in fault-free environment

✗ Epoch duration sensitive to traffic

✗Delayed fault detection

NoC Protection

12

Outline

13

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

NoCAlert: The Big Picture

14

• Distributed invariance checkers
- Invariance violation

• Network’s operation never interrupted
- Online checking

• Almost instantaneous fault detection

• Against faults in the control logic
- Intra- / Inter- router faults

- Packet/flit contents are protected with ECC

Invariance Checking

15

• Invariance: fundamental functional rules within the
context of a component’s operation

• Checks for legality, not correctness
- Legality: illegal is an output that is impossible to occur

- Erroneous but legal module outputs are always benign

• Emulates assertions used in software
- assert(X!=5)

- In hardware this would be achieved with a comparison
unit that raises a flag

Outline

16

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Typical NoC Router Micro-Architecture

17

Typical NoC Router Micro-Architecture

18

Typical NoC Router Micro-Architecture

19

Typical NoC Router Micro-Architecture

20

Typical NoC Router Micro-Architecture

21

Identifying Invariances

22

• Modularity and hierarchy of the NoC Router

• Bottom-up approach
- Identification of all the functional rules
- Identification of all the functionally illegal outputs

• End-to-end invariances at the network-level

Network
Level

Router
Level

Input Port

FIFO
Buffers

RC Unit

VA and SA

Arbiters

Crossbar
Switch

Invariance Categorization

23

• 32 invariances categorized based on the router
module they are associated with

- Routing Computation unit (3)

- Arbiters (10)

- Crossbar (3)

- Buffer State (12)

- Port-Level (3)

- End-to-End (network-level) (1)

Network
Level

Router
Level

Input Port

FIFO
Buffers

RC Unit

VA and SA

Arbiters

Crossbar
Switch

Ensuring Network Correctness

24

• Four main conditions that ensure
functional correctness within
the network

- No packets are dropped

- Delivery time is bounded

- No data corruption occurs

- No new packet is generated

within the network

• Additional requirement:
Intra-packet flit ordering

25

Invariance Examples

Routing Algorithm

26

• Routing algorithms forbid some turns to avoid
deadlocks and livelocks in the network

• E.g., Dimension-order XY routing

S
(0,0)

D
(2,3)

Invariance Example – Routing Algorithm

27

S
(0,0)

D
(3,3)

Forbidden Turn

Invariance Example - Arbiters

28

0
0
0
0
10

0
0
0
0

5:1
Arbiter

R
eq

u
es

ts G
ran

ts

5:1
Arbiter

1
1
0
0
1

1
0
0
0
1

G
ran

ts

R
eq

u
es

ts

• Grant without corresponding
request

• Arbiter’s output must always
be 1-hot

0
0
0
0
01

0
0
1
0

5:1
Arbiter

R
eq

u
es

ts G
ran

ts

• The arbiter must grant one of
the contestants

Routing Algorithm

29

• Invariance checking only detects illegal outputs

• Does not necessarily detect incorrect outputs

S
(0,0)

D
(3,3)

Forbidden Turn

Legal Turn

Faults that do Not Cause Invariance Violations

30

• Two elemental questions arising by this kind of faults:

1. Will the fault be caught by subsequent NoCAlert
checkers?

2. Do they end up affecting the overall network
correctness?

Outline

31

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Evaluation Framework

32

• Tools used:
- GARNET

• Cycle-accurate NoC simulator

• Extensive experimentation under fault presence

- Synopsys Design Compiler

• Verilog HDL

• 65 nm commercial standard-cell libraries

• Hardware overhead

• Compared against ForEVeR, the current state-of-the-art

Fault-Injection Framework

33

• Fault model: Single-bit, single-event transient faults

• At the inputs and outputs of every control module
of a router

- One fault injected in each experiment

• Total number of fault locations:
- 11,808 for 8x8 2D mesh network

Golden Reference

34

• A log of the entire network’s output under a fault-
free run

• “Contaminated” Logs are compared against the GR
- All flits were delivered correctly (Four rules)

- Intra-packet order was maintained

- Global order of packets is allowed to change

LOG
xxxxx ✓

xxxxx ✓

xxxxx ✓

xxxxx ✓

xxxxx ✗

xxxxx ✓

Network’s State Affects Fault Detection

35

• Faults in an empty network are less likely to be masked
- Warmed-up networks might “hide” faults

• Need for testing at different states
- 7 different traffic injection ratios (10-40% in 5% increments)

- 3 different fault injection instances

• Cycle 0 (empty network)

• Cycle 32 K

• Cycle 64 K (warmed-up network)

- 248 K simulations

Classification of NoCAlert’s Detection Outcomes

36

• True positive

• True negative

• False positive
- Unnecessary fault recovery triggering

• False negative
- Worst case

- Ideally, this should be ZERO

True False

Positive ✓ ✓

Negative ✓ ✗

Outline

37

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Fault Coverage Breakdown

38

• 0% false negatives

• Higher False-positive in a warmed-up network
- More faults are masked

• Slightly worse than ForEVeR (false positives)
- Some faults vanish by end of epoch

51.64 51.64
38.45 38.45 38.70 38.70

30.62 27.76
45.33 42.56 45.15 39.32

17.73 20.59 16.22 18.99 16.15 21.98

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NoCAlert ForEVeR NoCAlert ForEVeR NoCAlert ForEVeR

Cycle 0 Cycle 32000 Cycle 64000

True Positive False Positive True Negative

Fault Detection Latency

39

• 97% of fault detections are instantaneous

• Up to 100x fault detection latency improvement

0

20

40

60

80

100

1 8 64 512 4096Fa
u

lt
s

D
e

te
ct

e
d

 (
%

)

Detection Delay (Cycles)

NoCAlert

ForEVeR

Hardware Overhead

40

• Area overhead: 3% on average

• Power overhead : 0.7% on average

• Critical path overhead: 1% on average

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

2VCs 3VCs 4VCs 5VCs 6VCs 7VCs 8VCs

A
re

a
O

ve
rh

e
ad

 P
e

rc
e

n
ta

ge

A
re

a
(N

o
rm

al
is

e
d

)

Number of VCs per Port

Baseline

NoCAlert

DMR-CL

NoCAlert Area Overhead (%)

DMR-CL Area Overhead (%)

Outline

41

Necessity of Networks-on-Chip (NoCs)

Reliability and NoCs

The NoCAlert Approach: Invariance Checking

Identifying Invariances and Examples

Evaluation

Results

Conclusion

Conclusion

42

• On-line and real-time fault detection mechanism

• 0% false negatives

• Invariance checking
- Distributed checkers throughout the router’s control

logic modules

- Real-time hardware assertions

• Tremendous improvement in detection delay

• Extremely lightweight

Thank You!

43

Questions?

Discussion Points

44

• Does simulation expose bugs?
- Fault model: Single-bit, single-event transient faults
- At the inputs and outputs of every control module

of a router
- One fault injected in each experiment

Dijkstra (1969):

Testing shows the presence, not the
absence of bugs.

45

Discussion Points

• Is NoCAlert clearly better than ForEVeR?
- Higher false positives
- Lower delay

ForEVeR:

• Epoch-based on-line fault detection mechanism
- Additional 100% reliable lightweight checker network

- Run-time checks for arbitration stages and End-to-End coverage

• Counter-based scheme that uses notification packets

• Fault assessment occurs at the end of each epoch
- In-flight data delivered to the destination via the checker network

46

Discussion Points

• Is NoCAlert practical when we do not know
anything about the microarchitecture of the
chip?

- Usually companies do not release too much detail

