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Core Number Increases
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Network-on-Chip (NoC)

On-chip interconnection network to connect all nodes
- Packet-based communication
* Node: router + processing element

Modular design - structured interconnect layout
Scalable and efficient
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It’s already happening!

* NoCs are becoming necessary
* Router is becoming part of the core design
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NoC Reliability

* A single fault in the NoC can cause:
- Network disconnections
- Deadlocks (Network and Protocol-level)
- Lost packets
- Degraded performance

- A single fault can disable the entire system (CMP)

* Protecting the NoC is of prime importance
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NoC Protection

* Fault recovery
- ECC: inter-router faults
- Bulletproof: online repair and recovery

e Fault detection

- Test vectors / BIST
- Boot-up only or interrupt at running time

* ForEVeR framework
- Checker network
- Counter in destination node reaches zero at least once
X False positive in fault-free environment
X Epoch duration sensitive to traffic
X Delayed fault detection
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NoCAlert: The Big Picture

e Distributed invariance checkers
- Invariance violation

* Network’s operation never interrupted
- Online checking

 Almost instantaneous fault detection

* Against faults in the control logic
- Intra- / Inter- router faults
- Packet/flit contents are protected with ECC
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Invariance Checking

* Invariance: fundamental functional rules within the
context of a component’s operation

* Checks for legality, not correctness
- Legality: illegal is an output that is impossible to occur
- Erroneous but legal module outputs are always benign

e Emulates assertions used in software
- assert(X!=5)

- In hardware this would be achieved with a comparison
unit that raises a flag
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Typical NoC Router Micro-Architecture
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Typical NoC Router Micro-Architecture
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Identifying Invariances

* Modularity and hierarchy of the NoC Router

e Bottom-up approach
- ldentification of all the functional rules
- ldentification of all the functionally illegal outputs

 End-to-end invariances at the network-level
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Invariance Categorization

* 32 invariances categorized based on the router
module they are associated with
- Routing Computation unit (3)
Arbiters (10)
Crossbar (3)
Buffer State (12)
Port-Level (3) NEEWOTK

Level

End-to-End (network-level) (1) |

Router

Level
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Ensuring Network Correctness

* Four main conditions that ensure

functional correctness within
the network
- No packets are dropped
- Delivery time is bounded
- No data corruption occurs
- No new packet is generated
within the network

e Additional requirement:
Intra-packet flit ordering

How the 32 NoCAlertinvariance
checkers satisfy the four fundamental
network correctness rules

Bounded
delivery
No flit drop
6
14,2 No data
b corruption/
No packet
mixing

No new flit
generation
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Invariance Examples

25



Routing Algorithm

* Routing algorithms forbid some turns to avoid
deadlocks and livelocks in the network

* E.g., Dimension-order XY routing
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Invariance Example — Routing Algorithm
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Invariance Example - Arbiters
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Routing Algorithm

* |nvariance checking only detects illegal outputs
* Does not necessarily detect incorrect outputs
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Faults that do Not Cause Invariance Violations

* Two elemental questions arising by this kind of faults:

1.

Will the fault be caughb% %bse} ent NoCAlert
checkers? //% _‘*a;/)l

Do they end up affectlng Q
correctness? |

' veraII network
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Evaluation Framework

* Tools used:
- GARNET
* Cycle-accurate NoC simulator
* Extensive experimentation under fault presence
- Synopsys Design Compiler
* Verilog HDL
* 65 nm commercial standard-cell libraries
* Hardware overhead

 Compared against ForEVeR, the current state-of-the-art
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Fault-Injection Framework

* Fault model: Single-bit, single-event transient faults

* At the inputs and outputs of every control module

of a router

- One fault injected in each experiment

 Total number of fault locations:
- 11,808 for 8x8 2D mesh network
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Golden Reference

* A log of the entire network’s output under a fault-
free run

* “Contaminated” Logs are compared against the GR
- All flits were delivered correctly (Four rules)
- Intra-packet order was maintained
- Global order of packets is allowed to change

[LOG A

XXXXX XXXXX

XXXXX XXXXX X

XXXXX XXXXX
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Network’s State Affects Fault Detection

* Faults in an empty network are less likely to be masked
- Warmed-up networks might “hide” faults

* Need for testing at different states
- 7 different traffic injection ratios (10-40% in 5% increments)
- 3 different fault injection instances
e Cycle O (empty network)
e Cycle 32K
e Cycle 64 K (warmed-up network)
- 248 K simulations
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Classification of NoCAlert’s Detection Outcomes

* True positive
* True negative

* False positive
- Unnecessary fault recovery triggering

* False negative

- Worst case
- ldeally, this should be ZERO

True False
Positive v v
Negative v X
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Fault Coverage Breakdown

m True Positive M False Positive  ® True Negative
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* 0% false negatives

* Higher False-positive in a warmed-up network
- More faults are masked

* Slightly worse than ForEVeR (false positives)
- Some faults vanish by end of epoch
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Fault Detection Latency
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* 97% of fault detections are instantaneous
* Up to 100x fault detection latency improvement
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Hardware Overhead
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Conclusion

 On-line and real-time fault detection mechanism
* 0% false negatives

* Invariance checking

- Distributed checkers throughout the router’s control
logic modules

- Real-time hardware assertions
* Tremendous improvement in detection delay
* Extremely lightweight
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Thank You!

Questions?
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Discussion Points

* Does simulation expose bugs?
- Fault model: Single-bit, single-event transient faults
- At the inputs and outputs of every control module
of a router
- One fault injected in each experiment

Dijkstra (1969):

Testing shows the presence, not the
absence of bugs.
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Discussion Points

* |s NoCAlert clearly better than ForEVeR?
- Higher false positives
- Lower delay

ForEVeR:

* Epoch-based on-line fault detection mechanism
- Additional 100% reliable lightweight checker network
- Run-time checks for arbitration stages and End-to-End coverage

* Counter-based scheme that uses notification packets

* Fault assessment occurs at the end of each epoch
- In-flight data delivered to the destination via the checker network
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Discussion Points

* |Is NoCAlert practical when we do not know
anything about the microarchitecture of the
chip?

- Usually companies do not release too much detail
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