NoCAlert: An On-Line and Real-Time Fault Detection
Mechanism for Network-on-Chip Architectures

Andreas Prodromou, Andreas Panteli,
Chrysostomos Nicopoulos, Yiannakis Sazeides

Presenters: Babak Zamirai, Jiecao Yu
EECS 573

COMPUTER SCIENCE
AND ENGINEERING Sep 28, 2015

UNIVERSITY OF MICHIGAN

Outline

»Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

Outline

» Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

Core Number Increases

Irerease-clockfreguency

I . | Parallelispr (L)

- More cores to take advantage of specified parallelism
Intel 4004

Intel Pehitium 4
1 Cﬁe

1971 2000

*Pictures from author

Core Number Increases

Intel Core 2 Duo

Intel Penttum 4

1 ﬂl\“f\

Intel 4004
1 Core (4-bit)

1971 2000 2007

*Pictures from author

Core Number Increases

Intel Core i7 (Nehalem)
Intel Gbf®PeBuUO

0
Memory Controller

Intel 4004 Intel Pentium 4
1 Core (4-bil) 1 Core

f .o l

1971 2000 2007 2008

A

*Pictures from author

Core Number Increases

Intel Single-Chip Cloud Computer Intel Polaris Chip
48 Cores 80 Cores

Intel Xeon Phi Coprocessor

ein Wes . 64 Cores
IBM POWER7 Intel Xeon \’:nalmcm—l:)(—

10 Cor

AMD Opteron 2400
Intel Core i7 6 s

s
1971 2000 2007 2008 2009 2010 2011 2012 Near Future

*Pictures from author 7

Network-on-Chip (NoC)

On-chip interconnection network to connect all nodes
- Packet-based communication
* Node: router + processing element

Modular design - structured interconnect layout
Scalable and efficient

¥aa

¥aa

It’s already happening!

* NoCs are becoming necessary
* Router is becoming part of the core design

Tilera-MX™- 100 Cores

* 2D mesh NoC comprising
. - !ImeMLIIP»E*IHH Il - - ° 25prs Of aggregate
o bandwidth
= - SkyMesh protocol

| o | | | | e || e | |] | 2
s(5(z[z) | | 2lz(zl5) | | 2lelzE) ||| 2alE) | |)

B)
D

= = e
Interlaken '“u_'J mu_"] mu_'_l m“_',l mu_'J Interlaken Tile N
E\Emﬁf &[5]513) Eiﬁ\ﬁiﬁl E{Elﬁ\ﬁ% E\Emé’;l : 5
- s s m w.g-s«‘d; .~ uulnm]mm] ARM
TeA L TcA L3 Ty Tca Ly A Ly Core | Cors | Core | Core
| 3| | el || | | o | | e | | || 2|2 ; —
. &\z[z] ||| 2[z]3(2) ||| Blz(5]2) ||| Bl2lal2] || Bl5|E 0 - - SCU'LZS |
- Tea _.5; T _.;J Tea _.;Mr L _.;:' L _.757'; ﬂ-' g w 1 E
o ||)| | || ||) 3 i
B|5|E|E] §|E|E|§| 5|§}§|§| E\ﬁméf &|5|5[3|
| 1
M- =z I 2=
LR e | '
$

Outline

» Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

10

NoC Reliability

* A single fault in the NoC can cause:
- Network disconnections
- Deadlocks (Network and Protocol-level)
- Lost packets
- Degraded performance

- A single fault can disable the entire system (CMP)

* Protecting the NoC is of prime importance

11

NoC Protection

* Fault recovery
- ECC: inter-router faults
- Bulletproof: online repair and recovery

e Fault detection

- Test vectors / BIST
- Boot-up only or interrupt at running time

* ForEVeR framework
- Checker network
- Counter in destination node reaches zero at least once
X False positive in fault-free environment
X Epoch duration sensitive to traffic
X Delayed fault detection

12

Outline

» Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

13

NoCAlert: The Big Picture

e Distributed invariance checkers
- Invariance violation

* Network’s operation never interrupted
- Online checking

 Almost instantaneous fault detection

* Against faults in the control logic
- Intra- / Inter- router faults
- Packet/flit contents are protected with ECC

14

Invariance Checking

* Invariance: fundamental functional rules within the
context of a component’s operation

* Checks for legality, not correctness
- Legality: illegal is an output that is impossible to occur
- Erroneous but legal module outputs are always benign

e Emulates assertions used in software
- assert(X!=5)

- In hardware this would be achieved with a comparison
unit that raises a flag

15

Outline

» Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»ldentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

16

Typical NoC Router Micro-Architecture

I Processing Element In

[South In
INorth In
| EastIn
West In
VCO
ve [1]

ID vcl
[[|

- VC2
[[|

ves ||

RN —
I

vyYYVY vl

Input
Port

One flit slot —

Typical NoC Router Micro-Architecture

I Processing Element In
[South In
I North In
| East In
West In
VCOo
VC ‘ ‘ ‘ —>
D vcl >
] >
T ve2 >
[[|
VC3 _—
[+ | |
Input |. _—
Port One flit slot ||
Routing

Computation

Routing
Computation:
Next-hop
direction

Router Pipeline

18

Typical NoC Router Micro-Architecture

I Processing Element In

[South In
[North In
| EastIn
West In
VCo
ve [[]

ID vel
[[|
— ve2
1]
ves |
|

vyYYVY vl

[4] —
Input | T
One flit slot —
Port
Routing YAl ‘ | YAZ '
Computation Arbitration Arbitration
Routing Local Arbitration: Global
Computation: Choose one specific Arbitration:
Next-hop output VCin Resolve global
direction adjacent router conflicts

Router Pipeline

19

Typical NoC Router Micro-Architecture

I Processing Element In

[South In
[North In
| EastIn
West In
VCo
ve [[]

ID vel
[[|

— ve2
1]

vC3
|

Router Pipeline

[4]
Input | _
P One flit slot —
ort

|
|
|
| Routing VA1l VA2
| | Computation Arbitration Arbitration
|
| e — |
: Routing Local Arbitration: Global
| Computation: Choose one specific Arbitration:
I Next-hop output VCin Resolve global
: direction adjacent router conflicts
|
|

vyYYVY vl

SA1

SA2

Arbitration

\ 4

Arbitration

Local Arbitration:
One winning VC in
each port

Global Arbitration:

Resolve global
conflicts

Typical NoC Router Micro-Architecture

[Processing Element In

vV VVVYY

[South In
[North In
| EastIn
West In
veo
Ve []
— ve2
V(C3
Y
Input l, T
One flit slot —
Port
Routing VAl - VA2
Computation Arbitration "I Arbitration
Routing Local Arbitration: Global
Computation: Choose one specific Arbitration:
Next-hop output VCin Resolve global
direction adjacent router conflicts

Router Pipeline

Local Arbitration:
One winning VC in

5x5 Crossbar

A

West Out
East Out
North Out
South Out
Processing
Element Out

SA?2 arbiters control the

XBAR connections

SA1

SA2

Arbitration

\ 4

Arbitration

each port

Global Arbitration:

Resolve global
conflicts

Identifying Invariances

* Modularity and hierarchy of the NoC Router

e Bottom-up approach
- ldentification of all the functional rules
- ldentification of all the functionally illegal outputs

 End-to-end invariances at the network-level

22

Invariance Categorization

* 32 invariances categorized based on the router
module they are associated with
- Routing Computation unit (3)
Arbiters (10)
Crossbar (3)
Buffer State (12)
Port-Level (3) NEEWOTK

Level

End-to-End (network-level) (1) |

Router

Level

23

Ensuring Network Correctness

* Four main conditions that ensure

functional correctness within
the network
- No packets are dropped
- Delivery time is bounded
- No data corruption occurs
- No new packet is generated
within the network

e Additional requirement:
Intra-packet flit ordering

How the 32 NoCAlertinvariance
checkers satisfy the four fundamental
network correctness rules

Bounded
delivery
No flit drop
6
14,2 No data
b corruption/
No packet
mixing

No new flit
generation

24

Invariance Examples

25

Routing Algorithm

* Routing algorithms forbid some turns to avoid
deadlocks and livelocks in the network

* E.g., Dimension-order XY routing

26

Invariance Example — Routing Algorithm

27

Invariance Example - Arbiters

«» 00— —0

g9 5:1 0 oy | |

q% 0 Arbiter 0 = * Grant without corresponding

0 1 request

»nl— —1

o0 . 05 * Arbiter’s output must always

$ 0— Arbiter Lo 7 P y
1— —1 be 1-hot

«» 00— —0

€1 51 [93 -

S 0— b. 02 * The arbiter must grant one of

O i ~

2 2_ Arbiter _8 v the contestants

28

Routing Algorithm

* |nvariance checking only detects illegal outputs
* Does not necessarily detect incorrect outputs

29

Faults that do Not Cause Invariance Violations

* Two elemental questions arising by this kind of faults:

1.

Will the fault be caughb% %bse} ent NoCAlert
checkers? //% _‘*a;/)l

Do they end up affectlng Q
correctness? |

' veraII network

30

Outline

»Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

31

Evaluation Framework

* Tools used:
- GARNET
* Cycle-accurate NoC simulator
* Extensive experimentation under fault presence
- Synopsys Design Compiler
* Verilog HDL
* 65 nm commercial standard-cell libraries
* Hardware overhead

 Compared against ForEVeR, the current state-of-the-art

32

Fault-Injection Framework

* Fault model: Single-bit, single-event transient faults

* At the inputs and outputs of every control module

of a router

- One fault injected in each experiment

 Total number of fault locations:
- 11,808 for 8x8 2D mesh network

| Checker
"I Module
A

Invariance
Assertion

A .

Input :
/v Output
Single-Bit Fault

(a)

| Checker
" Module

Input

A

A

Output

Invariance
Assertion

Single-Bit Fault

33

Golden Reference

* A log of the entire network’s output under a fault-
free run

* “Contaminated” Logs are compared against the GR
- All flits were delivered correctly (Four rules)
- Intra-packet order was maintained
- Global order of packets is allowed to change

[LOG A

XXXXX XXXXX

XXXXX XXXXX X

XXXXX XXXXX

N\ /

Network’s State Affects Fault Detection

* Faults in an empty network are less likely to be masked
- Warmed-up networks might “hide” faults

* Need for testing at different states
- 7 different traffic injection ratios (10-40% in 5% increments)
- 3 different fault injection instances
e Cycle O (empty network)
e Cycle 32K
e Cycle 64 K (warmed-up network)
- 248 K simulations

35

Classification of NoCAlert’s Detection Outcomes

* True positive
* True negative

* False positive
- Unnecessary fault recovery triggering

* False negative

- Worst case
- ldeally, this should be ZERO

True False
Positive v v
Negative v X

36

Outline

»Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

37

Fault Coverage Breakdown

m True Positive M False Positive ® True Negative

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

NoCAlert ForEVeR NoCAlert ForEVeR NoCAlert ForEVeR
Cycle 0 Cycle 32000 Cycle 64000

* 0% false negatives

* Higher False-positive in a warmed-up network
- More faults are masked

* Slightly worse than ForEVeR (false positives)
- Some faults vanish by end of epoch

38

Fault Detection Latency

100 . _ —— saam——En
80 - —=-NoCAlert
360 -o-ForEVeR
2
+ 40
g
a20 -
2
‘_% O I I I I
L 1 8 64 512 4096

Detection Delay (Cycles)

* 97% of fault detections are instantaneous
* Up to 100x fault detection latency improvement

39

Hardware Overhead

12
11 I Baseline
10 mm NoCAlert
9 DMR-CL
—a—NoCAlert Area Overhead (%)
= 8
g —o—DMR-CL Area Overhead (%)
'Té 7
5 6
£
© O
<
< 4
3
2
1
0

2VCs 3VCs 4VCs 5VCs 6VCs 7VCs 8VCs
Number of VCs per Port

* Area overhead: 3% on average
* Power overhead : 0.7% on average
* Critical path overhead: 1% on average

- 100

- 90

- 80

- 70

- 60

- 50

- 40

- 30

- 20

- 10

Area Overhead Percentage

40

Outline

»Necessity of Networks-on-Chip (NoCs)

» Reliability and NoCs

»The NoCAlert Approach: Invariance Checking
»|dentifying Invariances and Examples

» Evaluation

» Results

» Conclusion

41

Conclusion

 On-line and real-time fault detection mechanism
* 0% false negatives

* Invariance checking

- Distributed checkers throughout the router’s control
logic modules

- Real-time hardware assertions
* Tremendous improvement in detection delay
* Extremely lightweight

42

Thank You!

Questions?

43

Discussion Points

* Does simulation expose bugs?
- Fault model: Single-bit, single-event transient faults
- At the inputs and outputs of every control module
of a router
- One fault injected in each experiment

Dijkstra (1969):

Testing shows the presence, not the
absence of bugs.

44

Discussion Points

* |s NoCAlert clearly better than ForEVeR?
- Higher false positives
- Lower delay

ForEVeR:

* Epoch-based on-line fault detection mechanism
- Additional 100% reliable lightweight checker network
- Run-time checks for arbitration stages and End-to-End coverage

* Counter-based scheme that uses notification packets

* Fault assessment occurs at the end of each epoch
- In-flight data delivered to the destination via the checker network

45

Discussion Points

* |Is NoCAlert practical when we do not know
anything about the microarchitecture of the
chip?

- Usually companies do not release too much detail

46

