Robertson (1968) and independently, Bondy (1972) proved that the generalized Petersen graph $P(n, 2)$ is non-hamiltonian if $n \equiv 5 \pmod{6}$, while Thomason (1982) proved that it has precisely 3 hamiltonian cycles if $n \equiv 3 \pmod{6}$. The Hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk (1989). In this note we give a short unified proof of these results using Grinberg’s theorem.

* This seminar is given as a partial fulfillment for receiving financial support from the University of Malaya to present the talk given at the China-Japan Joint Conference on Computational Geometry, Graph and Applications (CGGA2010, 3-6 Nov. 2010), Dalian, PR China.

** Research Group : Discrete Mathematics