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Organisms living in an aerobic environment were forced to evolve effective cellular strategies to
detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair
enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control
transcription, translation, and activation have also been developed. The adaptive responses, especially
those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradia-
tion) elicits a response against damage because of subsequent stress (challenging irradiation). Although
many researchers have investigated these molecular mechanisms, they remain obscure because of their
complex signaling pathways and the involvement of various proteins. This article reviews the factors con-
cerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and
the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is
a useful method for studying stress response in cells.

 

INTRODUCTION

 

Reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) are constantly produced in various cells and tis-
sues. Their concentrations are determined by the balance
between their rates of production and the rates of clearance
by antioxidant enzymes and compounds (Fig. 1). Living
cells and tissues possess several mechanisms used for main-
tenance of the redox balance even after temporary exposure
to increased concentrations of ROS or RNS, so-called redox
homeostasis, which is maintained by antioxidant defense
systems and their associated regulation pathways

 

1)

 

.
However, when ROS is vigorously and persistently pro-

duced, the antioxidant response may not be sufficient to reset
the system to its original level of redox homeostasis, thereby
very likely resulting in a disregulated redox balance. Elevat-
ed ROS damages various proteins, membranes, and nucleic
acids and consequently gives rise to apoptotic cell death.
Uncontrolled ROS production is usually responsible for
environmental, inflammatory, and mitochondrial oxidative
stress. However, if the initial increase in ROS is relatively
small, the antioxidant response may be sufficient to compen-
sate for resetting the original balance. Subsequently, various
redox-sensitive signaling pathways are activated, which in

turn activate repair and defense systems (Fig. 1). Thus phys-
iological redox regulation can be attributed to a temporary
increase in ROS and a temporary shift in the redox state
toward more oxidative conditions. The biological response
to slight or controlled oxidative stress is distinct from that
to vigorous and deleterious oxidative stress and cannot be
extrapolated or estimated from the response based on uncon-
trolled oxidative stress. Studies on the biological response to
low dose of oxidative stress are important for the elucidation
of the mechanisms responsible for redox regulation and the
maintenance of redox homeostasis.

Ionizing radiation is the oxidative stress most widely stud-
ied for its low-dose effects. Low-dose radiation has been
reported to induce hormesis

 

2–3)

 

, which is a beneficial stimu-
lant effect of chronic low-dose radiation and radiation-adap-
tive response, which is a radioprotective effect of low-dose
preirradiation followed by subsequent high-dose challeng-
ing irradiation

 

4)

 

. It is difficult to estimate the stimulating
effects of chronic low-dose irradiation on growth, longevity,
immune response, and repair of genetic damage

 

5–7)

 

. Howev-
er, radiation-adaptive response is distinct from hormesis
with regard to the requirement for an optimum preirradiation
dose range and an optimum interval between preirradiation
and challenging irradiation. Radiation-adaptive response is a
biological defensive response that is induced by single low-
dose irradiation under certain conditions. Recently, Rothka-
mm and Lobrich reported on 

 

γ

 

-H2AX foci formation due to
exposure to 1 mGy

 

8)

 

, indicating that DNA double-strand
breaks (DSBs) are formed by irradiation as low as 1 mGy
and that DNA-repair proteins are recruited to DSB sites.
This phenomenon indicates the occurrence of a biological
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response to slight or controlled oxidative stress, the first step
in a radiation-adaptive response.

Organisms generally undergo qualitative changes with
aging and their biological functions gradually degenerate.
Biological responses to various oxidative stresses also
decline with aging. Eventually, the activation of signaling
pathways because of oxidative stress and the induction of
stress-responsive molecules is diminished

 

9)

 

. The free radical
theory of aging implies that the age-related degenerative
process is to a large extent the consequence of free radical
damage. It is unknown whether the disfunction of redox reg-
ulation with aging causes the accumulation of free radical
damage, or if free radical damage contributes to the disfunc-
tion of redox regulation. However, numerous cellular pro-
cesses, including redox regulation and stress response,
change with aging, and the effect of aging must be consid-
ered in all studies on biological phenomena. This review
focuses on the mechanisms responsible for radiation-adap-
tive response and its variations as a result of aging.

 

RADIATION-ADAPTIVE RESPONSE

 

The adaptive response induced by low-dose genotoxic
stress, which exerts protective effects against a subsequent
larger dose, has been observed in several biological systems
ranging from prokaryotes to eukaryotes. Early studies on
prokaryotes showed that 

 

Escherichia coli

 

 treated with low
fractionated doses of alkylating agents becomes refractory to
lethal or mutagenic effects induced by higher doses

 

10)

 

. The
radioprotective effect elicited in response to primary irradi-
ation has also been described for green alga 

 

Chlamydomo-
nas reinhardtii

 

11)

 

, spores of the fern 

 

Osmunda regalis

 

12)

 

, the
yeast 

 

Saccharomyces cerevisiae

 

13,14)

 

, and the bacterium

 

Vibrio cholerae

 

15)

 

. In the nematode 

 

Caenorhabditis elegans

 

,
it was also reported that pre-exposure to high oxygen con-
centrations brings about a protective effect against the lethal-
ity of subsequent X-irradiation

 

16)

 

. Olivieri 

 

et al

 

. reported on

adaptive response in mammalian cells

 

17) 

 

and found that the
incorporation of low concentrations of radioactive thymidine
reduces chromatid aberrations as a result of subsequent
higher doses of X-irradiation in human lymphocytes. Since
then, various adaptive responses have been observed for
diverse end points, such as cell survival, chromosomal aber-
ration, micronucleus frequency, gene mutations, apoptosis,
and cell growth

 

18–28)

 

. Furthermore, for whole body irradia-
tion, preirradiation at a low dose induces a radioprotective
effect to subsequent challenging irradiation

 

29,30)

 

.
However, the molecular mechanisms that drive the adap-

tive response under these diverse conditions remain obscure.
As shown in Fig. 2, primary irradiation may cause a redox
imbalance. This causes the activation of signaling pathways,
which induces various defense systems and results in an
acquirement of radioresistance to high-dose challenging
irradiation. Intervals between primary and challenging irra-
diation are necessary for these process to induce various
defense systems. In yeast, the adaptive response is mainly
due to the enhancement of cellular repair capacity, which is
sufficient to repair any form of DNA damage

 

13,14)

 

. In 

 

Droso-
phila

 

 oocytes, DNA repair systems play a role in the radia-
tion-adaptive response

 

31)

 

. Therefore, one possibility is that
the adaptive response is a consequence of the induction of
DNA repair mechanisms because of low-dose preirradiation.
However, other systems including the antioxidant defense
system and stress-response proteins are also candidates for
primary factors responsible for radioprotective effects. In the
next chapter, the factors and molecules involved in the adap-
tive response will be addressed.

 

IMPORTANT FACTORS IN RADIATION-
ADAPTIVE RESPONSE

 

Diverse factors involved in radiation-adaptive response
have been reported as a result of the use of various experi-
mental models. These factors are classified as follows: [1]
DNA repair systems, [2] cell cycle regulation systems, [3]
antioxidant defense systems, [4] molecular chaperone or
stress-responsive proteins, and [5] intercellular communica-
tion systems. Table 1 summarizes the possible involvement
of these factors in radiation-adaptive response. However, it
should be noted that the mechanisms that produce radiation-
adaptive response might be dissimilar for the experimental
conditions including the biological systems and observed
end points.

 

DNA repair systems

 

The most important factors of the adaptive response are
DNA repair systems

 

32–39)

 

. ADP-ribose polymer synthesis is
involved in the repair of DNA damage induced by genotoxic
compounds such as alkylating agents

 

40,41)

 

. Therefore, poly
(ADP-ribosyl)ation may play a role in radiation-adaptive
response. In human lymphocytes, Wolff and co-workers

 

34)

 

Fig. 1. Regulation of redox balance in biological systems.

 

Redox balance between ROS/RNS production and antioxidant sys-
tems is maintained in biological systems. The imbalance to the oxi-
dative state triggers redox-sensitive signaling pathways, leading to
the induction of antioxidant systems and the maintenance of redox
homeostasis.
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suggested that poly (ADP-ribosyl) ation is involved in radi-
ation adaptive-response to chromosomal aberrations. Iku-
shima

 

35)

 

 reported that radiation-adaptive response observed
in Chinese hamster V79 cells, which incorporated radioac-
tive thymidine (

 

3

 

H-adapted cells), is inhibited by the poly
(ADP-ribose) polymerase (PARP) inhibitor, 3-aminobenza-
mide (3-AB). Kleczkowska and Althaus examined the
response of the poly(ADP-ribosyl)ation system in low-dose
adaptation. Poly (ADP-ribose) formation is enhanced in
low-dose adapted cells and therefore suggests that PARP is
part of a pathway that protects cells from downstream events
resulting from DNA damage

 

38,39)

 

.

 

Cell cycle regulation systems

 

Zhou 

 

et al

 

. examined changes in gene expression associ-
ated with radioadaptation in human lymphoblasts by using
differential display and the rapid amplification of cDNA ends
(RACE) method

 

42)

 

. They found that in adapted cells, the
down regulation of the CDC16 gene occurs more rapidly
after challenging irradiation than in nonadapted cells. Since
the CDC16 protein belongs to the anaphase-promoting com-
plex (APC), which plays a role in cell progression through
mitosis, radio-adapted cells are arrested earlier after the chal-
lenging high dose than nonadapted cells are. This phenome-
non allows the repair of DNA damage more quickly in adapt-
ed cells, resulting in a resistance to subsequent irradiation.

 

Fig. 2. Mechanisms responsible for radiation adaptive response. 

 

Low-dose primary irradiation causes a regula-
tory imbalance in redox homeostasis and triggers redox-sensitive signaling pathways, resulting in the induction of
biological defense systems, including DNA repair and antioxidant defense systems, and the acquirement of resistance
to subsequent high-dose challenging irradiation. Although subsequent challenging irradiation gives rise to various
types of cellular damages, the induction of radioresistance by low-dose preirradiation reduces genotoxic or epigeno-
toxic damage because of challenging irradiation.
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Antioxidant defense system

 

Since ionizing radiation is one of oxidative stress, it is
possible that the radioprotective response depends not only
on DNA repair and cell cycle regulation, but also on antiox-
idant defense systems. Bravard 

 

et al

 

.

 

43)

 

 reported on the activ-
ities of antioxidant enzymes after low-dose and/or subse-
quent high-dose irradiation. They examined the activities of
antioxidant enzymes, such as Cu-Zn SOD (SOD1), MnSOD
(SOD2), catalase, glutathione peroxidase (GPx), glutathi-

one-S-transferase (GST), glutathione reductase (GR), and
glucose-6-phosphate dehydrogenase (G6PD), in adapted and
nonadapted AHH-1 lymphoblasts cells and found that 1 or
3 h after challenge dose the activities of SOD2, GST, GPx,
and catalase were slightly more increased in adapted cells
than in nonadapted cells. The increased activity of some
antioxidant enzymes after challenge dose results in the rapid
scavenging of ROS and consequently less cell damage.
However, as described in their report, moderate alterations

 

Table 1.

 

Possible factors involved in radiation adaptive response

 

Factors Cell Dose Endpoints Conditions Ref.

DNA Repair

Poly (ADP-ribose) 
polymerase

Human lymphocytes
0.1

 

µ

 

Ci/ml [

 

3

 

H]dThd
and 1.5 Gy X-ray

Chromosomal
aberrations

The addition of 3-aminobenzamide, an inhibitor of PARP, 
abolished the adaptive response.

34

Poly (ADP-ribose) 
polymerase

Chinese hamster V79 
cells

0.74 kBq/ml 
[

 

3

 

H]dThd and 1Gy 

 

γ

 

-ray
Micronuclei

The addition of 3-aminobenzamide, an inhibitor of PARP,
abolished the adaptive response.

35

Poly (ADP-ribose) 
polymerase

Human hepatoma and 
Human lymphoblastoid

0.01 Gy and 0.5 Gy 

 

γ

 

-ray with 1, 3, 48, 
or 72 h intervals 

Chromatid breaks
The addition of 3-aminobenzamide, an inhibitor of PARP, 
abolished the adaptive response.

36,
37

Poly (ADP-ribose)
polymerase

Human ovarian carcinoma 
and myeloma

0.01 Gy and 6 Gy 

 

γ

 

-ray with 3 h 
intervals

Apoptosis
The addition of 3-aminobenzamide, an inhibitor of PARP, 
abolished the protective effects.

20

Cell Cycle Regulation

CDC16 Human lymphoblastoid
0.02 Gy and 4 Gy 

 

γ

 

-ray with 6h interval
CDC16 gene 
expression

The expression of CDC16 gene was repressed in adapted
cells.

42

Antioxidant Defense

MnSOD Human lymphoblastoid
0.02 Gy and 3 Gy 

 

γ

 

-ray with 6 h intervals
Enzyme activity

One and 3 hr after challenge doses, the activity was 
elevated in adapted cells compared with non-adapted cells.

43

Catalase Human lymphoblastoid
0.02 Gy and 3 Gy 

 

γ

 

-ray with 6 h intervals
Enzyme activity

Three hr after challenge doses, the activity was elevated
in adapted cells compared with non-adapted cells.

Gpx Human lymphoblastoid
0.02 Gy and 3 Gy 

 

γ

 

-ray with 6 h intervals
Enzyme activity

Three hr after challenge doses, the activity was elevated
in adapted cells compared with non-adapted cells.

43

GST Human lymphoblastoid
0.02 Gy and 3 Gy 

 

γ

 

-ray with 6 h intervals
Enzyme activity

One hr after challenge doses, the activity was elevated
in adapted cells compared with non-adapted cells.

43

MnSOD
Human breast 
adenocarcinoma

Fractionated irradiation 
at 60 Gy 

 

γ

 

-ray (2 Gy per
fraction, five times per 
week for 6 weeks)

Cell survival, 
MnSOD 
expression, and 
MnSOD activity

Cells following fractionated radiation were resistant to 

 

γ

 

-irradiation, and the expression and the activity of 
MnSOD were increased.

48

Molecular Chaperone

HSP70
Fibrosarcoma cells, 
Mouse NIH 3T3 cells

0.01 Gy and 4 Gy 

 

γ

 

-ray with 4 or 7 h intervals
Clonogenic cell 
survival

Inducible Hsp70 transfected cells acquired the adaptive 
response.

50

HSP70
Fibrosarcoma cells, 
L929 cells

0.01 Gy and 2 Gy 

 

γ

 

-ray with 4 h intervals

Clonogenic cell 
survival 
Apoptosis

Inducible Hsp70 transfected cells acquired the adaptive 
response.

51

HSP70
Splenocytes from 
C57BL6 mice

0.01 Gy and 2 Gy 

 

γ

 

-ray with 4 h intercals
Apoptosis

Splenocytes from Hsp70 transgenic mice acquired the 
adaptive response.

52

HSP25
Fibrosarcoma cells, 
L929 cells

0.01 Gy and 2 Gy 

 

γ

 

-ray with 4 h intervals

Clonogenic cell 
survival
Apoptosis

Inducible Hsp25 transfected cells acquired the adaptive 
response.

51

 

PBP74/mortalin/GRP75

 

Human colorectal 
carcinoma and human
breast adenocarcinoma

0.25 Gy and 4.0 Gy 

 

γ

 

-ray with 4.5 h intervals
Clonogenic cell 
survival

The adaptive response was enhanced in cells transfected 
with the PBP74 construct and repressed in cells 
transfected with the anti-PBP plasmid.

53
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of these antioxidant defenses only partly contribute to the
protective mechanism underlying the radioadaptation of
AHH-1 lymphoblasts. We examined the activities of cata-
lase, GPx, GR, and glutathione content after low-dose and
subsequent high-dose X-irradiation in rat glial cells. The
activities of catalase, GPx, GR and glutathione content were
not significantly induced (Fig. 8). Therefore antioxidant
defenses only partly contribute to the radiation adaptive
mechanism in glial and AHH-1 cells.

An endogenous antioxidant content is increased by low-
dose radiation. The expression of the thioredoxin gene,
which produces a key protein that is involved in regulating
the cellular redox reaction, increases with low-dose 

 

γ

 

-radia-
tion (0.25Gy) in human lymphocytes

 

44)

 

. Furthermore, glu-
tathione (GSH) content in the liver of mice (C57BL/6, 8
weeks) is also elevated by whole body irradiation with 50
cGy

 

45)

 

, and intracellular GSH in the mouse macrophage-like
cell line RAW 264.7 cell is increased by 50 cGy 

 

γ

 

-
radiation

 

46–47)

 

. However, the mechanisms responsible for
GSH elevation are different between the liver and macroph-
age-like cell line, because the expression of mRNA of 

 

γ

 

-
glutamylcysteine synthetase (

 

γ

 

-GCS), the rate-limiting
enzyme for 

 

de novo

 

 glutathione synthesis, increases in RAW
264.7 cells, but not in the liver of mice. Although an irradi-
ation dose of 50 cGy is higher than the conditioning dose
required for a radiation-adaptive response in other experi-
mental models, an elevation of the expression of intracellular
antioxidants such as TRX and GSH results in a radioprotec-
tive effect and might contribute to radiation-adaptive
response.

Redox alteration via the induction of MnSOD might play
a role in the adaptive response rather than in antioxidant
activity. Guo 

 

et al

 

.

 

48)

 

 examined radioresistance and gene
expression in human carcinoma cells following fractionated
ionizing radiation and proposed that the induction of
MnSOD after fractionated ionizing radiation causes redox
alterations that result in the upregulation of stress-responsive
genes and radiation adaptive responses.

 

Molecular chaperone or stress-responsive proteins

 

Stress events induce the expression of heat-shock proteins
(HSPs), which can be divided into two categories: those that
are constitutively expressed and those that are stress
induced. Constitutive HSPs are involved in processes that
control the quality of cellular proteins, including the folding
of nascent protein, the targeting of proteins to lysosomes,
and other functions performed by chaperones. Inducible
HSPs are produced in response to stresses such as heat,
heavy metals, oxidative stress and radiation, and they also
function as cytoprotectants. HSP-transfected cells acquire
an adaptive response to low-dose irradiation

 

49–52)

 

, and this
response is repressed in cells transfected with the anti-
PBP74 (a member of the HSP 70 family) plasmid

 

53)

 

. These
results suggest that some members of the HSP family are

involved in radiation adaptive response. Park 

 

et al

 

. suggested
that radioresistance attributed to HSP70 is associated with
elevated levels of PKC activity

 

50)

 

.

 

Intercellular communication systems

 

Gap-junctions are clusters of small aqueous channels that
mediate the bystander effect by allowing the direct intercel-
lular exchange of ions, small metabolites, and second mes-
sengers between irradiated and nonirradiated cells. Ishii &
Watanabe

 

54)

 

 suggested that gap-junctional intercellular com-
munication plays a role in the radioadaptive response as well
as the bystander effect, based on their experiments using
human embryonic (HE) cells cultured in Ca

 

2+

 

 ion- or 12-

 

O

 

-
tetradecanoyl-phorbol-13-acetate (TPA)-containing medi-
um, which regulates or inhibits gap-junctional intercellular
communication. Azzam 

 

et al

 

.

 

55)

 

 found by using gene expres-
sion profiles that Connexin43 (cx43), which plays a role in
gap-junctional intercellular communication, is upregulated
by exposure to a low-dose 

 

γ

 

-rays (0.5 Gy). The direct par-
ticipation of cx43 in radiationadaptive response remains
unclear. However, it appears that intercellular communica-
tion also plays a role in cellular responses to low-dose irra-
diation.

 

SIGNALING PATHWAYS OF RADIATION-
ADAPTIVE RESPONSE

 

Cell responses to ionizing radiation are mediated by var-
ious signaling pathways

 

56,57)

 

. For the adaptive response to
occur, preirradiation is recognized by cellular sensing sys-
tems and transduced to response networks, which allows
effector molecules to moderate the harmful damage induced
by subsequent irradiation (Fig. 2). Among the signaling fac-
tors involved in cell response to radiation, protein kinase C
(PKC), mitogen-activated protein kinase (MAPK), p53
tumor suppressor protein, nuclear factor 

 

κ

 

B (NF-

 

κ

 

B), atax-
ia-telansiectasia mutated (ATM), and DNA-dependent pro-
tein kinase (DNAPK) will be the focus of this chapter.

 

PKC and MAPK

 

Members of the protein kinase C (PKC) family and mito-
gen-activated protein kinases (MAPKs) play roles in signal-
ing pathways and cell responses to ionizing radiation

 

58,59)

 

.
Even low-dose irradiation (0.25–2.0 Gy) activates PKC,
resulting in the enhancement of immediately early gene
expression, such as proto-oncogenes c-fos, c-jun, c-myc, and
c-Ha-ras in human lymphoblastoid 244B cells

 

60)

 

. Woloschak

 

et al

 

.

 

61)

 

 examined the accumulation of PKC mRNA after 

 

γ

 

-
irradiation and reported that the expression of PKC-

 

β

 

 mRNA
is increased for doses ranging from 6 to 200 cGy in Syrian
hamster embryo cells. Furthermore, PKC contains unique
structural features that are susceptible to oxidative modifica-
tion, and its activity is regulated by redox modifications.

 

62)

 

Therefore PKC might be directly activated by oxidative
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stress via redox reactions. For members of the MAPK fam-
ily, Suzuki 

 

et al

 

.

 

63)

 

 showed that low-dose ionizing radiation
(between 2 and 5 cGy of X-irradiation) activates extracellu-
lar signal-regulated kinase (ERK1/2) via the activation of
epidermal growth factor (EGF) receptor and mitogen-acti-
vated protein / ERK kinase (MEK 1).

From the experiments using PKC inhibitors such as
calphostin C and 1-(5-isoquinolinylsulfonyl)-2-methylpiper-
azine (H-7), the involvement of PKC in the adaptive
response has been reported by some investigators

 

64,65)

 

. How-
ever, the manners in which PKC and MAPKs are activated
by low-dose irradiation, which eventually affords the cells
radioprotection against subsequent challenging irradiation,
is still being studied. Shimizu 

 

et al

 

.

 

66)

 

 proposed a coordinat-
ed regulation mechanism involving PKC

 

α

 

, p38MAPK, and
phospholipase C (PLC-

 

δ

 

1) in radiation-adaptive response by
the use of cultured mouse cells. They determined the exist-
ence of a circular damage-sensing pathway as follows: Low-
dose preirradiation activates PKC

 

α

 

 followed by p38 MAPK.
p38 MAPK physically associates with PLC-

 

δ

 

1, which pro-

duces diacylglycerol, an activator of PKC. The activity of
PKC

 

α

 

 is then regulated by PLC-

 

δ

 

1. Since PKC is responsi-
ble for the activation of DNA repair systems including DNA
polymerase 

 

α

 

67)

 

 or DNA topoisomerase I

 

68)

 

, the induction of
DNA repair systems mediated by the activation of the PKC
pathway may be involved in radiation-adaptive response.
Furthermore, since the enhancement of PKC activity con-

 

Fig. 3. Oxidative stress-responsive factors that are altered
with age. 

 

ROS derived from oxidative stress activates the stress-
responsive molecules, and/or causes damage to various cell compo-
nents such as DNA, proteins, and lipids. Each activated stress-
responsive molecule enhances the transcription of its target gene
and regulates the apoptosis, proliferation, growth arrest, and senes-
cence. Damaged components are repaired by various repair-mole-
cules or are decomposed. The circled factors represent altered
activities as a result of aging.

 

Fig. 4. Aging suppresses adaptive response of growth in rat
glial cells. 

 

(a)Effects of aging on adaptive response induced by
low-dose hydrogen peroxide. Glial cells from the hippocampus of
Wistar rats aged 1, 4, 9, and 24 months were cultured. The cells
were divided into four groups: no-irradiation without pretreatment,
no-irradiation with 1 

 

µ

 

M H

 

2

 

O

 

2

 

 pretreatment, 2 Gy-irradiation with-
out pretreatment, and 2Gy-irradiation with 1 

 

µ

 

M H

 

2

 

O

 

2

 

 pretreat-
ment. Hydrogen peroxide diluted in serum-free medium was added
to the cultures for 30 min at 1 

 

µ

 

M, and 3 hr after washing with PBS
they were irradiated X-ray at 2 Gy (0.34 Gy/min). Non-pre-treat-
ment cells were cultured in serum-free medium for 30 min, and
nonirradiated cells were sham irradiated. They were taken out of
the CO

 

2

 

 incubator for the same length of time as the 2 Gy-irradi-
ated cells. Two days later, the cells were counted after trypsiniza-
tion, and proliferation ratios were determined from the ratio of
2Gy-irradiated cells to nonirradiated cells with or without pretreat-
ment. The open columns represent the proliferation ratios of non-
pre-treatment cells, and the shadowed columns represent those of 1

 

µ

 

M H

 

2

 

O

 

2

 

 pretreatment cells.. (b) The dose dependence of preirradi-
ation on the proliferation ratio of aged cells. The cells from aged
rats (24 months old) were cultured. The experiments were per-
formed under the same conditions as described in (a), except for
preirradiation at each dose in place of 1 

 

µ

 

M H

 

2

 

O

 

2

 

 pretreatment.
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tributes to the radioresistance induced by HSP7050) as des-
cribed in the chapter entitled Molecular chaperone or stress-
responsive proteins, it is possible that the activation of the
PKC pathway is involved in radiation-adaptive response
through cytoprotective stress-response proteins such as
HSP70.

Furthermore, Lee et al.69) found that low-dose preirradia-
tion (0.01 Gy γ-ray) inhibits the translocation of PKCδ in
primary mouse epidermal keratinocytes (PK). It appears that
PKC isozymes involved in radiation adaptive response vary
in each cell type and for each condition.

p53
p53 is the most important factor in the signaling pathway

of radiation-adaptive response70,71). Radiation-adaptive res-
ponse at various end points, such as micronuclei, apoptosis,
and chromosome aberrations, is suppressed in p53 mutant
cells72–75). For radiation-adaptive response induced by
whole-body irradiation, knockout p53(–/–) mice show no
radioprotective effects of preirradiation as seen with the use

of the endogenous spleen colonies and the recovery of
peripheral blood-cell counts76). Sasaki et al.75) studied radi-
ation-adaptive response in cultured mice and human cells
with different genetic backgrounds relevant to the DNA
damage response pathway and found that p53 protein plays
a role in the adaptive response. Since p53 physically associ-
ates with p38 MAPK and is directly phosphorylated77,78),
they proposed that the signals are translated to p53 via a
coordinated regulation mechanism involving a PKC-p38
MAPK-PLC pathway, as described in the previous chapter.

ATM and DNAPK
It is described above that p53 plays a role in radiation

adaptive response, as seen in the use pf diverse experimental
models. For signaling pathways upstream of p53, there are
several activating protein kinases including ATM, ATR,
DNAPK, and Chk1/Chk279). Among them, the involvement
of ATM and DNAPK in radiation-adaptive response has
been studied. Seong et al.37) discovered that lymphoblastoide
derived from AT homozygotes and heterozygotes exhibit

Condition Cell Cycle 0h 3h 8h 18h 24h

0 Gy + 5 Gy G1 76.1 ± 1.98 71.6 ± 2.94 78.2 ± 3.42 88.4 ± 1.75 86.9 ± 2.35

S 15.4 ± 1.75 18.4 ± 2.60 7.4 ± 4.29 1.7 ± 0.24 2.4 ± 0.35

G2/M 8.5 ± 0.34 10.1 ± 0.47 14.5 ± 2.62 10.0 ± 1.59 8.2 ± 2.01

0.1 Gy + 5 Gy G1 75.0 ± 2.11* 73.2 ± 1.84 78.3 ± 2.80 89.9 ± 1.60 89.4 ± 2.16

S 15.9 ± 1.41 16.1 ± 1.39 6.2 ± 3.01 2.0 ± 0.52 2.5 ± 0.62

G2/M 9.1 ± 0.71 10.8 ± 0.91 15.5 ± 1.80 8.1 ± 1.16* 8.2 ± 1.76

The data represents the percentage of cells in each phase determined by Muticycle software as the mean ± standard error.
* p < 0.05, significantly different from the cell cycle distribution of non pre-irradiation at the same time after 5 Gy irradiation.

Fig. 5. Cell cycle distribution after 5 Gy irradiation of glial cells. Above: Representative single-parameter histograms of propidium
iodide (PI) fluorescence (DNA content). Glial cells cultured from young rats (1 month old) were irradiated at 5 Gy, and fixed and stained by
PI each time after irradiation. Analysis of DNA content was carried out with a flow cytometer (EPICS ALTRA, Beckman Coulter, Co.).
The radiation-induced loss of S-phase cells and cell cycle arrest are shown 8 and 18 h after irradiation. Below: The effects of preirradiation
on cell cycle distribution after 5 Gy-irradiation. The cells were exposed to 5Gy-irradiation 3 hr after 0.1 Gy-pre-irradiation (0.1 Gy + 5 Gy
in table) or sham irradiation (0 Gy + 5 Gy in table). For each indicated time after 5Gy-irradiation, the cells were fixed and stained by PI.
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radiation-adaptive response to chromatid breaks, and this
also occurs for lymphoblasticide derived from a normal indi-
vidual. Sasaki et al.75) reported results by using cultured
fibroblasts with mutated ATM genes. These reports suggest
that ATM is not responsible for the adaptive response. In
contrast, Nemethova et al.80) examined the adaptive response
in the lymphocytes of AT patients and found that it was
absent in cells from AT homozygotes after low-dose γ-rays
exposure. They described that the adaptive ability of the
lymphocytes varied among AT donors.

DNAPK does not play a role in adaptive responses
responsible for cell survival, chromosome aberrations, and
apoptosis.75,81,82) However, we examined the effects of low-
dose preirradiation on the cell growth of cultured glial
cells83) and showed that glial cells cultured from scid mice,
which has no detectable DNAPK activity, do not exhibit
radiation-adaptive response. These inconsistent results
between our experimental system and others might be due
to the difference between genetic and epigenetic endpoints
in which the adaptive responses were observed. Further-
more, Takahashi et al.84) examined the induction of apopto-
sis in the spleens of scid mice by acute irradiation and found
that the adaptive response is not observed in the scid mice,
which is different from wild-type mice. They noted that
immune responses might participate in the radiation-adap-
tive response in in vivo studies.

NF-κB
Nuclear factor κB (NF-κB) is an oxidative stress-respon-

sive transcription factor, which is involved in the transcrip-
tional regulation of several genes85). Meltz and co-workers86,87)

reported that low-dose irradiation (0.1–2.0 Gy) induces the
expression of NF-κB in human lymphoblastoid 244B cells
and that the activation of NF-κB is inhibited by antioxidants
such as N-acetyl-L-cysteine. Although it is unknown wheth-
er the activation of NF-κB by low-dose irradiation is directly
involved in the adaptive response, as Guo et al. suggested48),
redox alteration resulting from NF-κB activation and the
subsequent induction of MnSOD might play a role in
radioresistance exhibited by low-dose-irradiated cells.

AGE-RELATED DECLINE IN THE CELL
RESPONSE TO OXIDATIVE STRESS

Figure 3 shows the major influence of oxidative stress on
biological systems and the factors whose activities are
altered with aging. Elevated ROS activates stress-responsive
signaling pathways and damage various biological compo-
nents, including DNA, proteins, and lipids. Several of the
pathways activated by acute oxidative stress show dimin-
ished activity as a function of aging9).

The induction of heat-shock factor (HSF) and HSP, espe-
cially HSP70, decreases with age88). Since HSP plays a role
in cellular defense mechanisms against heat, oxidative stress

and other types of stress, the decrease in this system could
seriously reduce the capacity of an organism to respond to
changes in its environment. In contrast, however, comple-
mentary DNA microarray analysis has provided evidence
that the basal expression of heat-shock proteins actually
increases with aging89,90). In the aged rat brain91) or human
fibroblasts92), it also results in an increase in the basal level
of HSP70. This elevated expression occurs as a response to
the age-associated accumulation of proteins damaged by
oxidation. Age-associated elevations in the expression of
heat-shock proteins have also been observed in Dro-
sophila93).

The efficiency of signal transduction pathways activated
by oxidative stress declines with aging.94,95) The expressions
of extracellular signal-regulated kinase (ERK) and Akt
kinase, known as protein kinase B, are reduced in aged hepa-
tocytes, indicating that old hepatocytes are more susceptible
to ROS-induced apoptosis than young ones are.96–98)

The capacity of DNA repair systems also decreases with
aging, as seen by the decline in the activity of the 8-oxoguanine
repair-specific enzyme, 8-oxoguanine-DNA glycosylase
(Ogg 1)99). The induction of DNA polymerase β and γ as a
result of γ-irradiation was decreased with aging100–101). Thus

Fig. 6. Hypothesis of aging mechanisms that affect adaptive
response to oxidative stress. Oxidative stress generates ROS in
biological systems, which are quenched by endogenous antioxidant
systems, including antioxidant enzymes and substances [1]. How-
ever, ROS rescued from antioxidant systems causes redox imbal-
ance and activates redox-sensitive signaling pathways [2], leading
to cellular responses and the acquirement of resistances including
diverse protein synthesis [3]. Since aging suppresses radiation
adaptive response, it prevents any steps among these processes
([1], [2], and/or [3]) from occurring.
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oxidative damage and DNA mutations accumulate in aged
tissues.

For radiation adaptive response, aging represses the extent
of adaptation. Venkat et al.102) examined the effect of low-
dose irradiation on the frequency of micronuclei in human
lymphocytes in younger (25–30), middle-aged (31–40) and
older (41–57) people. They reported that adaptive response
depends on the age of the donor and decreases with increas-
ing age. Gadhia103) also found that aging abolishes the adap-
tive response by examining chromatid and isochromatid
breaks in human peripheral blood lymphocytes. The vari-
ability of adaptive response is likely related to the physio-
logical state of the cell at the time of irradiation, and aging
might affect this state. In the next chapter, our experiments
that examined the adaptive response by observing the
growth of rat glial cells will be addressed, and we will elab-
orate on the effect of aging on the adaptive response.

EFFECTS OF AGING ON ADAPTIVE RESPONSE
IN GLIAL CELLS

We aimed to clarify the effects of aging and its associated
mechanisms on radiation-adaptive response by using glial
cells cultured from rats of various ages. In the central ner-
vous system, oxidative metabolism and the generation of
ROS are important because of [1] the high metabolic dem-
and for oxygen by neuronal mitochondria, [2] many oxidiz-
able polyunsaturated fatty acids present in membrane lipids,
and [3] non-protein-bound irons in the cerebrospinal fluid,
which produce highly reactive hydroxyl radicals by the Hab-
er-Weiss reaction104). Oxidized proteins are found in the
brain affected by neurodegenerative diseases such as Alzhe-
imer’s disease, Parkinson’s disease, and amyotropic lateral
sclerosis, suggesting that ROS generation in the central ner-
vous system is associated with neuropathological conse-
quences105). Glial cells, especially astrocytes, are more resis-
tant to oxidative stress than neurons and support the survival
of neuronal cells by releasing various antioxidants and nutri-
tional factors106–110). Therefore astrocytes respond to various
environmental stresses, including ionizing radiation. Fur-

Fig. 7. Effects of aging on antioxidant systems in glial cells.
(a) The effects of aging on the activities of catalase, glutathione
peroxidase (GPx), and glutathione reductase (GR). Catalase activ-
ity was measured by following H2O2 breakdown at 240 nm, and
GPx activity was determined by following NADPH oxidation,
using t-butyl-hydroperoxide as a substrate. GR activity was deter-
mined by measuring NADPH oxidation in the presence of oxidized
glutathione, and protein content was determined by using a Bio-
Rad kit based on Bradford’s method with bovine γ-globulin as a
standard. The white columns represent the activities in cells from
young rats (1 mo.), and the shadow columns represent the activities
in cells from aged rats (24 mo.). b) The effects of aging on reduced

glutathione content in glial cells. Cells were cultured from vari-
ously aged rats (1, 4, 9, 18, and 24 months old). The reduced form
of glutathione was extracted from cells with 4% monochloroacetic
acid and determined by reversed-phase HPLC equipped with an
electrochemical detector (0.6 V, LC-4C, BAS Co.). (c) MnSOD
mRNA was determined by Northern blot analysis. Nylon filters
containing total RNA extracted from variously aged cells were
hybridized with radioactively labeled oligonucleotides. Filters
were placed against an imaging plate (BAS-IP, Fuji Film Co.) for
several days, and gene expression levels were estimated by BAS-
2500 (Fuji Film, Co.). The gene expression level of glyceralde-
hyde-3-phospate dehydrogenase (GAPDH) was used as an internal
standard.
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thermore, they can be cultured from aged animals distinct
from neurons and are suitable for studying the aging pro-
cess. Thus we examined the adaptive response to low-dose
irradiation and low-dose hydrogen peroxide by observing
cell growth and the effects of aging on the adaptive response
by using astrocytes cultured from young and aged rats.

Figure 4a shows the adaptive response induced by low-
dose hydrogen peroxide in astrocytes cultured from various-
ly aged rats. The conditioning concentration and challenging
irradiation were 1 µM H2O2 and 2 Gy of X-rays, respective-
ly, separated by a 3 hr interval. Radiation adaptive response
induced by 0.1 Gy preirradiation and 2 Gy-challenging irra-
diation was previously reported83). In glial cells from young
rats, adaptive response is induced by a low dose of H2O2 or
low-dose preirradiation, and aging suppresses the adaptive
response. Since it is possible that in cells from aged rats the
dose of preirradiation required to induce adaptive response
is different from that of young rats, we varied the preirradi-
ation dose for the aged cells. However, no radiation adaptive
response was observed by any preirradiation dose from 0.05
to 0.3 Gy for these cells (Fig. 4b). From experiments using
5-bromo-2’-deoxyuridine (BrdU) incorporation as an indica-
tor of cell proliferation, radiation adaptive response was also
found to be increasingly suppressed with age83).

Next, the effects of preirradiation on cell cycle arrest
because of a challenging dose were examined by cell cycle
analysis with a flow cytometer. Conditioning irradiation at
0.1 Gy did not significantly affect the cell cycle distribution
after 5 Gy-irradiation (Fig. 5). It was suggested that preirra-
diation did not inhibit cell cycle arrest because of the chal-
lenging dose in glial cells and that the alteration of check-
point regulation by preirradiation did not contribute to the
result shown in Fig 4.

To determine why radiation adaptive response is sup-
pressed with age, three hypotheses on the mechanisms
responsible for aging are given as follows (Fig. 6); [1] anti-
oxidant defense systems are already induced in aged cells by
environmental and chronic oxidative stress, resulting in a
nonrecognition of low-dose irradiation as a redox imbal-
ance; [2] the signal transduction pathways responsive to
low-dose irradiation are disturbed in aged cells; [3] the
induction or activation of proteins involved in radioresis-
tance are decreased in aged cells. First we examined the
activities of antioxidant defense systems in young and aged
cells. Shown in Fig. 7 are the effects of aging on the activi-
ties of antioxidant defense systems, including antioxidant
enzymes such as catalase, glutathione peroxidase (GPx), and
glutathione reductase (GR) (Fig. 7a); the content of reduced
glutathione in cells (Fig. 7b); and the relative expression of
MnSOD mRNA (Fig. 7c). These data show that the activities
of antioxidant enzymes, the contents of reduced glutathione,
and MnSOD expression are not significantly changed with
aging. Therefore aging does not enhance antioxidant defense
systems in cell culture under the present conditions. Further-

more, we examined the effects of low-dose preirradiation
and subsequent high-dose challenging irradiation on the
activities of antioxidant enzymes (Fig. 8). In cells from
young rats, the activities of catalase, GPx, and GR tended to

Fig. 8. Radiation-induced alterations in antioxidant enzyme
activities in young and aged rat glial cells. Cells were cultured
from young (1 month old) and aged (24 months old) rats, and each
cell culture was divided into four groups: no-irradiation without
preirradiation, no-irradiation with 0.1 Gy preirradiation, 2 Gy-irra-
diation without preirradiation, and 2Gy-irradiation with 0.1 Gy
preirradiation. The interval between preirradiation and subsequent
challenging irradiation was 3 hr. (a) Catalase activity, (b) GPx
activity, and (c) GR activity were determined as described in the
legend of Fig. 7. White columns; no-irradiation without preirradia-
tion cells, shadowed columns; 2 Gy-irradiation without preirradia-
tion, stripe columns; no-irradiation with 0.1 Gy preirradiation,
black columns; 2Gy-irradiation with 0.1 Gy preirradiation.
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increase by exposure to low and/or high dose irradiation, but
not significantly. In cells from aged rats, the activities of cat-
alase and GR were not changed, and that of GPx tended to
increase from radiation, but not significantly. These results
suggest that irradiation does not significantly change the

activities of antioxidant enzymes in young and aged cells.
Next, the effect of irradiation on the reduced glutathione
content was examined. Figs. 9 (a) and (b) show the alteration
in reduced glutathione content after low-dose irradiation in
cells from younger rats (a) and older rats (b), respectively.
It was found that the GSH content of cells from 1 or 4
months rats increased 24 h after low-dose irradiation but not
significantly, but that of cells from aged rats was not
increased by low-dose irradiation. Figure 9 (c) shows the
reduced glutathione content after low-dose and the subse-
quent high-dose irradiation. It has been suggested that glu-
tathione content after irradiation is not significantly changed
in younger and older rat cells. Although Bravad et al.48) and
Kojima et al.45–47) reported on the significant enhancement of
antioxidant activities or glutathione content, as described in
the chapter on antioxidant systems, the antioxidant defense
systems in rat glial cells were not significantly induced
under the present conditions. Therefore we concluded that
the decrease in the response to low-dose radiation with aging
in rat glial cells was not explained by hypothesis [1], that the
antioxidant defense systems are already induced in aged
cells by environmental and chronic oxidative stress. Thus the
primary factor responsible for the decrease in the cell
response to low-dose radiation might be explained by
hypothesis [2] or [3] for glial cells.

PERSPECTIVE

Cellular responses to ionizing radiation are mediated by
genes, which control complex pathways. DNA arrays pro-
vide a means for evaluating the relative expression of thou-
sands of genes in a single hybridization experiment and are
suitable for a comprehensive search for genes involved in the
stress response. Using DNA arrays, it was clarified that high-
dose ionizing radiation induces diverse gene groups such as
cell cycle regulation, DNA repair, signal transduction, apo-
ptosis induction, and the damage response/maintenance of
genetic stability in various types of cells111–116). For low-dose
irradiation, Yin et al. reported on changes in gene expression
in the mouse brain after 0.1 Gy γ-irradiation117). They found
that low-dose radiation also modulates the expression of
genes involved in the stress response, cell cycle regulation,
and DNA synthesis/repair. It was suggested that 0.1 Gy-irra-
diation causes changes in gene expression involved in pro-
tective and reparative functions and qualitatively different
biological response compared to 2 Gy-irradiation.

Genomic and transcriptomic profiles have been deter-
mined for a large number of potential biomarkers, but the
functional components of a biological system are proteins
and not genes. Even if one gene is mutated, its mRNA copy
does not necessarily reflect the functional protein molecule
through transcription and translation. Therefore focusing on
proteins has certain advantages compared to focusing on
mRNA. Proteomics, the large-scale analysis of proteins, will

Fig. 9. Glutathione content after low-dose H2O2 or subse-
quent high-dose irradiation in glial cells from various aged
rats. Cells were cultured from variously aged rats (1, 4, 9, 18, and
24 months old). The amount of the reduced form of glutathione was
determined as described in the legend of Fig. 7 (a) and (b).  Cells
were treatment with 1 µM H2O2 and harvested each time after treat-
ment. (a) Cells from younger rats. diamonds; 1 mo. squares; 4 mo.
(b) Cells from elder rats. diamonds; 9 mo. squares; 18 mo. trian-
gles; 24 mo. (c) The effects of H2O2 pretreatment on reduced glu-
tathione content after 2 Gy-irradiation. Each cell culture was
divided into four groups in the same manner described in the leg-
end of Fig. 4 (a). The cells were harvested 24 hr after 2 Gy-irradia-
tion, and the amount of the reduced glutathione was determined.
White columns; no-irradiation without pretreatment, shadowed col-
umns; 2 Gy-irradiation without pretreatment, stripe columns; no-
irradiation with 1 µM H2O2 pretreatment, black columns; 2Gy-irra-
diation with 1 µM H2O2 pretreatment.
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greatly contribute to our understanding of gene function in
the post-genomic era118–119). Proteomics can be divided into
three main areas: [1] protein characterization for large-scale
identification and to identify posttranslational modifications;
[2] “differential display” for the comparison of protein levels
in a range of diseases or stresses; and [3] studies of protein-
protein interactions. Although several technical challenges
in proteomics remain, proteomic analysis offers great poten-
tial for studies on cellular protein alterations in various
disease, aging, or oxidative stress120–123). Furthermore, one
unique feature of proteomics is the ability to analyze the
posttranslational modification of proteins. Phosphorylation
and glycosylation as well as other modifications are impor-
tant for protein function because they determine the activity,
stability, localization, and turnover. These modifications
cannot be analyzed by genomic sequencing or mRNA
expression data.

Szkanderova et al.124) reported only on radiation effects on
the protein expression profile of L929 cells using a 2-DE dif-
ferential display. They showed that X-rays at 6 Gy induce
the synthesis of diverse proteins that participate in protective
and reparative cell responses or in the induction of apoptosis
and oncogenesis. It should be confirmed whether these pro-
tein candidates whose expression patterns are influenced by
radiation are intrinsically important in radiation biology.
However, it is expected that the proteomics approach will
soon be a useful method for unraveling the molecular mech-
anisms involved in cell response to ionizing radiation.
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