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Abstract: Detecting and classifying ships based on radiated noise provide practical guidelines for the
reduction of underwater noise footprint of shipping. In this paper, the detection and classification
are implemented by auditory inspired convolutional neural networks trained from raw underwater
acoustic signal. The proposed model includes three parts. The first part is performed by a multi-scale
1D time convolutional layer initialized by auditory filter banks. Signals are decomposed into
frequency components by convolution operation. In the second part, the decomposed signals
are converted into frequency domain by permute layer and energy pooling layer to form frequency
distribution in auditory cortex. Then, 2D frequency convolutional layers are applied to discover
spectro-temporal patterns, as well as preserve locality and reduce spectral variations in ship noise.
In the third part, the whole model is optimized with an objective function of classification to obtain
appropriate auditory filters and feature representations that are correlative with ship categories.
The optimization reflects the plasticity of auditory system. Experiments on five ship types and
background noise show that the proposed approach achieved an overall classification accuracy of
79.2%, which improved by 6% compared to conventional approaches. Auditory filter banks were
adaptive in shape to improve accuracy of classification.
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1. Introduction

Ship radiated noise is one of the main sources of ocean ambient noise, especially in coastal waters.
Hydrophones provide real-time acoustic measurement to monitor underwater noise in chosen areas.
However, automatic detection and classification of ship radiated noise signals are still quite difficult
at present because of multiple operating conditions of ships and complexity of sound propagation
in shallow water. Various signal processing strategies have been applied to address these problems.
Most of the efforts focus on extracting features and developing nonlinear classifiers.

Extracting appropriate ship radiated noise features has been an active area of research for
many years. Hand designed features always describe ship radiated noise in terms of waveform,
spectral and cepstral characteristics. Zero-crossing features and peak-to-peak amplitude features [1,2]
were presented to describe rotation of propeller, but their performances were greatly reduced in
noisy shallow seas. Features based on wavelet packet [3] were extracted, but they were difficult to
determine decomposition series of wavelet. In addition, multiscale entropy method [4] was proposed
to detect and recognize ship targets. Spectral [5] features and cepstral coefficients features [5,6]
were extracted. However, these methods always suffer a lot from limited priori knowledge of
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datasets. Auditory models have been shown to work well for a variety of audio processing tasks.
As for ship classification, auditory features based on dissimilarity evaluation was proposed [7].
Mel-frequency cepstral coefficients (MFCC) were applied to describe ship radiated noise [8]. However,
the widely used auditory filter bank models of cochlea assume that, for a given center frequency,
there is a fixed filter bandwidth, but this property is not well matched by reverse correlation data in
auditory experiments [9].

Designing appropriate classifiers given hand designed features has been another active area
of research. Multiple Support Vector Machine (SVM) classifiers [10] were integrated to improve
classification accuracy and robustness, but it was always inefficient. Neural classifiers [11] based
on a feed-forward neural network were studied. Four conventional neural networks and average
power spectral density features [12] were used to classify underwater signals. Probabilistic linear
discriminant analysis, i-vectors and neural networks [13] motivated by speech related technologies
were performed to individual ship detection. Neural networks and i-vector features [14] were used
to detect ship presence and classify ship types, and the authors also discussed the influence of a set
of data preprocessing technologies on recognition results. Class-modular multi-layer perceptron and
spectral features [15] were used to classify ships. All of them used Fourier transform based features
and shallow neural networks. Generally, classifier design and feature extraction were separate from
each other. This has a drawback that the designed features may not be best for the classification task.
As for classification models based on auditory features, auditory filter banks designed from perceptual
evidence always focus on the properties of signal description rather than the classification purpose [16].

Deep learning has made it possible for modeling original signal as well as predicting targets
in a whole model, to which the human auditory system is thought to be adapted. Kamal [17]
used a deep belief network and Cao [18] used a sparse deep auto encoder. A competitive learning
mechanism based deep learning model [19] and its compression algorithm [20] were proposed to
increase clustering performance. All of them trained deep neural networks on discrete Fourier
transform (DFT) magnitude features. These works demonstrated that deep neural networks can be
used to learn a better representation using lower level frequency magnitude based features. However,
they were unable to make use of information found in time structure.

In this paper, an auditory inspired convolutional neural network is proposed to simulate the
processing procedure of human auditory system for ship type classification. The network is trained
from raw hydrophone data in an end-to-end manner to simulate auditory pathway, rather than
designing features and classifiers separately. In the proposed model, the shallow layer performs signal
decomposition by convolution operation to simulate cochlea, and deep layers perform class-based
discrimination to simulate auditory cortex. The learned filters in shallow layer and learned features in
deep layers are subject to classification tasks on the basis of matching human auditory systems.

This paper is organized as follows. Section 2 gives an overview of the auditory inspired
convolutional neural network for ship type classification. Sections 3 and 4 describe individual
processing chain components, which includes auditory filter banks learning for ship radiated noise
modeling, deep features’ learning and ship targets’ classification. Experimental data description,
experimental setup and results are presented and discussed in Section 5. An overall discussion and
directions for future work are concluded in Section 6.

2. Architecture of Auditory Inspired Convolutional Neural Network for Ship Type Classification

The human auditory system has a remarkable ability to deal with the task of ship radiated
noise classification [21,22]. It is of practical significance to establish the human auditory system
mathematically. The human auditory system includes two basic regions of stimulus processing.
The first region is the peripheral region [23]. In this region, the incoming acoustic signal is transmitted
mechanically to the inner ear, and it is decomposed into frequency components at the cochlea.
The second region of the system gets the neural signal to form auditory perception in the auditory
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cortex; therefore, the listener could discriminate between different sounds. The nature of the auditory
model is to transform a raw acoustical signal into representations that are useful for auditory tasks [9].

In this paper, the two regions of the auditory system are simulated for ship type classification in a
whole model named the auditory inspired convolutional neural network. The structure of the proposed
model is shown in Figure 1. The proposed model includes three parts: the first part is inspired by
the cochlea and takes raw underwater acoustic data as an input. This part is performed by a 1D time
convolutional layer. The convolutional kernels are initialized by Gammatone filters based on the
research foundation of human cochlea. A collection of decomposed intrinsic modes can be generated
in the output of this layer. The second part is inspired by the auditory cortex and takes the output of
the time convolutional layer as input signals. This part includes a permute layer, energy-pooling layer,
2D frequency convolutional layer and full connected layer. The permute layer and energy-pooling
layer could convert the decomposed signal into a frequency domain. The 2D frequency convolutional
layers are applied to preserve locality and reduce spectral variations in ship noise. In the third part,
the whole model is optimized with an objective function of ship type classification. A more general
way to express the process is: the time convolutional layer yields different simple intrinsic modes
of ship noise that help the feature learning at deep layers and help ship targets’ classification at the
output layer. At the same time, the Gammatone filters and features are optimization by CNN to obtain
appropriate representations that are correlative with ship categories.
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Figure 1. Auditory inspired convolutional neural network structure. In the time convolutional layer,
four colors represent four groups of auditory filters with different center frequencies and impulse
widths. In the permute layer and energy-pooling layer, decomposed signals are converted to frequency
feature maps, each of which correspond to a frame. In frequency convolutional layers, convolution
operations are implemented in both time and frequency axis. At the end of the network, several full
connected layers and target layers are used to predict targets.

3. Learned Auditory Filter Banks for Ship Radiated Noise Modeling

The response properties of cochlea have been studied extensively. In cochlea, signals are encoded
with a set of kernels. The kernels can be viewed as an array of over-lapping band pass auditory filters
that occur along basilar membrane. These filters’ center frequencies increase from the apex to the
base of the cochlea. In addition, their bandwidths are much narrower at lower frequencies [24,25].
This property is appropriate for describing ship radiated noise, since the energy of ship radiated noise
is mainly concentrated in lower frequencies.

3.1. Auditory Filter Banks and Time Convolutional Layer

One solution of mathematical approximations of cochlea filter banks is Gammatone kernel
functions (Gamma-modulated sinusoids) [26], which are linear filters described by impulse responses.
The Gammatone impulse response is given by:
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g(t) = atn−1e−2πbt cos(2π f t + φ), (1)

where f is center frequency in Hz, φ is phase of the carrier in radians, a is amplitude, n is filter’s order,
b is bandwidth in Hz, and t is time in seconds. Center frequency and bandwidth are set according to
an equivalent rectangular bandwidth (ERB) filter bank cochlea model, which is approximated by the
following equation [27]:

ERB( f ) = 24.7(4.37 f /1000 + 1), (2)

b = 1.019× ERB( f ). (3)

In this paper, 128 Gammatone filters with center frequencies range from 20 Hz to 8000 Hz are
generated. Four Gammatone filters are shown in Figure 2a. Figure 2b shows magnitude responses
of Gammatone filter banks, and Figure 2c shows the relationship between center frequencies and
bandwidths.
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Figure 2. Gammatone auditory filters. (a) four time domain filters with different center frequencies
(CF); (b) frequency magnitude responses of all 128 filters; (c) relationship between center frequencies
and bandwidths.

However, Gammatone filters need to be optimized for the following reasons: (1) There is a
fixed bandwidth for a given center frequency. This assumption is not matched by auditory reverse
correlation data, which show a range of bandwidths at any given frequency [9]; (2) ERB filter bank
cochlea model provides linear filters, which doesn’t account for nonlinear aspects of the auditory
system [27]; (3) Auditory filter banks designed from perceptual evidence always focus on the properties
of signal description rather than the classification purpose [16].

The first layer in the proposed CNN architecture is a time convolutional layer over a raw time
domain waveform. CNN is a kind of artificial neural network which performs a series of convolutions
over input signals. We use a physiologically derived set of Gammatone filters to initial this layer for
sound representation. The output of each filter is mathematically expressed as convolution of the input
with impulse response. Then, convolutional kernels can be interpreted as representing a population of
auditory nerve spikes. As shown in Equation (4), waveform x is convolved with trainable Gammatone
kernel k j and put through activation function f to form the output feature map yj. Each output feature
map is given an additive bias bj. The time convolutional operation is only on the time axis. There is
one output for each kernel and the dimensionality of each output is identical to the input:

yj = f (x ∗ k j + bj). (4)

To optimize the kernel functions, a gradient-based algorithm is derived to update them along
with parameters in deep layers. The optimized convolutional kernels can be viewed as a set of
band-pass finite impulse response filters which correspond to different locations of the basilar
membrane. The relationship between center frequencies and bandwidths is optimized to match
the classification task.
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3.2. Multi-Scale Convolutional Kernels

Gammatone filters with similar center frequencies are more correlative with each other and they
always have similar impulse widths. Gamma envelopes of Gammatone filters are shown in Figure 3a,b.
The relationship between impulse widths and center frequencies is shown in Figure 3c. The impulse
widths range from 50 to 800 points for 16 kHz sampling frequency. The impulse widths get wider for
lower frequencies.
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Figure 3. Gamma envelopes of Gammatone filters. (a) gamma envelops of four filters; (b) magnitude
of gamma envelopes of all 128 filters; (c) relationship between impulse widths and center frequencies.

As suggested by Arora [28], in a layer-by-layer construction, correlation statistics of each layer
should be analyzed by clustering it into groups of units with high correlation. In this paper, filters with
similar impulse widths are clustered in one group. The grouping of filters is performed by quartering,
with each of the groups having the same number of filters. The width of the four groups are set as 100,
200, 400, and 800 points, respectively. In each group, we create multiple shifted copies of each filter’s
impulse response. Another parameter to be selected for the time convolutional layer is the number
of kernel functions. Filter banks with more than 16 Gammatone kernels have more than necessary,
but increasing the number allows greater spectral precision [29]. We used a set of 32 kernel functions
in each group.

The multi-scale convolutional kernels have several advantages: first, convolutional kernels with
varying lengths could cover multi-scale reception field to provide a better description of sounds.
Second, correlation statistics of signal components can be analyzed by filter bank groups. Third, fewer
parameters in multi-scale kernels can prevent overfitting and save on computing resources, especially
for filters with narrower impulse width.

4. Auditory Cortex Inspired Discriminative Learning for Ship Type Classification

In an auditory system, cochlear nerve fibers at the periphery are narrowly tuned in frequency [30].
In the proposed model, a time convolutional layer yields representations that correspond to different
frequencies. An auditory cortex is involved in tasks such as segregating and identifying auditory
“objects”. Neurons in the primary cortex have shown to be sensitive to specific spectro temporal
patterns in sounds [30], and they are likely to reflect the fact that the cochlea is arranged according
to frequency. Inspired by this property, we proposed the permute layer, energy-pooling layer and
frequency convolutional layer.

4.1. Permute Layer and Energy-Pooling Layer

After the time convolutional layer, the rest of the network is constructed by first converting
each output into a time-frequency distribution. This is one way of describing the information our
brains get from our ears. Assuming that the output of time convolutional layer has a dimension of
l × n×m, where l is frame length, n and m represent the number of frames and time feature maps,
respectively. This output is permuted into dimension of l ×m× n in the permute layer, thus we get n
output feature maps, each of which correspond to a frame and has a dimension of l ×m. Then, each
output feature map is pooled over the entire frame length by computing root-mean-square energy in
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the energy-pooling layer, so that the energy of each signal component is summed up within regular
time bins. Layer normalization is applied to normalize the energy sequences.

Figure 4 illustrates the decomposition of a time domain waveform and time-frequency conversion
by using underwater noise radiated from a passenger ship. The filters’ outputs show that the waveform
is decomposed into corresponding frequency components. The bottom right part of Figure 4 shows
that each component is converted into a frequency domain.

A
m
p
lit
u
d
e

Figure 4. The length of the passenger ship is 139 m. The recording segment is 250 ms. During the
recording period, the ship is 1.95 km away from the hydrophone and its navigational speed is 18.4 kn.
Its radiated noise is convolved with each of three Gammatone filters. Their center frequencies are 49 Hz
(orange line), 194 Hz (green line) and 432 Hz (blue line). Energy of each component is summed up to
convert to a frequency domain.

4.2. Frequency Convolutional Layer and Target Layer

Neurons in the primary auditory cortex have complex patterns of sound-feature selectivity.
These patterns indicate sensitivity to stimulus edges in frequency or in time, stimulus transitions
in frequency or intensity, and feature conjunctions [31]. Thus, in the proposed model, several 2D
frequency convolutional layers are applied to discover time-frequency edge of the ship radiated noise
based on the output of pooling layer. Convolution operations are performed in both time and frequency
axis. The dimension of convolutional kernel is 3× 3. The creation of frequency convolutional layer
matched to the processing characteristics of auditory cortical neurons. These layers could also preserve
locality and reduce spectral variations of line spectrum in ship radiated noise.

The output from the last frequency convolutional layer is flattened to form the input of a full
connected layer. To obtain a probability over every ship type for each sample, the end of the network
is a softmax target layer and the loss function is a categorical cross entropy. Output y is computed by
applying the softmax function to the weighted sums of the hidden layer activation s. The ith output
yi is:

yi =
esi

∑nclass
c esc

. (5)

The cross entropy loss function E for multi-class output is:

E = −
nclass

∑
i

tilog(yi), (6)

where t is the target vector. Parameters of both time convolutional layer, frequency convolutional
layers and full connected layers are optimized jointly with the softmax target layer. Both auditory filter
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banks and feature representations are optimized correlative with ship category by an optimization
algorithm that reflects the plasticity of an auditory system.

5. Experiments and Discussion

5.1. Experimental Dataset

Our experiments were performed on a 64-h measured ship radiated noise acquired by Ocean
Networks Canada observatory. Acoustic data were measured using an Ocean Sonics icListen AF
hydrophone placed at Latitude 49.00811◦, Longitude−123.33906◦ and 144 m below sea level. Sampling
frequency of the signal was 32 kHz and it was down sampled to 16 kHz in our experiments.
The acquired acoustic data were combined with Automatic Identification System data. Ships during
normal operating conditions presented in an area of 2 km radius of the hydrophone deployment site
were recorded. To minimize noise generated by other ships, there were no other ships presented in
a 3 km radius of the hydrophone deployment site for each recording. Ship categories of interest are
Cargo, Passenger ship, Pleasure craft, Tanker and Tug. Classification experiments were performed on
the five ship categories and background noise. Spectrograms of signals for these classes are shown in
Figure 5.
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Figure 5. Spectrogram of hydrophone signal for each category. (a) background noise; (b) cargo;
(c) passenger ship; (d) pleasure craft; (e) tanker; (f) tug.

The acquired original dataset has 474 recordings. Each recording can be sliced into serval segments
to make up the input of a neural network. The length of segments used for classification can be adjusted
according to the acquired signal; then, the input layer of the network should be adjusted accordingly.
Every segment was classified independently. The classification results obtained on 3 s segments were
more stable and accurate than classified with shorter segments. This may be because burst noise in the
acquired signal has a greater negative impact on the recognition of short segments. For a given network
structure, longer segments result in greater space complexity. For the limitation of memory capacity,
a training network with longer segments requires a smaller batch size and even causes out-of-memory
errors. Considering the computational ability and classification accuracy, the experiments in this paper
were performed on segments of 3 s duration. Thus, the dataset consists of 76,918 segments. For each
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category, about 10,000 segments were used for training and 2500 segments were used for testing.
In order to simulate real application situation, segments in one recording can’t be split into a training
dataset and test dataset. Each signal was divided into short frames of 256 ms, so each sample is a
4096× 12 data matrix.

5.2. Classification Experiments

The classification performance of the proposed method was compared to same structure CNNs
with a randomly initialed time convolutional layer and untrainable Gammatone initialed time
convolutional layer. The proposed method was also compared to CNNs trained on hand designed
features. These hand designed features included waveform features, wavelet features, MFCC,
Mel-frequency features, nonlinear auditory features, spectral and cepstral features. The two pass
split window (TPSW) [32] is applied subsequently after short-time fast Fourier transform for the
enhancement of the signal-to-noise ratio (SNR). The TPSW filtering scheme provides a mechanism
for obtaining smooth local-mean estimates of the signal. Mel-frequency features were extracted by
calculating log Mel-frequency magnitude. Nonlinear auditory filters [33] with 128 channels were
utilized to extract nonlinear auditory features. First, 512-cepstral coefficients were extracted as cepstral
features. Other features were described in our previous paper [20]. Each signal was windowed into
256 ms frames before extracting features. The extracted features on frames were stacked to create a
feature vector. The tensorflow Python library runs on a NVIDIA GTX1080 graphics card (Santa Clara,
CA, USA), which was used to perform the bulk of the computations. Table 1 shows the CNNs structure
for classification experiments. Table 2 shows the hyper-parameters of the proposed model.

Table 1. Structure of the proposed model and compared models.

CNNs Trained on Hand
Designed Features

CNNs with Same Structure as Proposed
Model

Proposed Model

Extracted features:
waveform, wavelet,
MFCC, Mel-frequency,
nonlinear auditory
filter, spectral and
cepstral.

1 multi-scale time convolutional layer with
128 kernels initialed randomly or initialed
with untrainable Gammatone

1 multi-scale time convolutional
layer with 128 kernels initialed with
Gammatone

1 permute layer

1 energy pooling layer

3 convolutional layers with 32 kernels for each layer

3 full connected layers with 32 units for each layer

1 target layer with 6 units

Table 2. Hyper-parameters of the proposed model.

Parameters Values

Learning rate 0.0001
Batchsize 50
Epochs 84

Optimizer RMSprop

Table 3 shows the classification performance of different approaches. The proposed model
achieved the highest accuracy of 79.2%. The baseline system, CNN trained on spectral features,
had a classification accuracy of 73.2%. The proposed method gave 6% improvement in accuracy
compared to the baseline. The accuracy of proposed model was apparently higher than CNNs
trained on other hand designed features. CNN with randomly initialed time convolutional layer
and untrainable Gammatone initialed time convolutional layer gave an accuracy of 60.8% and 75.3%,
respectively. The results indicated that auditory filter banks together with a back propagation algorithm
helped CNN to discover better features.
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Table 3. Classification results of proposed model and compared models.

Input Features/Methods Input Dimension Convolutional Kernel Width Accuracy

Hand
designed
features

Waveform [1,2] 8× 12 5 0.574
Wavelet [3] 14× 12 5 0.679
MFCC [8] 12× 12 5 0.576
Mel-frequency 40× 12 5 0.685
Nonlinear auditory 128× 12 5 0.726
Spectral [17,18] 2048× 12 100 0.732
Cepstral [5,6] 512× 12 50 0.712

Raw time
domain data

Untrainable Gammatone 4096× 12 [100,200,400,800] 0.608
Randomly initialed 4096× 12 [100,200,400,800] 0.753
Proposed model 4096× 12 [100,200,400,800] 0.792

Table 4 shows the precision, recall and f1-score obtained from the confusion matrix of the proposed
model. The background noise class had the highest recall value of 0.94, while the precision was only
0.73. This indicted that ships cannot be detected when they were far away from the hydrophone.
The ship classes with the best results were Cargo and Passenger, with f1-score of 0.87 and 0.86,
respectively. The poorest results were obtained for Tug, with precision of 0.73, recall of 0.54 and
f1-score of 0.62. This may be because tugs have a similar mechanical system with other classes or some
tugs were towing other ships during the recoding period.

Table 4. Classification results of proposed method for each category.

Class Precision Recall f1-Score

Background noise 0.73 0.94 0.82
Cargo 0.96 0.79 0.87

Passenger ship 0.82 0.91 0.86
Pleasure craft 0.82 0.72 0.77

Tanker 0.73 0.86 0.79
Tug 0.72 0.54 0.62

Receiver operating characteristic (ROC) curves were constructed by the output of a softmax
layer obtained on test data, assuming that one class was positive and other classes were negative.
Figure 6 shows the ROC curves and area under curve (AUC) values obtained by different approaches.
Performances of the proposed model shown in Figure 6j were significantly better than other methods
for almost all classes. The accuracies of background noise were always higher than other classes, which
indicated that it was easier in detecting ships’ presence than classifying ship types.
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Figure 6. Cont.
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Figure 6. ROC curves of the classification results for all methods by assuming that one class was
positive and other classes were negative. (a) waveform features; (b) wavelet features; (c) MFCC;
(d) mel-frequency; (e) nonlinear auditory features; (f) spectral; (g) cepstral; (h) untrainable Gammatone
initialed; (i) randomly initialed; (j) proposed method.

5.3. Visualization and Analysis

5.3.1. Visualization and Analysis of Learned Filters

Initializing CNN weights by Gammatone filters, the CNN managed to optimize impulse responses
during its training process. Figure 7 shows the optimized Gammatone kernels for ship radiated noise
in the proposed model. The algorithm modified amplitude and impulse width of Gammatone filters,
but temporal asymmetry and gradual decay of the envelope that match the physiological filtering
properties of auditory nerves were reserved.
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Figure 7. The comparison of optimized Gammatone kernels and conventional Gammatone kernels.
(a) filters in group 1; (b) filters in group 2; (c) filters in group 3; (d) filters in group 4.

We can also compare population properties of optimized Gammatone filters with those of
conventional Gammatone filters. To illustrate spectral properties of optimized filters, we zero-padded
every time convolutional kernel wi to 800 entries, and then calculated the magnitude spectrum Wi:

Wi = |DFT(wi)|, 1 ≤ i ≤ 128. (7)

Center frequency f i
c was calculated as the position of the maximum magnitude:

f i
c = argmax(Wi)× ( f s/800), (8)

where f s is sampling frequency. Bandwidth f i
b of each filter can be calculated by equivalent noise

bandwidth:

f i
b =

∑j W2
ij

(maxj Wij)2 × ( f s/800), 1 ≤ j ≤ 800. (9)

Figure 8 shows a scatter-plot of the bandwidths against center frequencies for Gammatone filters
and for optimized Gammatone filters. The optimized kernels showed a range of bandwidths at any
given frequency. Frequencies of optimized Gammatone kernels did not have exact linear correlation
with bandwidths compared to conventional Gammatone filters. Nonlinearities were located at low
frequencies. The energy of ship radiated noise is mainly concentrated below 1 kHz. Differences in the
dominant frequency of radiated noise were related to ship type [34]. The causes of the distinct spectral
characteristics are unknown, but it could be reflected on learned filters to extract the differences of
ship type.
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Figure 8. The center frequency-bandwidth distribution of optimized Gammatone kernels is plotted
together with Gammatone filters.
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5.3.2. Feature Visualization and Cluster Analysis

Feature visualization method t-distributed stochastic neighbor embedding (t-SNE) [35] was used
to observe features. One-thousand samples selected randomly from test datasets were used to perform
the experiments. Outputs of the last full connected layer were extracted as learned features. The results
are shown in Figure 9. Features in the proposed model constructed a map in which most classes were
separated from other classes, except for tugs. This result was matched by the previous classification
results. In contrast, there were large overlaps between many classes for features learned from hand
designed features. The results indicated that features in the proposed model provided better insight
into the class structure of the ocean ambient noise data.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Background noise Cargo Passenger ship Pleasure craft Tanker Tug

Figure 9. t-SNE feature visualization for features learned from proposed model and compared
models. (a) waveform features; (b) wavelet features; (c) MFCC; (d) mel-frequency; (e) nonlinear
auditory features; (f) spectral; (g) cepstral; (h) untrainable Gammatone initialed; (i) randomly initialed;
(j) proposed.

6. Conclusions

In this work, we proposed an auditory inspired convolutional neural network for ship radiated
noise recognition on raw time domain waveform in an end-to-end manner. The convolutional kernels
in a time convolutional layer are initialized by cochlea inspired auditory filters. The choice of auditory
filter banks biases our model to decompose signal into frequency components and reveal the intrinsic
information of targets. Correlation statistics of signal components are analyzed by constructing a
multi-scale time convolutional layer. The auditory filters are optimized in terms of ship radiated
noise recognition tasks. Signal components are converted to a frequency domain by permute layer
and energy pooling layer to form the “frequency map” in an auditory cortex. The whole model is
discriminative trained to optimize auditory filters and deep features by objective function of ship
classification.

The experimental results show that, during the training of a convolutional neural network,
filter banks are adaptive in shape to improve the classification accuracy. The optimization of the
auditory filter banks shape is reflected in the relationship between center frequencies and bandwidths.
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The proposed approach can yield better recognition performance when compared to conventional ship
radiated noise recognition approaches.

Our studies developed a robust ship detection and classification model by the fusion of ship
traffic data and underwater acoustic measurement. This study facilitates the development of a unique
platform which could monitor underwater noise in chosen ocean areas and has automatic detection
and classification capability to identify the contribution of different sources in real time.
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