A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020×106mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

I. INTRODUCTION

The recent interest in flat panel display devices has made a PDP become a promising candidate for the conventional cathode ray tube (CRT) display, because a PDP is praised for its large screen size, wide viewing angle, thinness, long life time, and high contrast, etc. Therefore, it is promising that PDPs will soon become consumer preferable wall-hanging color TVs. Fig. 1 is simplified sectional view showing an example of a three-electrode-type surface-discharge AC PDP. An AC PDP display is composed of X and Y electrodes covered by bus electrodes, a dielectric layer, and MgO layer in sequence on front glass substrate and
address electrodes perpendicular to X and Y electrodes on the rear glass substrate. The MgO layer protects the dielectric layer from the plasma damage and aids the plasma in sustaining a discharge through secondary electron emission from its surface. The address electrodes are covered with three phosphors of red, green and blue (R.G. B.). The space between the two opposing substrates is filled typically with chemically stable rare gases such as Ne and Xe. An externally applied electric field between X and Y electrodes ionizes the gas to create the plasma. Then, the ultraviolet light from the plasma excites the phosphor to create red, green, and blue visible lights.

Fig. 1. Simplified structure of a three-electrode-type AC PDP

Recently, the address-display-separation (ADS) driving scheme is generally adopted to drive AC PDPs, as shown in Fig. 2 [1-2]. One frame is divided into eight sub-frames as shown in Fig. 2a. Each sub-frame has the isolated address period and display period, which are concurrent to all of display area. Fig. 2b shows the applied waveform to the PDP panel. The address period consists of a reset and address setup. The writing and erasing pulses are applied to X and Y electrodes to erase the wall charges accumulated during the previous sub-field period, which makes the same surface condition of all display cells. The writing pulses are applied between Y and address electrodes. This step is repeated from first to 480th scan line sequentially according to the display data to accumulate a wall charge on dielectric layers. Then, high voltage sustaining pulses are applied between X and Y electrodes in the display.
period. Therefore, the plasma discharges take place between X and Y electrodes. The high voltage pulses can be generated by using a simple full bridge driver and most of the input power is consumed during this period.

![Diagram of Address Display Separation (ADS) Scheme]

- **Address display separation (ADS) scheme**

![Diagram of Applied Waveform of ADS Scheme]

- **Applied waveform of ADS scheme**

Meanwhile, since X and Y electrodes of a PDP are covered with dielectric and MgO layer, a PDP can be regarded as an equivalent inherent capacitor C_p as shown in Fig. 3. The typical
value of an equivalent capacitor C_p is about 80nF for a 42-in PDP. Therefore, when applying a sustaining pulse to X and Y electrodes without an ERC, a considerable energy of $2C_pV_s^2$ for each cycle is dissipated in the non-ideal resistance of circuits and PDP during charging or discharging interval [3-6]. Furthermore, the excessive surge charging and discharging currents will give rise to EMI noises and increase the surge current ratings of power switches. To solve these problems, several energy recovery sustaining drivers (ERSD), as shown in Fig.4, have been proposed in recent years.

![Equivalent circuit for inherent capacitance of PDP cell](image)

Although these circuits can recover most of the lost energy, they still have several drawbacks. The circuit as shown in Fig. 4a features a high efficiency and good circuit flexibility. But, the most serious problem of this circuit is a large voltage drop across the parasitic resistance of the circuit during plasma discharge transients. Therefore, the effective voltage applied to the PDP decreases and so does the accumulated amount of the wall charge, which also makes the plasma-discharge-start-voltage increased. Moreover, when the main switches are turned on, the voltage drops across the non-ideal resistance and diode causes the hard switching of the main switches, subsequent excessive surge current, serious power dissipation, EMI problem, and subsequent bad energy-recovery efficiency [3-6]. Another circuit as shown in Fig 4b is very simple and has no voltage drop as mentioned above. But its fatal problem is a very large circulating current that comes up to the value of the plasma discharge current (i.e. 150A for 42-in PDP). Therefore, its excessive conduction loss degrades
the overall system efficiency and the considerable heat generated by this current would require a large cooling system [5]. To overcome these drawbacks, a novel CFERSD for a PDP as shown in Fig. 8 is proposed in this paper. It features no serious voltage drops caused by the large discharge current with the aid of the discharge current compensation. Thus, its operational voltage margin is more improved. Furthermore, its circulating current is very small and the main power switches are all turned on with ZVS. Therefore, its overall system efficiency is very high, the EMI problem is very light, and the burden on the cooling system is very light. The prior circuit I shown in Fig. 4a is taken as an example to illustrate the basic operation of the prior ESRD.

Fig. 4 Schematic diagrams of prior ESRDs
II. CONVENTIONAL CIRCUIT

1. Mode Analysis

Fig. 4a and Fig. 5 shows a prior ESRD and its driving waveform for a PDP, respectively [7-9]. One cycle period of a proposed circuit is divided into two half cycles, \(t_0 \sim t_4 \) and \(t_4 \sim t_8 \).

Because the operation principles of two half cycles are same, only the first half cycle is explained. Considering only the left-side circuit, the intrinsic panel capacitance \(C_p \) and the energy recovery capacitor \(C_1 (C_1 \gg C_p) \) are series connected by an external inductor \(L_1 \). The driver utilizes the series resonance between \(C_p \) and \(L_1 \) to charge or discharge the intrinsic panel capacitance \(C_p \). The voltages across the capacitors \(C_1 \) and \(C_2 \) are assumed to be equal to \(V_s/2 \) in the steady state. Before \(t_0 \), only the switch \(M_3 \) and \(M_2 \) are in the on state and the others are in the off state. The voltage \(V_{Cp} \) is equal to zero

Mode 1 (\(t_0 \sim t_1 \)): When the switch \(M_3 \) is turned off and the switch \(M_5 \) is turned on, this mode
begins. The series resonance between \(C_p \) and \(L_1 \) begins through \(M_5 \), \(D_1 \), and \(M_2 \). Then, the panel voltage \(V_{Cp} \) will be charged to \(V_s \) at \(t_1 \).

Mode 2 (\(t_1 \sim t_2 \)): After \(V_{Cp} \) is raised to \(V_s \), the switch \(M_1 \) is turned on and then the switch \(M_5 \) is turned off at \(t_1 \). Namely, during this period, \(V_s \) is supplied from the power source to the panel through \(M_1 \) and \(M_2 \). Therefore, the voltage across the panel capacitor \(C_p \) is maintained to \(V_s \) for this period.

Mode 3 (\(t_2 \sim t_3 \)): When the switch \(M_1 \) is turned off and then the switch \(M_7 \) is turned on at \(t_2 \), this mode begins. The series resonance between \(C_p \) and \(L_1 \) begins through \(D_2 \) and switches \(M_7 \) and \(M_2 \). Since the discharge current of the capacitor \(C_p \) begins to flow into the capacitor \(C_1 \) through \(L_1 \), \(D_2 \), \(M_7 \), and \(M_2 \), the capacitor \(C_1 \) is charged. The panel capacitor \(C_p \) discharges until the voltage \(V_{Cp} \) drops to zero voltage.

Mode 4 (\(t_3 \sim t_4 \)): When the voltage \(V_{Cp} \) is reduced to zero, the switch \(M_3 \) is turned on and then the switch \(M_7 \) is turned off at \(t_3 \). That is, during this period, the ground potential is supplied to the panel through \(M_1 \) and \(M_2 \). Therefore, the zero voltage applied to the panel capacitor \(C_p \) is sustained for this period.

As described above, the charge and discharge currents flow through the inductor \(L_1 \), the LC resonance operation appears, and thereby the energy recovery effect can be obtained. In other words, the energy discharged from the capacitance \(C_p \) can also be temporarily stored in the capacitor \(C_1 \) through \(M_7 \) and \(D_2 \), and the energy discharged from the energy recovery capacitor \(C_1 \) is used to charge the intrinsic panel capacitance \(C_p \) through \(M_5 \) and \(D_1 \). Therefore, most energy is recovered and high efficiency is achieved. However, although it can recover most of the lost energy, it still has several significant drawbacks. Detailed problems of the conventional circuit are described in the following section.
2. Problems of the conventional circuit

At mode 1, when the intrinsic panel capacitor is charged to exceed the firing voltage V_f, the gas in the plasma display panel would start to discharge. However, there is an interval (about 100–200 ns) between the instant V_{C_p} reaches the firing voltage V_f and the gas starts to discharge. Generally, the value of L_1 or L_2 is small enough, and the voltage V_{C_p} can be quickly charged to V_s before the gas starts to discharge. In such condition, although the series resonance finishes completely, the large discharge current going through the on resistance of the switches M_1 and M_2 or M_3 and M_4 would cause voltage notch across the panel as shown in Fig 6.

![Fig. 6 Experimental waveform V_{C_p} of the conventional circuit](image)

These facts say that the increase of the voltage notch causes the amount of the wall charge to decrease and thus the discharging start voltage to increase.

![Fig. 7 Equivalent circuit in charging and discharging](image)
Meanwhile, in charging or discharging C_p, the equivalent circuit is formed as shown in Fig. 7, where R_{esr} means the non-ideal resistance of circuits and V_{on} the forward voltage drop of the diode. From this figure, the panel voltage $V_{Cp}(t)$ in charging transient can be obtained as follows:

$$V_{Cp}(t) = \left(\frac{V_s}{2} - V_{on}\right) \left[1 - e^{-\frac{t}{\tau}} \left(\cos \omega t + \frac{\omega R_{esr}}{L} \sin \omega t\right)\right].$$ \hspace{1cm} (1)

where τ is time constant $2L/R_{esr}$ and ω is the resonant angular frequency $\left\{1/LC_p - (0.5R_{esr}/L)^2\right\}^{0.5}$.

After a half cycle resonance between L and C_p, the voltage across C_p becomes $(V_s/2 - V_{on})(1 + e^{-\pi/\tau})$. Then, to sustain C_p at V_{in}, the switch M1 is turned on. The voltage difference as high as $V_s(V_s/2 - V_{on})(1 + e^{-\pi/\tau})$ between C_p and input source causes the hard switching of M1 as shown in Fig. 5 and subsequent serious surge current. Similarly, the panel voltage $V_{Cp}(t)$ in discharging transient can be obtained as follows:

$$V_{Cp}(t) = \left(\frac{V_s}{2} + V_{on}\right) e^{-\frac{t}{\tau}} \left(\cos \omega t + \frac{\omega R_{esr}}{L} \sin \omega t\right).$$ \hspace{1cm} (2)

After a half cycle resonance between L and C_p, the voltage across C_p becomes $(V_s/2 + V_{on}) e^{-\pi/\tau}$. Then, to sustain C_p at 0V, the switch M3 is turned on. The voltage difference as high as $(V_s/2 - V_{on})(1 - e^{-\pi/\tau})$ between C_p and GND causes the hard switching of M3 and subsequent serious surge current.

Above facts say that the increase of the parasitic resistance and forward voltage drop of the diode cause the excessive surge current, serious power dissipation, EMI problem, and subsequent bad energy-recovery efficiency. To solve these problems, it is necessary to reduce the parasitic resistance by designing the circuit board optimally as well as choosing switching devices with small on-resistance and low on-drop voltage to minimize the hard-switching stress and improve the energy recovery performance. However, since it is impossible to get rid of the parasitic components completely, abovementioned problems are inevitable. To overcome these drawbacks, a new CFERSD for a PDP is proposed in this paper.
III. PROPOSED CIRCUIT

1. Circuit operation

Fig. 8 shows the complete circuit diagram and key waveforms of the proposed circuit. One cycle period of a proposed circuit is divided into two half cycles, t_0~t_3 and t_3~t_6. Because the operation principles of two half cycles are symmetric, only the first half cycle is explained. Before t_0, the voltage v_{Cp} across C_p is maintained to V_s with M_1 and M_2 conducting. When M_7 and M_8 are turned on at t_0, mode 1 begins. The input voltage V_s is applied to L_1 and L_2 with M_1, M_2, M_7, and M_8 conducting. Thus, i_{L1} and i_{L2} increase linearly with the slope of V_s/L as $i_{L1}(t) = i_{L2}(t) = V_s(t-t_0)/L$, where it is assumed that the values of L_1 and L_2 are equal to L. When M_1 and M_2 are turned off at t_1, mode 2 begins. With the initial conditions of $i_{L1}(t_1) = i_{L2}(t_1) = I_L = V_s(t_1-t_0)/L$ and $v_{Cp}(t_1) = V_s$, i_{L1} and i_{L2} start to charge the PDP, C_1, and C_2 and discharge C_3 and C_4 as follows:

$$V_{Cp}(t) = V_s - \frac{I_L}{C_{oss} + C_p} (t-t_1)$$ \hspace{1cm} (3)

$$V_X(t) = V_s - V_Y(t) = V_s - \frac{0.5I_L}{C_{oss} + C_p} (t-t_1)$$ \hspace{1cm} (4)

where it is assumed that C_1, C_2, C_3, and C_4 are equal to C_{oss} and L_1 and L_2 act as a current source with the value of I_L. With this arrangement, the abrupt charging and discharging operations of C_p are avoided and the voltage across C_p is decreased toward $-V_s$. When v_{Cp} is clamped at $-V_s$, V_Y gets to V_s, and V_X drops to 0V at t_2, mode 3 begins. Since the voltages, V_{ds3} and V_{ds4}, across M_3 and M_4 are 0V, M_3 and M_4 can be turned on with ZVS. Moreover, since the inductor currents, i_{L1} and i_{L2}, compensate a large portion of the plasma discharge current I_{dis} during this period, the plasma
discharge current through M₃ and M₄ are considerably reduced as shown in Fig. 8 b.

Fig. 8 A complete circuit diagram and its key waveforms

Therefore, the voltage drops across the parasitic resistances are not serious and the wall charges are well accumulated. After M₇ and M₈ are turned off, the inductor currents begin to decrease linearly with the slope of -Vₛ/L and the energy stored in the
inductors is fed back to the input power source. The circuit operation of \(t_3 \sim t_6 \) is similar to that of \(t_0 \sim t_3 \). Subsequently, the operation from \(t_0 \) to \(t_6 \) is repeated.

2. Design considerations

Since the brightness of a PDP is proportional to the operation frequency, the rising times, \(t_1 \sim t_2 \) and \(t_4 \sim t_5 \), are required to be as short as possible. The interval \(t_1 \sim t_2 \) (or \(t_4 \sim t_5 \)) is the desired rising time, and \(C_p \) and \(C_{oss} \) are as known values. Thus the values of \(L_1 \) and \(L_2 \) can be determined from equations (3) as follows:

\[
L_1 = L_2 = \frac{(t_2 - t_1)(t_1 - t_0)}{2(C_p + C_{oss})}
\]

where \(L_1 \) and \(L_2 \) include the parasitic line inductance.

VI. EXPERIMENTAL RESULTS

The prototype CFERSD for a PDP is implemented with specifications of \(L_1 = L_2 = 24 \mu \text{H}, C_p = 13 \text{nF} \) (1020×106mm sized PDP), \(M_1, M_2, M_3, \) and \(M_4 = 2SK2995 \), gate driver IC = IR2110, switching frequency = 50kHz, and \(V_s = 140 \text{V} \).

Fig. 9 shows the key experimental waveforms of the proposed circuit, when the white image is displayed. As can be seen in Fig. 9, the current source built-up in the inductor completely charges the panel capacitor \(C_p \) to \(V_s \) or \(-V_s\) with no serious voltage notch across the PDP. Since it compensates the large amount of plasma discharge current, the current through and the voltage drop across power switches are considerably reduced respectively, which will attract more wall charge to deposit on the dielectric layer of the electrodes. In other words, the wall voltage is larger, and it helps the panel maintain to light at lower voltage such as 140V compared with about 165V for prior circuit. Furthermore, the current through the inductor flows only when charging or discharging transients, and \(M_1 \) and \(M_3 \) are turned on.
after V_{ds1} and V_{ds3} drop to 0V as shown in Fig. 3b, that is, ZVS of M_1 and M_3 is achieved. M_2 and M_4 are also turned on with ZVS.

![Experimental waveforms of proposed circuit](image)

a. Voltage across X, Y electrodes, and the PDP and inductor current through L_1

![Turn on transients of M_1, M_3](image)

b. Turn on transients of M_1, M_3

Fig. 9 Experimental waveforms of proposed circuit (In displaying the white image)

V. CONCLUSIONS

A novel CFERSD has been presented to overcome the drawbacks of prior circuits. Its circulating energy is very small and the main power switches are all turned on with ZVS. Therefore, it features a high efficiency and the burden on the cooling system is very light. In
particular, since it compensates the plasma discharge current, it could solve the problem of the undesirable voltage drop. Thus, this enables the panel to light at lower voltage than the prior circuit. Therefore, this proposed circuit is expected to be well suited for hang-on-the-wall TVs with its thinness, lightness, high efficiency, and low price, etc.

REFERENCES

