Edge-Maximal C_{2k+1}-vertex disjoint Free Graphs

Mohammad Bataineh

ABSTRACT: Let $k \geq 1$ be a positive integer and $G(n; V_{2k+1})$ the class of graphs on n vertices containing no $2k+1$ vertex disjoint cycles. Let $f(n; V_{2k+1}) = \max \{\varepsilon(G) : G \in G(n; V_{2k+1})\}$. In this paper we determine $f(n; V_{2k+1})$ and characterise the edge maximal members in $G(n; V_{2k+1})$ for $k = 1$ and 2.

1. INTRODUCTION

First, we recall some notation and terminology. For our purposes a graph G is finite, undirected and has no loops or multiple edges. We denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. The cardinalities of these sets are denoted by $v(G)$ and $\varepsilon(G)$, respectively. The cycle on n vertices is denoted by C_n. Let G be a graph and $u \in V(G)$. The degree of a vertex u in G, denoted by $d_G(u)$, is the number of edges of G incident to u. The neighbour set of a vertex u of G in a subgraph H of G, denoted by $N_H(u)$, consists of the vertices of H adjacent to u; we write $d_H(u) = |N_H(u)|$.

Let G_1 and G_2 be graphs. The union $G_1 \cup G_2$ of G_1 and G_2 is a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. Two graphs G_1 and G_2 are vertex disjoint if and only if $V(G_1) \cap V(G_2) = \emptyset$; G_1 and G_2 are edge disjoint if

2000 **Mathematics Subject Classification:** Primary 05C38 ; secondary 05C35

Keywords: Extremal graph; Cycle; Vertex disjoint.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received on: April 15, 2010 **Accepted on:** June 14, 2011
E(G_1) \cap E(G_2) = \emptyset. The intersection \(G_1 \cap G_2 \) of graphs \(G_1 \) and \(G_2 \) is defined similarly, but in this case we need to assume \(V(G_1) \cap V(G_2) \neq \emptyset \). The join \(G \vee H \) of two vertex disjoint graphs \(G \) and \(H \) is the graph obtained from \(G + H \) by joining each vertex of \(G \) to each vertex of \(H \). For vertex disjoint subgraphs \(H_1 \) and \(H_2 \) of \(G \), we let
\[
E(H_1, H_2) = \{xy \in E(G) : x \in V(H_1), y \in V(H_2)\}
\]
and
\[
\varepsilon(H_1, H_2) = |E(H_1, H_2)|.
\]
For a proper subgraph \(H \) of \(G \) we write \(G[V(H)] \) and \(G - V(H) \) simply as \(G[H] \) and \(G - H \) respectively.

In this paper we consider the Turán-type extremal problem [6] with the odd vertex disjoint cycles being the forbidden subgraph. Since a bipartite graph contains no odd cycles, we only consider non-bipartite graphs. For a positive integer \(n \) and a set of graphs \(\mathcal{F} \), let \(\mathcal{G}(n; \mathcal{F}) \) denote the class of non-bipartite \(\mathcal{F} \)-free graphs on \(n \) vertices, and \(f(n; \mathcal{F}) = \max \{ \varepsilon(G) : G \in \mathcal{G}(n; \mathcal{F}) \} \). An important problem in extremal graph theory is that of determining the values of the function \(f(n; \mathcal{F}) \) [6]. Further, characterize the extremal graphs \(\mathcal{G}(n; \mathcal{F}) \) of where \(f(n; \mathcal{F}) \) is attained. This problem has been studied by a number of authors [3, 4, 7, 8, 9, 11]. Jia [10] proved that \(f(n; C_5) = \left\lfloor \frac{n^2}{4} \right\rfloor + 2 \) for \(n \geq 9 \), and he characterizes the extremal graphs as well. Jia [10] conjectured that \(f(n; C_{2k+1}) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + 3 \) for \(n \geq 4k+2 \). Recently, Bataineh [1] confirm positively the above conjecture for \(n > 36k \). Most recently, Bataineh and Jaradat [2] proved that for large \(n \), \(\varepsilon(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + r - 1 \) where \(G \) is a graph that contains no \(r \) edge disjoint copies of \(C_{2k+1} \).

Let \(\mathcal{G}(n; V_{2k+1}) \) denote the class of graphs on \(n \) vertices containing no vertex disjoint cycles of length \((2k+1) \). Let \(f(n; V_{2k+1}) = \max \{ \varepsilon(G) : G \in \mathcal{G}(n; V_{2k+1}) \} \). In this
paper we determine \(f(n; V_{2k+1}) \) and characterise the edge maximal members in \(\mathcal{G}(n; V_{2k+1}) \) for \(k = 1 \) and \(2 \).

Now, we state a number of results, which we use to prove our main results.

Lemma 1.1 (Bondy & Murty) Let \(G \) be a graph on \(n \) vertices. If \(\varepsilon(G) > \frac{n^2}{4} \), then \(G \) contains a cycle of length \(r \) for each \(r \), where \(3 \leq r \leq \left\lceil \frac{n+1}{2} \right\rceil \).

Theorem 1.1 (Brandt) A non-bipartite graph \(G \) of order \(n \) and more than \(\frac{(n-1)^2}{4} + 1 \) edges. Then \(G \) contains all cycles of length between 3 and the length of the longest cycle.

Theorem 1.2 (Jia) Let \(G \in \mathcal{G}(n; C_3) \), \(n \geq 9 \). Then

\[
f(n; C_3) \leq \left\lceil \frac{1}{4} (n-2)^3 \right\rceil + 3.
\]

Furthermore, equality holds if and only if \(G \in \mathcal{G}_s^*(n) \) for \(n \geq 10 \) where \(\mathcal{G}_s^*(n) \) denote the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph \(K_{\left\lceil \frac{1}{2} (n-2) \right\rceil \left\lceil \frac{1}{2} (n-2) \right\rceil} \).

2. Edge-Maximal \(C_3 \)-vertex disjoint Free Graphs

Let \(\mathcal{G}(n; V_3) \) denote the class of graphs on \(n \) vertices containing no vertex disjoint cycles of length 3. Let

\[
f(n; V_3) = \max \{ \varepsilon(G) : G \in \mathcal{G}(n; V_3) \}.
\]

In this section we determine \(f(n; V_3) \) and characterise the edge maximal members in \(\mathcal{G}(n; V_3) \). We begin with the following construction. Let \(\Omega(n) = K_{\left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil} \).
Observe that $\Omega(n) \subseteq G(n; V_3)$ and the graph $\Omega(n)$ contains $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1$ edges. Thus, we have established that

$$f(n; V_3) \geq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1.$$

In the following theorem we establish that equality holds and we determine edge maximum members in $G(n; V_3)$.

Theorem 2.1 Let $G \in G(n; V_3)$. For $n \geq 10$,

$$f(n; V_3) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1.$$

Furthermore, equality holds if and only if $G = \Omega(n)$.

Proof: Let $G \in G(n; V_3)$. Suppose G contains a K_5 as a subgraph. Let $x \in V(G - K_5)$, if x is adjacent to K_5 by two edges, then G would have two vertex disjoint cycles of length 3. Thus,

$$\varepsilon(G - K_5, K_5) \leq n - 5.$$

Further, observe that $G - K_5$ cannot have cycles of length 3 as otherwise G would have two vertex disjoint cycles of length 3. Thus, by Lemma 1.1, we have

$$\varepsilon(G - K_5) \leq \left\lfloor \frac{(n-5)^2}{4} \right\rfloor.$$

Now,

$$\varepsilon(G) = \varepsilon(G - K_5, K_5) + \varepsilon(G - K_5) + \varepsilon(K_5) \leq n - 5 + \left\lfloor \frac{(n-5)^2}{4} \right\rfloor + 10 < \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1.$$
for $n \geq 10$. So, we need to consider the second case when G contains no K_5. Suppose G contains a K_4 as a subgraph. Now, define $A = \{x \in G - K_4 : e(x, K_4) = 3\}$. If $|A| \leq 1$ then, we have
$$e(G - K_4, K_4) \leq 2(n - 4) + 1.$$ Observe that $G - K_4$ contains no cycles of length 3 as otherwise G would have two vertex disjoint cycles of length 3. Thus, by Lemma 1.1, we have
$$e(G - K_4) \leq \left\lfloor \frac{(n - 4)^2}{4} \right\rfloor.$$ Now,
$$e(G) = e(G - K_4, K_4) + e(G - K_4) + e(K_4)$$
$$\leq 2(n - 4) + 1 + \left\lfloor \frac{(n - 4)^2}{4} \right\rfloor + 6$$
$$< \left\lfloor \frac{(n - 1)^2}{4} \right\rfloor + n - 1.$$ for $n \geq 10$. So, we need to consider the case when $|A| \geq 2$. Let v and w be two vertices in A. Let $T = G[v, w, K_4]$ and $G_i = G - T$. Let $g \in V(G_i)$, if g is adjacent to T by 4 edges, then G would have two vertex disjoint cycles of length 3. Thus, we have $e(G_i, T) \leq 3(n - 6)$. Observe that G_i cannot have cycles of length 3 as otherwise G would have two vertex disjoint cycles of length 3. Thus, by Lemma 1.1, we have
$$e(G_i) \leq \left\lfloor \frac{(n - 6)^2}{4} \right\rfloor.$$
Now,
\[\varepsilon(G) = \varepsilon(G_1, T) + \varepsilon(G_i) + \varepsilon(T) \]
\[\leq 3(n-6) + \left\lceil \frac{(n-6)^2}{4} \right\rceil + 10 \]
\[< \left\lceil \frac{(n-1)^2}{4} \right\rceil + n-1. \]
for \(n \geq 10 \). So, we need to consider the case when \(G \) contains no \(K_4 \) as a subgraph.

Suppose \(G \) contains a \(K_3 \) as a subgraph. Let \(T = G[K_3] \) and \(G_i = G - T \). Let \(g \in G_i \), if \(g \) is adjacent to \(T \) by more than 2 edges, then \(G \) would have \(K_4 \) as a subgraph. Thus, we have \(\varepsilon(G_1, T) \leq 2(n-3) \). Observe that \(G_i \) cannot have cycles of length 3 as otherwise \(G \) would have two vertex disjoint cycles of length 3. Thus, by Lemma 1.1, we have
\[\varepsilon(G_i) \leq \left\lceil \frac{(n-3)^2}{4} \right\rceil. \]

Now,
\[\varepsilon(G) = \varepsilon(G_1, T) + \varepsilon(G_i) + \varepsilon(T) \]
\[\leq 2(n-3) + \left\lceil \frac{(n-3)^2}{4} \right\rceil + 3 \]
\[= \left\lceil \frac{(n-1)^2}{4} \right\rceil + n-1. \]
So, we need to consider the case when \(G \) contains no cycles of length 3. By Lemma 1.1, we have
\[\varepsilon(G) \leq \left\lceil \frac{n^2}{4} \right\rceil \]
\[< \left\lceil \frac{(n-1)^2}{4} \right\rceil + n-1. \]
This completes the proof.
We now characterize the extremal graphs. Through the proof, we notice that the only time we have equality is in case where \(G \) have a \(K_3 \) as a subgraph, \(G - K_3 \) is a complete a bipartite graph \(K_{\frac{n-3}{2}, \frac{n-3}{2}} \) and \(\varepsilon(K_3, G - K_3) = 2(n - 3) \).

This gives rise to the graph \(\Omega(n) = K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lfloor \frac{n-1}{2} \right\rfloor} \).

In the following section we determine edge maximum members in \(G(n; V_5) \).

3. Edge-Maximal \(C_5 \)-vertex disjoint Free Graphs

Let \(k \geq 2 \) be a positive integer. Let \(G(n; V_{2k+1}) \) denote the class of graphs on \(n \) vertices containing no \(2k+1 \) vertex disjoint cycles. Let \(f(n; V_{2k+1}) = \max \{ \varepsilon(G) : G \in G(n; V_{2k+1}) \} \).

In this section, we determine \(f(n; V_5) \) and characterise the edge maximal members in \(G(n; V_5) \). Let \(\Omega(n) = K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lfloor \frac{n-1}{2} \right\rfloor} \). Observe that \(\Omega(n) \subseteq G(n; V_5) \) and the graph \(\Omega(n) \) contains \(\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1 \) edges. Thus, we have established that

\[
f(n; V_5) \geq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1.
\]

In this section, we prove that equality holds. In the following theorem we determine edge maximum members in \(G(n; V_5) \).

Theorem 3.1 Let \(G \in G(n; V_5) \). If \(\delta(G) \geq 40 \), then

\[
f(n; V_5) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1.
\]

Furthermore, equality holds if and only if \(G = \Omega(n) \).
Proof: Suppose G contains no two vertex-disjoint cycles of length 3. Then by the Theorem 2.1, we have
\[\varepsilon(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + n - 1. \]
So, we need to consider the case when G has at least two vertex-disjoint cycles of length 3. Let $C_3 = x_1, x_2, x_3, x_4$ and $C_3' = y_1, y_2, y_3, y_4$ be two vertex-disjoint cycles of length 3. We consider two cases:

Case 1: C_3 form a cycle of length 5 in $G - C_3'$ or C_3' form a cycle of length 5 in $G - C_3$. Without loss of generality, assume C_3 form a cycle of length 5 in $G - C_3'$. Let $C_5 = z_1, z_2, z_3, z_4, z_5$ be the cycle of length 5 in $G - C_3'$. Define $H = (G - C_3') - C_5$. Note that the vertices in G have degree more than or equal to 40 in G. So, for $j = 1, 2, 3$, let A_j be a set that consist of 4 neighbours of y_j in H, selected so that $A_i \cap A_j = \phi$, for $l \neq j$. Let $T_1 = G \left[\bigcup_{j=1}^{3} y_j, \bigcup_{j=1}^{3} A_j \right]$. The situation as shown below:

Let $u \in V(H)$. If u is adjacent to a vertex in A_j, for $j = 1, 2, 3$, then u can not be adjacent to any vertex in $A_{j+2} \cup A_{j-2}$, and to x_{j+1} and x_{j-1}. Thus, $\varepsilon(\{u\}, T_1) \leq 5$. Consequently, $\varepsilon(H, T_1) \leq 5(n-20)$. Further, $\varepsilon(T_1, C_5) \leq 25$.
By Theorem 1.2, we have $\varepsilon(T_1) \leq \left\lfloor \frac{13^2}{4} \right\rfloor + 3$. Note that,

$$\varepsilon(H, C_5) + \varepsilon(C_5) \leq 5(n - 20) + 10.$$ Now,

$$\varepsilon(G) = \varepsilon(H) + \varepsilon(H, T_1) + \varepsilon(T_1) + \varepsilon(H, C_5) + \varepsilon(C_5) + \varepsilon(T_1, C_5)$$

$$\leq \left\lfloor \frac{(n - 20)^2}{4} \right\rfloor + 5(n - 20) + \left\lfloor \frac{13^2}{4} \right\rfloor + 3 + 5(n - 20) + 10 + 25 \quad \text{(Lemma 1.1)}$$

$$\leq \left\lfloor \frac{(n - 1)^2}{4} \right\rfloor + n.$$

Case 2: C_3 does not form a cycle of length 5 in $G - C_3'$ and C_3' does not form a cycle of length 5 in $G - C_3$.

Define $H = (G - C_3') - C_3$. Note that the vertices in G have degree more than or equal to 40 in G. So, for $j = 1, 2, 3$, let A_j be a set that consist of 4 neighbours of y_j in H, selected so that $A_i \cap A_j = \emptyset$, for $l \neq j$. Let $T_1 = G \left(\bigcup_{j=1}^{3} y_j, \bigcup_{j=1}^{3} A_j \right)$. The situation is shown below:

Let $u \in V(H)$. If u is adjacent to a vertex in A_j, for $j = 1, 2, 3$, then u can not be adjacent to any vertex in $A_{j-2} \cup A_{j-2}$, and to x_{j-1} and x_{j-1}.

[Diagram of graph with vertices H, T_1, and sets A_1, A_2, A_3]
Thus, \(\varepsilon(\{u\}, T_1) \leq 5 \). Consequently, \(\varepsilon(H, T_1) \leq 5(n - 18) \). Further, \(\varepsilon(T_1, C_3) \leq 15 \).

By Theorem 1.2, we have \(\varepsilon(T_1) \leq \frac{13^2}{4} + 3 \). Note that, \(\varepsilon(H, C_3) + \varepsilon(C_3) \leq 3(n - 20) + 3 \). Now,

\[
\varepsilon(G) = \varepsilon(H) + \varepsilon(H, T_1) + \varepsilon(T_1) + \varepsilon(H, C_3) + \varepsilon(C_3) + \varepsilon(T_1, C_3)
\leq \frac{(n - 18)^2}{4} + 5(n - 18) + \frac{13^2}{4} + 3 + 3(n - 18) + 3 + 15. \tag{Lemma 1.1}
\leq \frac{(n - 1)^2}{4} + n.
\]

This completes the proof.

We now characterize the extremal graphs. Through the proof, we notice that the only time we have equality is in case where \(G \) have a \(K_3 \) as a subgraph, \(G - K_3 \) is a complete a bipartite graph \(K_{\frac{n-3}{2}, \frac{n-3}{2}} \) and \(\varepsilon(K_3, G - K_3) = 2(n - 3) \). This gives rise to the graph \(\Omega(n) = K_{\frac{n-1}{2}, \frac{n-1}{2}} \).

REFERENCES

Edge-Maximal C_{2k+1}-vertex disjoint Free Graphs

(Mohammad Bataineh) Department of Mathematics, Yarmouk University, Irbid –Jordan

E-mail address: bataineh71@hotmail.com