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Abstract
Extracellular glycosylation is a critical determinant of malignant character. Here, we report that N-acetylga-

lactosaminyltransferase 2 (GALNT2), the enzyme thatmediates the initial step of mucin type-O glycosylation, is a
critical mediator of malignant character in hepatocellular carcinoma (HCC) that acts by modifying the activity of
the epidermal growth factor receptor (EGFR). GALNT2mRNAandproteinwere downregulated frequently inHCC
tumors where these events were associated with vascular invasion and recurrence. Restoring GALNT2 expression
in HCC cells suppressed EGF-induced cell growth, migration, and invasion in vitro and in vivo. Mechanistic
investigations revealed that the status of the O-glycans attached to the EGFR was altered by GALNT2, changing
EGFR responses after EGF binding. Inhibiting EGFR activity with erlotinib decreased the malignant characters
caused by siRNA-mediated knockdown of GALNT2 in HCC cells, establishing the critical role of EGFR in
mediating the effects of GALNT2 expression. Taken together, our results suggest that GALNT2 dysregulation
contributes to the malignant behavior of HCC cells, and they provide novel insights into the significance of
O-glycosylation in EGFR activity and HCC pathogenesis. Cancer Res; 71(23); 1–10. �2011 AACR.

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
malignancy and the third leading cause of cancer-related death
worldwide (1). The primary curative treatment for HCC is
hepatic resection. Although clinical treatment of HCC is con-
tinuously evolving, the prognosis of HCC patients remains
poor. To improve the survival of HCC patients, further under-
standing of HCC pathogenesis and novel treatment agents are
needed.
Glycosylation is the most common posttranslational mod-

ification of proteins. Aberrant glycosylation is a hallmark of
most human cancers and affects many cellular properties,
including cell proliferation, apoptosis, differentiation, trans-
formation, migration, invasion, and immune responses (2).

Tumor-associated carbohydrate antigens have drawn global
attention to develop diagnostic reagents and vaccines for
cancer therapy (3). However, the glycogenes responsible for
the expression of these antigens and their pathophysiologic
roles in human cancers are still largely unknown.

Two major types of protein glycosylation in mammalian
cells exist: N-linked and O-linked. The most frequently occur-
ring O-glycosylation is the mucin type, initiated by the transfer
of UDP-N-acetylgalactosamine (UDP-GalNAc) to the hydroxyl
group of serine (S) or threonine (T) residue forming Tn antigen
(GalNAca-S/T; ref. 4). This reaction is catalyzed by a large
family of polypeptideGalNAc transferases (GALNT), consisting
of at least 20 members in humans, namely GALNT1 to 14 and
GALNTL1 to L6 (5, 6).

Studies have shown that O-glycans and GALNT genes play
critical roles in a variety of biological functions and human
disease development. For instance, loss of GALNT1 activity in
mice results in bleeding disorder (7). Risk of epithelial ovarian
cancer (8) and coronary artery disease (9) have been associated
with single nucleotide polymorphisms of GALNT1 and
GALNT2, respectively. GALNT3 expression is a potential diag-
nostic marker for lung (10) and pancreatic (11) cancers.
GALNT6 modifies mucin 1 glycosylation and regulates prolif-
eration of breast cancer cells (12).

The epidermal growth factor receptor (EGFR) is a promising
therapeutic target as its overexpression is associated with
various cancers and plays a crucial role in tumor malignancy
(13). Overexpression of EGFR in HCC (14) and upregulation of
EGF in advanced HCC compared with the control liver tissue
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and early HCC (15) suggest the potential role of EGFR-ligand
interaction in HCC progression. Phase 2 clinical trials of
erlotinib, an EGFR inhibitor, showed 9% partial response and
25% partial response combined with bevacizumab (antibody
for VEGF) for advanced HCC (16). The phase 3 clinical trial of
erlotinib for advanced HCC is still ongoing. However, the
clinical efficacy is still unsatisfactory. Thus, to improve the
effect of EGFR-targeted therapies, molecular mechanisms by
which EGFR regulates HCC properties should be further
investigated.

In HCC, the expression pattern and function of GALNT
family have never been reported, although O-glycosylation can
regulate multiple cellular properties. Here, we report that
GALNT2 is frequently downregulated in HCC. Moreover,
GALNT2modifies EGFRO-glycosylation and activity, and plays
a critical role in the malignant phenotype of HCC cells in vitro
and in vivo.

Materials and Methods

Tissue samples
Postsurgery fresh tissue samples were collected from

patients receiving treatment at the National Taiwan University
Hospital (Supplementary Table S1). The tumor samples were
taken from the central part of the resected tumor and the
paired nontumor samples were taken 2 cm away from the
tumor. For immunohistochemistry, specimens were fixed in
4% (w/v) paraformaldehyde/PBS. For RNA extraction, speci-
mens were soaked in RNAlater (Qiagen Corp.) at 4�C overnight
and then stored at �20�C. Samples used for Western blotting
were stored at �80�C. Ethics approval was obtained from the
local hospital ethic committees and a written consent was
obtained from each patient before sample collection.

Cell line and cell culture
Human liver cancer cell lines Huh7, PLC5, and HepG2

were purchased from Bioresource Collection and Research
Center (Hsinchu, Taiwan) in 2008. HA22T, SUN387, and
HCC36 cells were kindly provided by Shiou-Hwei Yeh
(National Taiwan University, Taiwan) in 2010. All cell lines
were authenticated by the provider based on morphology,
antigen expression, growth, DNA profile, and cytogenetics.
Cells were maintained with Dulbecco's modified Eagle's
medium (DMEM; Biowest) containing 10% FBS (PAA Lab-
oratories), 100 IU/mL penicillin, and 100 mg/mL streptomy-
cin (Biowest) in tissue culture incubator at 37�C, 5% CO2. All
cell culture experiments were conducted with cells at less
than 30 passages after receipt. Cells were tested to be
Mycoplasma free prior to experiments.

cDNA synthesis and real-time reverse transcriptase PCR
The total RNA was isolated using Trizol reagent (Invitrogen,

Life Technologies) according to the manufacturer's protocol.
In real-time PCRs, quantitative PCR System Mx3000P (Strata-
gene) was used. Primers were designed by Primer 3 (v.0.4.0;
Supplementary Table S2). Relative quantity of gene expression
normalized to GAPDH was analyzed with MxPro Software
(Stratagene).

Immunohistochemistry
Paraffin-embedded tissue sections were incubated with

anti-GALNT2 polyclonal antibody (1:75, Sigma) diluted with
5% nonfat milk/PBS for 16 hours at 4�C. After rinsing twice
with PBS, Super Sensitive Link-Label immunohistochemistry
Detection System (BioGenex) was used and the specific immu-
nostaining was visualized with 3,3-diaminobenzidine liquid
substrate system (Sigma). All sections were counterstained
with hematoxylin. Negative controls were done by replacing
primary antibody with control IgG. Tumor cell proliferation
was assessed by Ki67 immunoreactivity. Anti-Ki67 rabbit
polyclonal antibody (Vector Laboratories) was applied to the
slides at 1:500 dilution. Cells with positively stained nuclei were
counted in 5 random fields.

Plasmid construction
Reverse transcriptase PCR (RT-PCR) was done for cloning of

full-length human GALNT2 (Accession No. NM_004481) from
nontumorous liver total RNA (BD Biosciences). The sense
primer was 50-ATGCGGCGGCGCTCGCGGAT-30, and the anti-
sense primer was 50-CTGCTGCAGGTTGAGCGTGA-30. The
RT-PCR products were cloned into pcDNA3.1/myc-His (Invi-
trogen Life Technologies) to generate the GALNT2/myc-His
fusion gene. The insert was confirmed by DNA sequencing.

Transfection
Overexpression of GALNT2 gene was achieved by transfect-

ing cellswith pcDNA3.1/GALNT2/mycHis plasmids using Lipo-
fectamine 2000 (Invitrogen, Life Technologies) according to
the manufacturer's protocol. The transfected cells were select-
ed with 600 mg/mL of G418 for 14 days and then pooled for
further studies.

siRNA knockdown of GALNT2 expression
SMARTpool siRNA oligonucleotides against GALNT2 and

siCONTROL nontargeting siRNA were synthesized by Dhar-
macon Research (Thermoscientific). For knockdown of
GALNT2, cells were transfected with siRNA using Dharma-
FECT 4 (Thermoscientific) with a final concentration of 100
nmol siRNA for 48 hours.

Western blot analysis
GALNT2 proteins were detected with rabbit anti-GALNT2

polyclonal antibody (Sigma). For detection of EGFR and its
downstream signaling molecules, anti-phospho-tyrosine anti-
body 4G10 (Upstate Biotechnology) and antibodies against
total EGFR, EGFR pY 845, EGFR pY1068, p-Src, Src, p-Shc, Shc,
p-AKT, AKT, p-ERK1/2, and ERK1/2 (Cell Signaling Technol-
ogy, Inc.) were used. Detection of glycoproteins decorated with
Tn antigens was achieved by using biotinylated Vicia villosa
agglutinin (VVA, Vector Laboratories) with or without neur-
aminidase (Sigma) treatment. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was detected with anti-GAPDH
monoclonal antibody (BD Pharmingen).

Lectin pull down and immunoprecipitation
To detect the Tn, T, and T/sialyl T on glycoproteins, VVA,

peanut agglutinin (PNA), and Jacalin agarose beads (Vector
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Laboratories) were used, respectively. Briefly, cell lysates
(0.5 mg) were incubated with VVA, PNA, or Jacalin agarose
beads for 4 hours. Peptide: N-Glycosidase F (PNGaseF, Sigma)
was used to remove N-glycans. Protein G sepharose beads
(Amersham Pharmacia) conjugated with 1 mg of anti-EGFR
antibody were used in immunoprecipitation. The precipitated
proteins were then subjected to Western blotting.

Matrigel invasion assay
Cell invasion assays were done in BioCoat Matrigel Invasion

Chambers (BectonDickinson) according to themanufacturer's
protocol, as previously described (17). Briefly, 500 mL DMEM
with or without chemoattractants was loaded in the lower part
of the chamber and 3� 104 of transfected cells in 500mL serum-
free DMEM were seeded onto the upper part. Chemoattrac-

tants were 10% FBS (PAA Laboratories), 100 ng/mL EGF
(Sigma), or 50 ng HGF (Sigma). Cells were allowed to invade
the matrigel for 24 hours. In some experiments, 70 mmol/L
erlotinib (Santa Cruz Biotechnology) or dimethyl sulfoxide
(DMSO) was included in the upper-chamber medium. The
invading cells were fixed and stained with 0.5% (wt/vol) crystal
violet (Sigma). The numbers in each well were counted and
values are presented as mean � SD.

Transwell migration assay
The transfected cells (3� 104) were resuspended in serum-

free DMEM and added to the top well of each migration
chamber with an 8-mm pore size membrane (Corning). Cell
migrationwas induced by 10%FBS (PAALaboratories), 100 ng/
mLEGF (Sigma), or 50 ngHGF (Sigma) in the bottomchambers
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Figure 1. Expression of GALNT2 in human HCC. A, expression of the GALNT family genes in primary liver tissues. The expression of GALNT1-14 and
GALNTL1-L6mRNA, as indicated, in pooled nontumorous parts of HCC patients (n¼ 8) was analyzed by real-time RT-PCR. The relative level of mRNA was
normalized toGAPDH and obtained from 3 separate experiments. Error bars,�SD. B,GALNT1 andGALNT2mRNAexpression in HCC tissues.GALNT1 (top)
andGALNT2 (middle) expression in 6 pairedHCC tissues (fromNo. 1–6) andGALNT2 expression in 43 pairedHCC tissues (n¼ 43) were analyzed (bottom). T,
tumor tissues; N, paired nontumorous liver tissues. Paired t tests were done. �, P < 0.05, T/N ratio < 0.5 is considered as T < N. C, expression of GALNT2 in
pairedHCC tissues (n¼6) byWestern blotting. Representative images are shown. The signalswerequantified from3separate experiments. Paired t tests also
showed significant decrease of GALNT2 expression in HCC tumors (not shown). D, immunohistochemistry of GALNT2 in paired HCC tissues. Representative
images (patient No. 3) are shown. The subcellular localization of GALNT2 was shown in the Golgi apparatus of normal hepatocytes. Amplified images are
shown in the lower right. The negative control did not show any specific signals (data not shown). Scale bars, 50 mm.
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and analyzed after 24 hours. To assess the effect of erlotinib on
cell migration, erlotinib (70 mmol/L) or DMSO was included in
the upper-chamber medium.

Cell growth analysis
Cells (4 � 104) were seeded in 6-well plates with serum-free

DMEM or DMEM containing 10% FBS (PAA Laboratories), 100
ng/mL EGF (Sigma), or 50 ng HGF (Sigma). Viable cells were
determined at 24-hour intervals for 72 hours using hemocy-
tometer with trypan blue exclusion. Erlotinib (70 mmol/L) and
DMSO control were used to assess the effect of EGFR inhibitor.

Bromodeoxyuridine incorporation and
immunofluorescence microscopy

Cells were plated in chamber slides and subjected to serum
starvation for 16 hours, and treated with 10% FBS (PAA
Laboratories), 100 ng/mL EGF (Sigma), or 50 ng HGF (Sigma)
for 2 hours and then bromodeoxyuridine (BrdU; 10 mmol/L) for
0.5 hours. The cells were fixed and incubated with anti-BrdU
antibody (Sigma). BrdU staining was completed with Cy3-
conjugated goat anti-mouse IgG (Jackson Immunoresearch),
and counterstained by 40,6-diamidino-2-phenylindole (DAPI).
For GALNT2 staining, cells cultured in complete DMEM were
stained with anti-GALNT2 antibody (Sigma) and Cy3-conju-
gated goat anti-rabbit IgG (Jackson Immunoresearch).

Internalization of EGFR
Cells were starved for 4 hours and then treated with EGF

(100 ng/mL; Sigma) for 10 minutes at 37�C. The cells were

washed with ice cold PBS, fixed, and then immunostained by
anti-EGFR (Cell Signaling) and anti-EEA1 (early endosome
antigen 1) antibody (Santa Cruz) and counterstained by DAPI
(Sigma).

Tumor growth in nude mice
For tumor growth analysis, 6-week-old female BALB/c nude

mice (National Laboratory Animal Center, Taiwan) were
injected subcutaneously with 5 � 106 of Mock cells (n ¼ 6)
or GALNT2 transfectants (n ¼ 6). At day 28 after injection,
tumors in each group were excised for analyses. Animal
experiments were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of National Taiwan
University College of Medicine.

Statistical analysis
Student t test was used for statistical analyses. Data are

presented as means� SDs. We conducted paired t tests for the
analysis of paired HCC tissues. Where appropriate, a 2-way
ANOVA followed by a Bonferroni post hoc test for significance
was applied, as indicated in figure legends. P < 0.05 was
considered statistically significant.

Results

Expression of GALNT2 is frequently downregulated in
human HCC

To investigate the potential role of GALNT gene family in
HCC, we first analyzed GALNT1-14 and GALNTL1-L6
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Figure 2. Stable transfection of
Huh7 cells with GALNT2. A,
expression of GALNT2 in HCC cell
lines. The GALNT2 protein
expression was analyzed by
Western blotting, and the relative
intensity of signals is presented as
the mean � SD. n ¼ 3. B,
reexpression of GALNT2 in Huh7
cells. GALNT2 overexpression was
confirmed by Western blotting.
Immunofluorescence microscopy
showed overexpression of GALNT2
(red) in > 90% of GALNT2 stable
transfectants. Nuclei were
counterstained with DAPI (blue).
The changes in carbohydrates on
cellular proteins were detected by
Vicia villosa agglutinin (VVA),
specific for GalNAc-O-Ser/Thr.
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expression in primary liver tissues by real-time RT-PCR.
Among them, only GALNT1 and GALNT2 were found to be
highly expressed in the nontumorous liver tissues (n¼ 8) (Fig.
1A). We therefore further analyzed GALNT1 and GALNT2
expression in paired HCC tissues (n¼ 6). Paired t tests showed
that GALNT2, but not GALNT1, exhibited significant down-
regulation in HCC tissues compared with their noncancerous
parts (Fig. 1B, upper and middle panel). Moreover, real-time
RT-PCR revealed downregulation of GALNT2 expression in
72.1% (31/43) of HCC tissues (Fig. 1B, lower panel). Interest-
ingly, GALNT2 downregulation was found in 90.9% (10/11) and
83.3% (10/12) of HCC patients with vascular invasion and
recurrence, respectively. Consistent findings of lower expres-
sion levels of GALNT2 protein in HCC tissues were observed by
Western blotting and immunohistochemistry (Fig. 1C and D).
These results suggest that GALNT2 expression is frequently
downregulated and associated with invasive properties of
HCC.

Stable transfection of Huh7 cells with GALNT2
To investigate the role of GALNT2 in HCC, we first analyzed

GALNT2 expression in 6HCC cell lines byWestern blotting.We
found that Huh7 expressed lower levels of GALNT2, whereas
PLC5 expressed higher levels of GALNT2 in these cell lines (Fig.
2A). We therefore chose Huh7 cells and PLC5 cells to over-
express and knockdown the GALNT2 expression, respectively.
For establishing stable transfectants, G418-resistant clones of
transfected Huh7 cells were pooled. Mock and GALNT2 stable
transfectants were obtained from the pooled colonies of Huh7

cells transfected with pcDNA3.1 and GALNT2/pcDNA3.1 plas-
mids, respectively. The overexpression of GALNT2 was con-
firmed by Western blot analysis and immunofluorescence
microscopy (Fig. 2B). An increased binding of VVA lectin to
glycoproteins in GALNT2 overexpressing lysates was observed,
reflecting enhanced O-glycosylation (Fig. 2C).

GALNT2 suppresses malignant phenotypes in Huh7 cells
To investigate effects of GALNT2 on malignant phenotypes

in Huh7 cells, cell growth, migration, and invasion were
analyzed. We found that GALNT2 suppressed FBS- and
EGF-induced cell growth (Fig. 3A). Our data further showed
that GALNT2 was able to inhibit FBS- and EGF-induced cell
proliferation (Fig. 3B), but has no significant effect on apopto-
sis and cell cycle (data not shown). Furthermore, reexpression
of GALNT2 significantly inhibited FBS- and EGF-induced
migration and invasion revealed by transwell migration and
matrigel invasion assays, respectively (Fig. 3C and D). In
contrast, we did not observe significant changes in cell growth,
proliferation, migration, and invasion when cells treated with
HGF or under serum-free conditions. To further confirm the
effects of GALNT2 overexpression on Huh7 cells, GALNT2
overexpression was knocked down by siRNA. Our data showed
that the suppressive effects of GALNT2 overexpression were
significantly blocked by GALNT2 siRNA but not control siRNA
(Supplementary Fig. S1). To know whether EGF plays a role in
FBS-induced malignant phenotypes, EGFR inhibitor erlotinib
was used to treat mock and GALNT2 stable transfectants. Our
data showed that cell growth, migration, and invasion were

Figure 3. Effects of GALNT2 on
malignant phenotypes in Huh7
cells. A, effects of GALNT2 on cell
growth analyzed by trypan blue
exclusion assays. Cells were grown
in serum-free DMEM or DMEM
containing 10% FBS, 100 ng/mL
EGF, or 50 ng/mL HGF, and the
number of live cells at different time
points were counted. The results
were graphed after standardization
by Mock (0 h) to 1.0. Results were
analyzed by 2-way ANOVA and are
represented as themean�SD from
3 independent experiments.
�, P < 0.05; ��, P < 0.01. B, effects of
GALNT2 on cell proliferation.
Proliferative cells were analyzed by
BrdU incorporation assays.
��, P < 0.01; n¼ 3; error bars, mean
� SD. C, effects of GALNT2 on cell
migration by transwell migration
assays. Data are represented as
mean � SD from 3 independent
experiments. �, P < 0.05;
��, P < 0.01. D, effects of GALNT2
on invasion by matrigel invasion
assays. Data are represented as
mean � SD from 3 independent
experiments. ��, P < 0.01.
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significantly suppressed by erlotinib (Supplementary Fig. S2).
These results suggest thatGALNT2 can suppress themalignant
behavior of Huh7 cells and the EGF-mediated pathway may be
involved in this process.

GALNT2 inhibits tumor growth in nude mice
To investigate the effect of GALNT2 on tumor growth in vivo,

Mock and GALNT2 transfected Huh7 cells were subcutane-
ously xenografted in nude mice. We observed that GALNT2
significantly suppressed tumor volume (Fig. 4A) and tumor
weight (Fig. 4B) after 28 days. Immunohistochemical analysis
showed a significant decrease in the percentage of Ki67-
positive cells in GALNT2 tumors compared with Mock tumors
(Fig. 4C and D). These results suggest that GALNT2 inhibits
HCC tumor cell growth and proliferation in vivo.

GALNT2 modifies glycosylation and activity of EGFR in
Huh7 cells

Because we found that GALNT2 can suppress EGF-induced
malignant phenotypes, we analyzed whether EGFR glycosyla-
tion and activity were modulated by GALNT2 expression. We
observed that endogenous EGFRs in HCC cells could not be
pulled down by VVA (data not shown). Interestingly, EGFR
could be easily pulled down by VVA after neuraminidase
treatment (Fig. 5A, upper panel). In addition, more EGFR
molecules were pulled down after the removal of N-glycans
by PNGaseF than those without treatment. We also showed
that EGFRs could be precipitated by PNA after neuraminidase
treatment and pulled down by jacalin without neuraminidase
treatment. To further confirm the presence of O-glycans, EGFR

was immunoprecipitated, followed by neuraminidase treat-
ment, and then immunoblotted with VVA. The results
obtained consistently show the expression of sialyl Tn struc-
ture on EGFRs (Fig. 5A, lower panel), suggesting that short O-
glycans, preferentially sialyl Tn, were decorated on EGFRs.
Notably, forced expression of GALNT2 enhanced the expres-
sion of sialyl Tn on EGFR (Fig. 5B). To know the effects of
glycosylation on EGFR molecules, we analyzed the cell surface
expression of EGFR, EGF-induced endocytosis, and EGF-
induced dimerization of EGFR. Our data showed that neither
the surface expression (Fig. 5C) nor EGF-induced dimerization
(data not shown) of EGFR was affected by GALNT2. Interest-
ingly, fluorescencemicroscopy showed that GALNT2 inhibited
colocalization of EGFRwith EEA1when cells were treated with
EGF (Fig. 5C). In addition, endocytosis triggered by Alexa488-
EGF was suppressed by GALNT2 (Supplementary Fig. S3A).
Overexpression of GALNT2 significantly inhibited the elimi-
nation of biotinylated EGFR from the cell surface (Supplemen-
tary Fig. S3B). These results suggest that GALNT2 overexpres-
sion inhibits EGF-triggered endocytosis of EGFR.

We next examined the effect of GALNT2 on tyrosine phos-
phorylation of cellular proteins.We found that GALNT2mainly
suppressed tyrosine phosphorylation of proteins located at 175
and 140 kDa (Fig. 5D). We then investigated whether phos-
phorylation and activity of EGFR (175 kDa) weremodulated by
GALNT2. Our data showed that GALNT2 expression inhibited
the EGF-induced phosphorylation of EGFR at Y845 and Y1068,
as well as the total tyrosine phosphorylation levels revealed by
4G10 mAb (Fig. 5E). Furthermore, phosphorylation levels of
EGFR downstream signalingmolecules, including p-Src, p-Shc,
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pAkt, and p-ERK1/2, also diminished (Fig. 5E). These results
suggest that GALNT2 expression downregulates EGF-induced
phosphorylation of EGFR and, which in turn, suppresses the
downstream signaling pathways of EGFR.

Effects of GALNT2 knockdown on HCC cells
To verify the effect of GALNT2 on HCC cells, endogenous

GALNT2 expression was knocked down with siRNA. Our data
showed that GALNT2 pooled siRNA efficiently inhibited
GALNT2 protein expression in PLC5 cells and suppressed the

expression of short O-glycans recognized by VVA lectins
compared with the control siRNA (Fig. 6A). In addition, the
knockdown of GALNT2 diminished binding of VVA to neur-
aminidase-treated EGFR, indicating that less sialyl Tn were
present on the EGFR in the GALNT2-knockdowned cells (Fig.
6B). In these cells, the EGF-induced phosphorylation of EGFR
at Y1068 and Y845 was increased (Fig. 6B), suggesting that
EGFRs decorated with less sialyl Tn exhibit higher activity.
Moreover, our results showed that knockdown of GALNT2
enhanced EGF-induced cell growth (Fig. 6C), migration (Fig.
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6D), and invasion (Fig. 6E) in PLC5 cells, whereas no significant
changes were observed for cells treated with HGF or under
serum-free conditions. Surprisingly, PLC5 cells invaded in
higher numbers than migrated. In addition, we observed that
FBS-induced cell growth, but not migration and invasion, was
enhanced by GALNT2 siRNA. Notably, the increase in the EGF-
triggered malignant properties induced by GALNT2 knock-
downwas significantly suppressed by erlotinib, suggesting that
EGFR plays a critical role in the phenotypic changes mediated
by GALNT2.

To further confirm the effect of GALNT2 on HCC cells, we
knocked down GALNT2 expression in another HCC cell line
HA22T. Our data showed that knockdown of GALNT2 with
siRNA increased EGFR activation but decreased VVA binding
to EGFR (Supplementary Fig. S4A). In addition, EGF-induced
cell growth, migration, and invasion were significantly
increased by GALNT2 siRNA (Supplementary Fig. S4B–D).

These results further show a role of GALNT2 in regulating the
malignant behavior of HCC cells.

Discussion

We showed that GALNT1 and GALNT2 are the major
GALNT enzymes in human liver. Downregulation of GALNT2
was frequently found in primary HCC tissues and associated
with vascular invasion and recurrence. Interestingly, GALNT2
modulates the structure of short O-glycans on EGFR. More-
over, GALNT2 could regulate the malignant phenotype and
phosphorylation levels of EGFR and its downstream signaling
molecules. Here, we show for the first time that GALNT2 can
modulate the malignant behavior of HCC cells, and that O-
glycosyltransferase is a novel regulator of EGFR function.

Expression of short O-glycans, such as Tn, sialyl Tn, T, and
sialyl T, are found in many types of cancer and exploited to
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develop cancer vaccines (18). Changes in these structures often
alter the function of the cell and its antigenic property, as well
as its potential to invade and metastasize (18). The T-antigen
expression is associated with lower survival probability and is
an independent prognostic factor in colorectal cancer (19).
Sialyl Tn expression is associatedwith poor clinical outcome in
endometrial and colorectal cancer patients (20, 21). In con-
trast, the presence of sialyl Tn in keratoacanthoma is associ-
ated with tumor regression (22). Several short O-glycans have
also been detected in human HCC, but not in the normal liver,
by monoclonal antibodies or lectins (23, 24). However, the role
of short O-glycans in HCC progression and prognosis remains
unknown. This study reveals thatGALNT1 andGALNT2 are the
major GalNAc transferases in liver tissues, and that GALNT2
can modulate the sialyl Tn expression in HCC cells and
suppress theirmalignant properties. Thus, it is of great interest
to further investigate the significance of the short O-glycans
and the GALNT family in HCC malignancy.
Because there is no consensus sequence for GalNAc addition

byGALNTsandO-glycanshaveneverbeen reportedonEGFR, it
has long been thought that EGFR carries only N-glycans. This
study also showed that neuraminidase-treated EGFR can be
pulled down by VVA and PNA. Binding of VVA to the neur-
aminidase-treated EGFR was enhanced after removal of N-
glycans, and GALNT2 enhanced the VVA binding to neuramin-
idase-treated EGFR. Although the exact sites of O-glycosylation
onEGFRrequire further investigation,ourdatastrongly suggest
that EGFR carries short O-glycans. Interestingly, we found that
EGF-induced endocytosis of EGFRwas suppressed by GALNT2
overexpression, suggesting that changes in O-glycosylation on
EGFR could modulate EGFR internalization and thereby reg-
ulate its downstream signaling. Indeed, it has been reported
that clathrin-mediated internalization is essential for sustained
EGFR signaling (25). To our knowledge, this study is for thefirst
time to show that EGFR may express short O-glycans.
We found that GALNT2 can modulate EGF-induced pheno-

types in all tested HCC cell lines. In contrast, there is no
significant effect for GALNT2 on HGF-triggered phenotypes.
These findings suggest that the effect of GALNT2 exhibits
selectivity to EGF-, but not HGF-induced phenotypes. We also
observed that GALNT2 can significantly modulate 10% FBS-
triggered cell growth inHCC cells. Becausemany substrates for
GALNT2 are present in HCC cells, it remains possible that
GALNT2 mediates its effects through other receptors in addi-
tion to EGFR. EGFR inhibitors prevent the development of

HCC in animal models (26) and erlotinib has shown some
activity in the treatment of human HCC (16, 27). Sorafenib, a
multikinase inhibitor, has been shown to provide a significant
survival benefit for patients with advanced HCC (28). However,
the efficacy of these agents still remains to be improved. So far,
no single target is identified to play the major role in HCC
progression, suggesting that multiple pathways should be
targeted for HCC treatment. There are currently many clinical
trials evaluating TKIs for HCC, including those tested in
combination with erlotinib as a first-line therapy (29). A better
understanding of the molecular mechanism that regulates the
activity and signaling of RTKs is important for developing
novel-targeted treatments. This study has identified a novel
mechanism by which the activity and downstream signaling of
RTKs can be modified by O-glycosyltransferase, which may
offer novel insights into the development of new therapeutic
agents for HCC.

In conclusion, the results obtained in this study suggest that
GALNT2 could modify EGFR glycosylation and activity, and
thereby regulate the malignant behavior of HCC cells. This
study not only shows a pathophysiologic role of GALNT2 in
HCC cells but also contributes to shed light on the significance
of abnormal O-glycosylation in HCC tumor progression.
Understanding effects and mechanisms of O-glycosylation on
the activity of EGFR or other receptor tyrosine kinases by
GALNT family genes may offer a novel strategy for the devel-
opment of HCC therapeutic agents. These include anti-micro-
RNAs, siRNAs, carbohydrate mimetics, or small molecule
compounds that can modulate GALNT gene expression or
enzyme activity.
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