
Fault Tolerance in Hadoop for Work Migration

Jared Evans
CSCI B534 Survey Paper

3/28/11

1. Objective
The objective of this survey paper is to examine
the distributed software package Hadoop and
take a detailed look at how it handles Fault
Tolerance. How Hadoop’s Fault Tolerance
affects work migration and location will also be
explored.

2. Introduction
Hadoop [1] is an open-source software
framework implemented using Java and is
designed to be used on large distributed
systems. Hadoop is a project of the Apache
Software Foundation and is a very popular
software tool due, in part, to it being open-
source. Yahoo! Has contributed to about 80% of
the main core of Hadoop [3], but many other
large technology organizations have used or are
currently using Hadoop, such as, Facebook,
Twitter, LinkedIn, and others [3].
The Hadoop framework is comprised of many
different projects, but two of the main ones are
the Hadoop Distributed File System (HDFS) and
MapReduce. HDFS is designed to work with the
MapReduce paradigm. This survey paper is
focused around HDFS and how it was
implemented to be very fault tolerant because
fault tolerance is an essential part of modern
day distributed systems.

3. Hadoop Distributed File System (HDFS)
The Hadoop Distributed File System (HDFS) is
the file system component of the Hadoop
framework. HDFS is designed and optimized to
store data over a large amount of low-cost
hardware in a distributed fashion [1]. HDFS is
comparable to Google’s BigTable [6].
HDFS is designed for a large amount of big data
files. A typical data file stored using HDFS could

range from gigabytes to terabytes in size [2].
HDFS can support millions of files and can scale
to hundreds of nodes.
HDFS stores file system metadata and
application data separately [3]. The HDFS
metadata is stored on a dedicated server called
the NameNode and application data are stored
on other nodes called DataNodes which contain
blocks of data that are usually just part of a
particular file. The communication in HDFS
among all of nodes in the system is done using a
TCP-based protocol [3].

3.1 NameNodes
The NameNode records all of the metadata,
attributes, and locations of files and data blocks
in the DataNodes. The attributes it records are
things like file permissions, file modification and
access times, and namespace, which is a
hierarchy of files and directories. The
NameNode maps the namespace tree to file
blocks in DataNodes. When a client node wants
to read a file in the HDFS it first contacts the
Namenode to receive the location of the data
blocks associated with that file [3].
The NameNode stores information about the
overall system because it is the master of the
HDFS with the DataNodes being the slaves. It
stores the image and journal logs of the system.
The image of the system is a list of blocks and
data for each file stored in the HDFS. The
journal is just a modification log of the image.
The NameNode must always store the most up
to date image and journal. Basically, the
NameNode always knows where the data
blocks and replicates are for each file and it also
knows where the free blocks are in the system
so it keeps track of where future files can be
written.

3.2 DataNodes
The DataNodes store the blocks and block
replicas of the file system. During startup each
DataNode connects and performs a handshake
with the NameNode. The DataNode checks for
the accurate namespace ID, and if not found
then the DataNode automatically shuts down.
New DataNodes can join the cluster by simply
registering with the NameNode and receiving
the namespace ID [3].
Each DataNode keeps track of a block report for
the blocks in its node. Each DataNode sends its
block report to the NameNode every hour so
that the NameNode always has an up to date
view of where block replicas are located in the
cluster.
During the normal operation of the HDFS, each
DataNode also sends a heartbeat to the
NameNode every ten minutes so that the
NameNode knows which DataNodes are
operating correctly and are available. If after
ten minutes the NameNode doesn’t receive a
heartbeat from a DataNode then the
NameNode assumes that the DataNode is lost
and begins creating replicas of that DataNode’s
lost blocks on other DataNodes. The nice thing
about the HDFS architecture is that the
NameNode doesn’t have to reach out to the
DataNodes, it instead waits for the DataNodes
to send their block reports and heartbeats to it.
The NameNode can receive thousands of
DataNode’s heartbeats every second and not
adversely affect other NameNode operations
[3].

3.3 Clients
The HDFS Client is a code library that allows
user applications to access the interface of the
HDFS instance. This allows client applications to
read, write and delete files, and also create or
delete directories.
When an application needs to read a file it first
contacts the NameNode to receive a list of
DataNodes that contain replicas of the data
blocks it is looking for. Using that list, the client
then accesses the appropriate DataNodes
directly to read the contents of the file it is
looking for. The list is also sorted by locations

closest to the client node so as to minimize the
communication overhead.
When a client needs to write a file to the HDFS
it contacts the NameNode requesting a
DataNode location where it can write the blocks
of the file and it also requests locations to write
the replicas of the file.

Figure 1: This shows the basic architecture of HDFS. This
figure demonstrates the role of the NameNode and
DataNodes in HDFS. The HDFS Clients can be seen
communicating to the NameNode and then directly to
the DataNodes to performs operations such as read and
write [2].

4. Fault Tolerance
Fault tolerance is the ability of a system to
continue to function correctly and not lose data
even after some components of that system
have failed [8]. It is difficult to achieve 100%
fault tolerance because there are many physical
circumstances that just can’t be planned for,
but the goal of fault tolerance is to plan for all
common failures [8]. In managing fault
tolerance it is important to eliminate Single
Points of Failure (SPOF), which are single
elements of the system, that when they fail,
they can bring down the whole system [4].
One of the main goals of Hadoop and HDFS is to
be highly fault tolerant. Because HDFS can be
spread over hundreds or thousands of nodes or
machines that can contain cheap, low-cost
hardware which makes fault tolerance not a
trivial problem [2]. When considering that
thousands of computer components and
hundreds of network devices such as switches,
routers, and power units that are involved in
these large distributed systems, it causes

failures to be very frequent. In these systems
failures can be daily occurances which makes
robust fault tolerance essential for a distributed
system such as Hadoop [5].
Hadoop and HDFS center its fault tolerance on
data redundancy, which is to replicate data so
that if one replica is lost then there are backup
copies.

5. Redundancy
Redundancy in HDFS isn’t handled using a data
protection method such as RAID like other file
systems [3]. Instead file content is replicated on
multiple DataNodes for reliability. When a client
wants to write a file to the HDFS it first contacts
the NameNode and then the NameNode
nominates three different DataNodes that can
be used to replicate the data. The client then
writes the data to all of the separate DataNodes
which ensures that the client’s data is fully
replicated throughout the HDFS.
By default the replication factor set by HDFS is
three (meaning that all data blocks are
replicated three times). However, users can
increase the replication factor for specific files
especially if they have files that need to be
accessed often or contain critical information
that would be a disaster to lose. By increasing
the replication factor of these critical files the
user can ensure that the file has a greater
tolerance against faults and having more
replicas of a file will also help increase the
bandwidth available for reading that file [3].
The location of replicas is also very important
for the HDFS reliability and performance. The
NameNode uses a rack-aware policy when
storing the location of blocks of data on
DataNodes [2]. By doing this the NameNode can
minimize the bandwidth required to access
different blocks of a file, but it also keeps in
mind that replicas need to be spread out
enough to improve fault tolerance. For
example, for a very robust system the
NameNode could put replicas on totally
separate racks, but this would incur a high
communication overhead especially when that
file needs to be written by a client because all
replicas must be updated during a write

procedure. Also, when a block of data is being
read, the NameNode will try to select a block
that is on the same rack as the node reading the
data in order to minimize the communication
and bandwidth overhead.
Typically to compromise these two factors in a
common three replica file, HDFS will write two
of the replicas on different nodes of the same
rack and write the other one on a totally
separate rack [2].

Figure 2: This shows an example of eight DataNodes and
how the NameNode can distribute and replicate the
blocks of data [2].

In HDFS the blocks of data in DataNodes are
well distributed and replicated, but if something
happened to the NameNode server then HDFS
could fail. HDFS wouldn’t be very robust if the
NameNode was a Single Point of Failure for the
system. In order to minimize the effects of
hardware failure of the NameNode, Hadoop
introduced the BackupNode [3].
The BackupNode creates periodic checkpoints
of the HDFS and also maintains an up to date
image copy of the file system. The BackupNode
also maintains an exact copy of the namespace
from the NameNode. In the event that the
NameNode should fail, the BackupNode
contains an exact copy of the namespace and
image so it can be used to restart the
NameNode [3].

6. Job Migration and Location
Due to HDFS’s redundancy the same blocks of
data are usually found on different nodes or
racks. Because of this, it may be more beneficial
to perform a read or write on one block of data
rather than another based on its location in the
system. One rack or node may be under heavy
load so it would be better to read the data
block not found on that resource. Also, if there
is a data block on the rack of the reading node

then there is much less communication
overhead to read that block of data rather than
one on a different rack.
All of these things have been taken into account
in HDFS’s implementation. When a client node
reads a file it receives a list of data blocks and
locations for those blocks. The list of block
locations is ordered based on their proximity to
the client node [3]. Therefore, it is usually best
if the client can access the data blocks listed
first because there will usually be less
communication overhead which is a significant
factor in large distributed systems.
The developers of HDFS also knew that it is
usually computationally less expensive to move
a computation requested by an application
rather than move the data it wants to access
[2]. So if a node asks the NameNode to read a
particular file and the data blocks for that file
happen to be on a different rack or a rack that
isn’t being used as much then it is better to
move the computation closer to the requested
node with the data on it. HDFS provides
interfaces for applications to perform these
necessary moves [2].

7. Weaknesses of HDFS
Hadoops’s HDFS has many strengths and does a
good job of handling Fault Tolerance, but there
are some other aspects of Hadoop and HDFS
that could use some improvement that are
worth mentioning.
A major problem that Yahoo! recognized is the
scalability of the NameNode [3]. Because the
NameNode is a single node and not distributed
it is subject to physical hardware constraints.
For example, because the namespace is kept in
memory, if the namespace grows large enough
to use most of the node’s memory from an
expansive number of files in the system then
HDFS becomes unresponsive [3]. A possible
solution to this is to use more than one
NameNode, but that also creates other
communication problems [3]. Another way to
keep this problem from happening is to try and
only store large data files in the HDFS. Large
files will reduce the size of the namespace.

Obviously, this makes sense because a file
system like HDFS is designed for large files.
Another weakness of Hadoop that has been
known to affect users [4] is the lack of good
high level support for Hadoop. This can happen
with open source projects. Enhancing Hadoop’s
functionality on a system can be difficult
without proper support [4].
HDFS is also known to have scheduling delays
that keep it from reaching its full potential. This
software bottleneck causes some nodes to wait
for their new task. This weakness is particularly
evident in the HDFS client code [7].

8. Conclusion
Even considering some of the weaknesses of
Hadoop’s HDFS, it still does a good job of
handling fault tolerance. It seems, for HDFS,
that fault tolerance is the main focus of
Hadoop. In the end, this is very valuable to
users because loss of data or a system that
crashes can be detrimental to business and can
have irreversible consequences. For many this
should be a good selling point and reason to use
Hadoop.

References

[1] Apache Hadoop.

http://hadoop.apache.org

[2] Borthakur, D. (2007) The Hadoop

Distributed File System: Architecture
and Design.
http://hadoop.apache.org/common/do
cs/r0.18.0/hdfs_design.pdf

[3] Shvachko, K., et al. (2010) The Hadoop

Distributed File System. IEEE.

[4] Wang, F. et al. (2009) Hadoop High

Availability through Metadata
Replication. ACM.

[5] Bessani, A. et al. Making Hadoop

MapReduce Byzantine Fault-Tolerant.

http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

http://www.di.fc.ul.pt/~mpc/pubs/bft-
mapreduce-fa-dsn10.pdf

[6] Chang, F. et al. (2006) BigTable: A

Distributed Storage for Structured Data.
http://labs.google.com/papers/bigtable
.html

[7] Shafer, J. et al. (2010) The Hadoop

Distributed File System: Balancing
Portability and Performance. IEEE.
http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.167.3342&rep=rep1
&type=pdf

[8] Selic, B. (2004) Fault tolerance

techniques for distributed systems.
IBM.
http://www.ibm.com/developerworks/
rational/library/114.html

[9] Zhang, Y. et al. (2000) The Impact of

Migration on Parallel Job
Scheduling for Distributed Systems.
Proceedings of Europar.
http://citeseerx.ist.psu.edu/viewdoc/do
wnload?doi=10.1.1.91.1125&rep=rep1&
type=pdf

http://www.di.fc.ul.pt/~mpc/pubs/bft-mapreduce-fa-dsn10.pdf
http://www.di.fc.ul.pt/~mpc/pubs/bft-mapreduce-fa-dsn10.pdf
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3342&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3342&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3342&rep=rep1&type=pdf
http://www.ibm.com/developerworks/rational/library/114.html
http://www.ibm.com/developerworks/rational/library/114.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.1125&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.1125&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.1125&rep=rep1&type=pdf

