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1. Objective 
The objective of this survey paper is to examine 
the distributed software package Hadoop and 
take a detailed look at how it handles Fault 
Tolerance. How Hadoop’s Fault Tolerance 
affects work migration and location will also be 
explored. 
 

2. Introduction 
Hadoop [1] is an open-source software 
framework implemented using Java and is 
designed to be used on large distributed 
systems. Hadoop is a project of the Apache 
Software Foundation and is a very popular 
software tool due, in part, to it being open-
source. Yahoo! Has contributed to about 80% of 
the main core of Hadoop [3], but many other 
large technology organizations have used or are 
currently using Hadoop, such as, Facebook, 
Twitter, LinkedIn, and others [3].  
The Hadoop framework is comprised of many 
different projects, but two of the main ones are 
the Hadoop Distributed File System (HDFS) and 
MapReduce. HDFS is designed to work with the 
MapReduce paradigm. This survey paper is 
focused around HDFS and how it was 
implemented to be very fault tolerant because 
fault tolerance is an essential part of modern 
day distributed systems. 
 

3. Hadoop Distributed File System (HDFS) 
The Hadoop Distributed File System (HDFS) is 
the file system component of the Hadoop 
framework. HDFS is designed and optimized to 
store data over a large amount of low-cost 
hardware in a distributed fashion [1]. HDFS is 
comparable to Google’s BigTable [6]. 
HDFS is designed for a large amount of big data 
files. A typical data file stored using HDFS could 

range from gigabytes to terabytes in size [2]. 
HDFS can support millions of files and can scale 
to hundreds of nodes. 
HDFS stores file system metadata and 
application data separately [3]. The HDFS 
metadata is stored on a dedicated server called 
the NameNode and application data are stored 
on other nodes called DataNodes which contain 
blocks of data that are usually just part of a 
particular file. The communication in HDFS 
among all of nodes in the system is done using a 
TCP-based protocol [3].  
 
3.1 NameNodes 
The NameNode records all of the metadata, 
attributes, and locations of files and data blocks 
in the DataNodes. The attributes it records are 
things like file permissions, file modification and 
access times, and namespace, which is a 
hierarchy of files and directories. The 
NameNode maps the namespace tree to file 
blocks in DataNodes. When a client node wants 
to read a file in the HDFS it first contacts the 
Namenode to receive the location of the data 
blocks associated with that file [3].   
The NameNode stores information about the 
overall system because it is the master of the 
HDFS with the DataNodes being the slaves. It 
stores the image and journal logs of the system. 
The image of the system is a list of blocks and 
data for each file stored in the HDFS. The 
journal is just a modification log of the image. 
The NameNode must always store the most up 
to date image and journal. Basically, the 
NameNode always knows where the data 
blocks and replicates are for each file and it also 
knows where the free blocks are in the system 
so it keeps track of where future files can be 
written. 
 



3.2 DataNodes 
The DataNodes store the blocks and block 
replicas of the file system. During startup each 
DataNode connects and performs a handshake 
with the NameNode. The DataNode checks for 
the accurate namespace ID, and if not found 
then the DataNode automatically shuts down. 
New DataNodes can join the cluster by simply 
registering with the NameNode and receiving 
the namespace ID [3]. 
Each DataNode keeps track of a block report for 
the blocks in its node. Each DataNode sends its 
block report to the NameNode every hour so 
that the NameNode always has an up to date 
view of where block replicas are located in the 
cluster. 
During the normal operation of the HDFS, each 
DataNode also sends a heartbeat to the 
NameNode every ten minutes so that the 
NameNode knows which DataNodes are 
operating correctly and are available. If after 
ten minutes the NameNode doesn’t receive a 
heartbeat from a DataNode then the 
NameNode assumes that the DataNode is lost 
and begins creating replicas of that DataNode’s 
lost blocks on other DataNodes. The nice thing 
about the HDFS architecture is that the 
NameNode doesn’t have to reach out to the 
DataNodes, it instead waits for the DataNodes 
to send their block reports and heartbeats to it. 
The NameNode can receive thousands of 
DataNode’s heartbeats every second and not 
adversely affect other NameNode operations 
[3]. 
 
3.3 Clients 
The HDFS Client is a code library that allows 
user applications to access the interface of the 
HDFS instance. This allows client applications to 
read, write and delete files, and also create or 
delete directories.  
When an application needs to read a file it first 
contacts the NameNode to receive a list of 
DataNodes that contain replicas of the data 
blocks it is looking for. Using that list, the client 
then accesses the appropriate DataNodes 
directly to read the contents of the file it is 
looking for. The list is also sorted by locations 

closest to the client node so as to minimize the 
communication overhead. 
When a client needs to write a file to the HDFS 
it contacts the NameNode requesting a 
DataNode location where it can write the blocks 
of the file and it also requests locations to write 
the replicas of the file. 
 

 
Figure 1: This shows the basic architecture of HDFS. This 
figure demonstrates the role of the NameNode and 
DataNodes in HDFS. The HDFS Clients can be seen 
communicating to the NameNode and then directly to 
the DataNodes to performs operations such as read and 
write [2]. 

 

4. Fault Tolerance 
Fault tolerance is the ability of a system to 
continue to function correctly and not lose data 
even after some components of that system 
have failed [8]. It is difficult to achieve 100% 
fault tolerance because there are many physical 
circumstances that just can’t be planned for, 
but the goal of fault tolerance is to plan for all 
common failures [8]. In managing fault 
tolerance it is important to eliminate Single 
Points of Failure (SPOF), which are single 
elements of the system, that when they fail, 
they can bring down the whole system [4]. 
One of the main goals of Hadoop and HDFS is to 
be highly fault tolerant. Because HDFS can be 
spread over hundreds or thousands of nodes or 
machines that can contain cheap, low-cost 
hardware which makes fault tolerance not a 
trivial problem [2]. When considering that 
thousands of computer components and 
hundreds of network devices such as switches, 
routers, and power units that are involved in 
these large distributed systems, it causes 



failures to be very frequent. In these systems 
failures can be daily occurances which makes 
robust fault tolerance essential for a distributed 
system such as Hadoop [5]. 
Hadoop and HDFS center its fault tolerance on 
data redundancy, which is to replicate data so 
that if one replica is lost then there are backup 
copies. 
 

5. Redundancy 
Redundancy in HDFS isn’t handled using a data 
protection method such as RAID like other file 
systems [3]. Instead file content is replicated on 
multiple DataNodes for reliability. When a client 
wants to write a file to the HDFS it first contacts 
the NameNode and then the NameNode 
nominates three different DataNodes that can 
be used to replicate the data. The client then 
writes the data to all of the separate DataNodes 
which ensures that the client’s data is fully 
replicated throughout the HDFS. 
By default the replication factor set by HDFS is 
three (meaning that all data blocks are 
replicated three times). However, users can 
increase the replication factor for specific files 
especially if they have files that need to be 
accessed often or contain critical information 
that would be a disaster to lose. By increasing 
the replication factor of these critical files the 
user can ensure that the file has a greater 
tolerance against faults and having more 
replicas of a file will also help increase the 
bandwidth available for reading that file [3].  
The location of replicas is also very important 
for the HDFS reliability and performance. The 
NameNode uses a rack-aware policy when 
storing the location of blocks of data on 
DataNodes [2]. By doing this the NameNode can 
minimize the bandwidth required to access 
different blocks of a file, but it also keeps in 
mind that replicas need to be spread out 
enough to improve fault tolerance. For 
example, for a very robust system the 
NameNode could put replicas on totally 
separate racks, but this would incur a high 
communication overhead especially when that 
file needs to be written by a client because all 
replicas must be updated during a write 

procedure. Also, when a block of data is being 
read, the NameNode will try to select a block 
that is on the same rack as the node reading the 
data in order to minimize the communication 
and bandwidth overhead. 
Typically to compromise these two factors in a 
common three replica file, HDFS will write two 
of the replicas on different nodes of the same 
rack and write the other one on a totally 
separate rack [2]. 
 

 
Figure 2: This shows an example of eight DataNodes and 
how the NameNode can distribute and replicate the 
blocks of data [2]. 

 
In HDFS the blocks of data in DataNodes are 
well distributed and replicated, but if something 
happened to the NameNode server then HDFS 
could fail. HDFS wouldn’t be very robust if the 
NameNode was a Single Point of Failure for the 
system. In order to minimize the effects of 
hardware failure of the NameNode, Hadoop 
introduced the BackupNode [3]. 
The BackupNode creates periodic checkpoints 
of the HDFS and also maintains an up to date 
image copy of the file system. The BackupNode 
also maintains an exact copy of the namespace 
from the NameNode. In the event that the 
NameNode should fail, the BackupNode 
contains an exact copy of the namespace and 
image so it can be used to restart the 
NameNode [3].  
 

6. Job Migration and Location 
Due to HDFS’s redundancy the same blocks of 
data are usually found on different nodes or 
racks. Because of this, it may be more beneficial 
to perform a read or write on one block of data 
rather than another based on its location in the 
system. One rack or node may be under heavy 
load so it would be better to read the data 
block not found on that resource. Also, if there 
is a data block on the rack of the reading node 



then there is much less communication 
overhead to read that block of data rather than 
one on a different rack. 
All of these things have been taken into account 
in HDFS’s implementation. When a client node 
reads a file it receives a list of data blocks and 
locations for those blocks. The list of block 
locations is ordered based on their proximity to 
the client node [3]. Therefore, it is usually best 
if the client can access the data blocks listed 
first because there will usually be less 
communication overhead which is a significant 
factor in large distributed systems. 
The developers of HDFS also knew that it is 
usually computationally less expensive to move 
a computation requested by an application 
rather than move the data it wants to access 
[2]. So if a node asks the NameNode to read a 
particular file and the data blocks for that file 
happen to be on a different rack or a rack that 
isn’t being used as much then it is better to 
move the computation closer to the requested 
node with the data on it. HDFS provides 
interfaces for applications to perform these 
necessary moves [2]. 
 

7. Weaknesses of HDFS 
Hadoops’s HDFS has many strengths and does a 
good job of handling Fault Tolerance, but there 
are some other aspects of Hadoop and HDFS 
that could use some improvement that are 
worth mentioning. 
A major problem that Yahoo! recognized is the 
scalability of the NameNode [3]. Because the 
NameNode is a single node and not distributed 
it is subject to physical hardware constraints. 
For example, because the namespace is kept in 
memory, if the namespace grows large enough 
to use most of the node’s memory from an 
expansive number of files in the system then 
HDFS becomes unresponsive [3]. A possible 
solution to this is to use more than one 
NameNode, but that also creates other 
communication problems [3]. Another way to 
keep this problem from happening is to try and 
only store large data files in the HDFS. Large 
files will reduce the size of the namespace. 

Obviously, this makes sense because a file 
system like HDFS is designed for large files. 
Another weakness of Hadoop that has been 
known to affect users [4] is the lack of good 
high level support for Hadoop. This can happen 
with open source projects. Enhancing Hadoop’s 
functionality on a system can be difficult 
without proper support [4]. 
HDFS is also known to have scheduling delays 
that keep it from reaching its full potential. This 
software bottleneck causes some nodes to wait 
for their new task. This weakness is particularly 
evident in the HDFS client code [7]. 
 

8. Conclusion 
Even considering some of the weaknesses of 
Hadoop’s HDFS, it still does a good job of 
handling fault tolerance. It seems, for HDFS, 
that fault tolerance is the main focus of 
Hadoop. In the end, this is very valuable to 
users because loss of data or a system that 
crashes can be detrimental to business and can 
have irreversible consequences. For many this 
should be a good selling point and reason to use 
Hadoop. 
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