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Abstract

The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and
gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between
a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify
ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using
sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology
relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or
SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the
species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is
called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle
and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a
popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also
outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data
experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also
provides information about gene births, duplications and losses in evolution, which may be of independent biological
interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events
much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for
free.
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Introduction

The ever-increasing number of completely sequenced genomes

brings great opportunities as well as challenges to the study of

comparative genomics. It makes the study of the evolutionary

history of closely related species at the genome level possible. It

also enhances our ability to perform gene functional analyses

across different species. For these purposes as well as many other

applications, the identification of orthologous genes across

different species often serves as a starting point.

Definitions
Orthologous genes (i.e., orthologs) are genes in different genomes

that evolved from a common ancestral gene through speciation

events [1]. They are more likely to preserve the original gene

function. As a result, orthologs are often used as universal and

unique landmarks within each genome as well as links across

different genomes [2].

Orthology between two genomes is usually thought of as a

many-to-many relationship due to post-speciation gene duplica-

tions [3]. However, if we know which genes are the direct

descendants of the ancestral genes and which are duplicated after

the speciation, then we can define a one-to-one orthology

relationship between the two direct descendant genes of each

ancestral gene (such a pair of genes are said to form an ortholog pair),

while treating the duplicated genes as inparalogs [4,5].

When multiple genomes are being compared, the orthology

relationship is more complicated because of the interleaving

between speciation and gene duplication events. In this paper, we

extend the above one-to-one orthology relationship between a pair

of genomes to multiple genomes in a straightforward way and

define an ortholog group for a given set of genomes as a maximal set

of genes (from different genomes) that are the direct descendants of

the same ancestral gene. Note that the genes in such an ortholog

group are not separated by any gene duplication. Hence, this

definition, although a bit stringent, is faithful to the original

definition of orthology in Ref. [1]. For example, according to this

definition, there are 4 ortholog groups in Figure 1(b):

(a4,1,a5,1,a7,1), (a4,2,a5,2), (a4,3), (b6,1,b7,1). We note in passing that

other more general definitions of ortholog groups have been

considered in the literature and used in popular orthology

databases such as COG [6] and EnsemblCompara [3]. In these

definitions, orthology is considered as a many-to-many relation-

ship and thus paralogs (i.e., genes that are separated by

duplications) are often allowed in an ortholog group. We prefer

treating orthology as a one-to-one relationship because it makes

the presentation of the paper simpler and validation of our results

cleaner. Moreover, the one-to-one orthology relationship can be

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20892



thought of as a refinement of the more general many-to-many

relationship.

Existing Ortholog Assignment Tools
Most of the traditional ortholog identification methods are

based on sequence similarity search, such as COG/KOG [6],

OrthoMCL [7], InParanoid/MultiParanoid [4,8] and Homolo-

Gene [9]. Generally speaking, these methods first calculate some

pairwise similarity scores and then use some clustering algorithms

to identify ortholog pairs or groups. Take the InParanoid program

for example. It assigns a gene pair with the bidirectional best hit

(i.e., BBH) as a main ortholog pair and uses it as the ‘‘seed’’ to

cluster similar genes from both genomes into an ortholog group.

As its extension to multiple genomes, the MultiParanoid program

basically clusters the pairwise orthology results of InParanoid to

generate ortholog groups for multiple genomes. Though the BBH

requirement for a main ortholog pair seems to be reasonable when

comparing two genomes, it becomes too stringent when

comparing multiple genomes. As a result, the MultiParanoid

program may miss a lot of true ortholog groups when some of the

ortholog pairs are not BBHs. OrthoMCL is an ortholog

assignment program similar to InParanoid, but uses a different

clustering algorithm (the Markov Clustering algorithm, or MCL) to

find ortholog groups for multiple genomes. However, it cannot

resolve the many-to-many orthology relationship among multiple

genomes effectively. As a result, the ortholog groups found by

OrthoMCL may include lots of ‘‘recent’’ inparalogs from each

genome [7].

Another popular method to identify orthologs is based on

phylogenetic trees, such as TreeFam [10], PhyOP [11], and

EnsemblCompara GeneTrees [3]. A phylogeny can be used

conveniently to represent the evolution of a gene family. However,

tree-based methods generally present orthology as a many-to-

many relationship. Most of them can never tell the ‘‘parent-

daughter’’ relationships among duplicated genes [12]. As a result,

most tree-based methods cannot differentiate orthologs that are

direct descendants of an ancestral gene and those inparalogs that

are products of recent duplications. Consequently, each ortholog

group found by these methods tends to include lots of lineage-

specific duplicated inparalogs.

By taking other information into consideration, such as gene

positions and genome rearrangement, some combinatorial ap-

proaches have been proposed in recent years. CCCPart is a

synteny-based approach to find orthologs based on the assumption

that isofunctional genes are well preserved both in common gene

neighborhood as well as in sequence similarity between two or

more species [13,14]. However, it is known that genome

rearrangement is very common between closely related genomes

[15–18]. In fact, there might be many microrearrangments even

within the same synteny block [17]. Based on genome rearrange-

ment, a high-throughput ortholog assignment system called

MSOAR [19] has been developed. It is based on the assumption

that orthologs should correspond to each other on the evolutionary

path that minimizes the number of rearrangements and post-

speciation duplications. By dealing with tandem gene duplications

explicitly using a phylogenetic approach, an improved system

MSOAR 2.0 was recently reported in Ref. [5], which has been

shown to outperform the original system MSOAR in terms of

prediction accuracy. However, MSOAR and MSOAR 2.0 can

only assign orthologs between two genomes. As an extension to

MSOAR, MultiMSOAR tries to assign orthologs among multiple

genomes by using a simple clustering method based on the

pairwise results of MSOAR [20]. However, the MultiMSOAR

program can actually handle only three genomes well. When more

genomes are involved, MultiMSOAR may not find ortholog

groups accurately because it does not take into account the

phylogenetic relationship among the genomes. Furthermore,

MultiMSOAR only considers those ortholog clusters that do not

Figure 1. An example of genome evolution and TOGs. (a) The species tree for four species: S4,S5,S6,S7. (b) An example of genome evolution
for the four species in (a). (c) The TOG for genes a4,1,a5,1,a7,1 in (b). (d) The TOG for genes a4,2,a5,2 in (b). (e) The TOG for gene a4,3 in (b). Note that, in
this paper, we will only be interested in ortholog groups containing at least two genes, and singleton ortholog groups will be ignored since they
consist of only inparalogs from individual genomes. (f) The TOG for genes b6,1,b7,1 in (b). (g) An example of a TOG labeling. The labeling suggests two
ortholog groups in the TOG, one consisting of two genes from the two leftmost species and the other two genes from the last three species.
doi:10.1371/journal.pone.0020892.g001
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have gene losses in any species to be ortholog groups. This

constraint might be acceptable for three closely related species, but

it is too stringent when considering more species, since we expect

to see many gene births and losses as well as duplications in the

evolutionary history. As a consequence, we should allow gene

losses within an ortholog group and ortholog groups to be

composed of genes from a subset of the genomes.

Current Work
In this paper, we develop a system called MultiMSOAR 2.0 to

identify ortholog groups for multiple genomes. In addition to being

an extension of MSOAR 2.0 to multiple genomes, MultiMSOAR

2.0 presents a new combinatorial approach for constructing

ortholog groups. Compared with MultiMSOAR, MultiMSOAR

2.0 allows gene losses within an ortholog group and ortholog

groups involving genes only from a subset of the genomes. It also

attempts to minimize the number of gene births, losses and

duplications within a gene family when assigning ortholog groups.

Moreover, compared with many other ortholog assignment tools

for multiple genomes, MultiMSOAR 2.0 can provide more

information about genome evolution in terms of gene births,

losses as well as duplications.

An outline of MultiMSOAR 2.0 is shown in Figure 2. In short,

MultiMSOAR 2.0 constructs gene families for all the genomes first

by using sequence similarity search (i.e., BLASTp) and the

clustering algorithm MCL as done in Ref. [5]. Then it applies

MSOAR 2.0 to find ortholog pairs between all pairs of genomes.

After that, it builds a weighted multipartite graph using the

pairwise orthology information and sequence similarity between

each pair of orthologs and attempts to find a maximum weight

matching for each gene family. Then it partitions each family into

a set of disjoint sets of orthologous genes (called super ortholog groups

or SOGs) such that each SOG contains at most one gene from each

genome. Each such SOG may potentially consist of several

ortholog groups. In order to partition a SOG into ortholog groups,

MultiMSOAR 2.0 labels the leaves of the species tree using 1 or 0

to indicate if the SOG contains a gene from the corresponding

species or not. The resulting tree is called a tree of ortholog groups (or

TOGs). MultiMSOAR 2.0 then employs one of the two algorithms

devised in this paper (called the NodeCentric and TreeCentric

algorithms) to label the internal nodes of each TOG based on

the parsimony principle and some biological constraints. Ortholog

groups can then be trivially identified from each fully labeled

TOG. The details of each of the main steps in Figure 2 are

explained in the Methods section. Note that each ortholog group

found by MultiMSOAR 2.0 is contained in some TOG but a

TOG may contain several ortholog groups. An example is shown

in Figure 1(g), where the TOG contains two ortholog groups and

the second ortholog group contains a gene loss.

Methods

Homology Search and Gene Family Construction
Since we have multiple genomes, we define a gene family to

consist of all homologous genes on all the genomes under study. As

in Ref. [5,19], only protein coding genes will be considered. For

genes with alternative splicing variants, we use their longest

transcripts. Similar methods have been used in previous studies

[5,21]. To cluster all the genes into gene families, we combine all

protein sequences from all genomes together, and perform an all-

vs-all BLASTp homology search [22]. Then we use the popular

clustering program MCL [23] to construct gene families. Similar

methods have been used in many other papers [7,10,21].

Pairwise Genome Comparison
Since we try to identify ortholog groups among multiple

genomes based on pairwise comparison, the prediction accuracy of

ortholog pairs between two genomes is critical for the performance

of our multiple genome system. MSOAR 2.0 has shown to be the

most accurate prediction tool for assigning one-to-one ortholog

pairs between two closely related genomes [5]. So, it is preferable

to use the output of MSOAR 2.0 as the input to our current

system. For a comparison among S genomes, we apply MSOAR

2.0 to all pairs of the S genomes, and use the S � (S{1)=2
pairwise comparison results to define a multipartite for each gene

family to be partitioned in MultiMSOAR 2.0.

Partition of Each Gene Family into TOGs
In our definition of ortholog groups, each group may include at

most one gene from each genome. However, a gene family may

include many homologous genes from each genome (i.e., paralogs),

making it necessary to split the genes in a family into TOGs, such

that each TOG contains at most one gene from every genome.

This is done by employing a heuristic maximum weight S-

dimensional matching algorithm as follows. Similar methods have

been used in Ref. [20,24].

Suppose we have S genomes, G1,G2,:::,GS , where S§3. For a

given gene family, the number of genes from each genome are

denoted as n1,n2,:::,nS . We can construct an S-partite (or S-stage)

graph G with ni (1ƒiƒS) vertices in the part corresponding to

genome Gi (called stage i). We add edges to G by using the

pairwise orthology information produced by MSOAR 2.0.

Specifically, we add an edge between two vertices in G if and

only if the corresponding two genes are from two different

genomes and they are assigned as an ortholog pair by MSOAR

2.0. We assign a weight to such an edge, which is the BLASTp

similarity score between the ortholog pair.

Since we would like to obtain a perfect S-dimensional matching

with the maximum weight among the S stages, we need to add

some dummy vertices to some of the stages in G to make them all

have the same number of vertices. Let N~ max1ƒiƒS ni be the

maximum number of paralogs on any genome in the gene family.

Then we add N{ni (1ƒiƒS) dummy vertices to the i-th stage.

The maximum (S-dimensional) matching problem for S-partite

graphs (where S§3) is known to be NP-hard [25], and N could be

large for a real gene family when a large number of genomes are

considered. So, we will use a heuristic optimization approach to

find a good matching. Since the maximum weight matching for a

bipartite graph can be computed by the Hungarian algorithm in

cubic time [26], we first find a maximum weight bipartite

matching for two stages in G, combine them into one stage, and

apply the Hungarian algorithm iteratively on the remaining stages

Figure 2. An outline of MultiMSOAR 2.0.
doi:10.1371/journal.pone.0020892.g002
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in G until only one stage is left. This results in a matching for the

original S-partite graph G. This approach is very similar to the

method used in MultiMSOAR [20], except that we use a post-

order traversal on the species tree to decide the order that stages

are combined. This way, a stage is always combined with another

stage that is close to it on the species tree. Another difference is

that we use the bit score as the weight of an edge in G. If there is

no edge between two vertices in different stages, we deem that

there is an edge with weight 0 between them.

An example of the gene family partition is shown in Figure 1,

where the figures in (c), (d), (e) represent 3 TOGs for the a gene

family while Figure 1(f) represents a single TOG for the b gene

family.

Labeling of TOGs
In order to identify ortholog groups within a TOG, we need to

label the internal nodes (which correspond to ancestral genomes)

using binary representations as well. Here, 1 means that the a gene

is present in the corresponding ancestral genome while 0 means

absence. Two constraints will be assumed:

1. Intratree constraint: If node u is labeled with a 0 and u has an

ancestral node that is labeled with a 1, then every descendant

node of u must be labeled with a 0.

2. Intertree constraint: Suppose that u and v are two nodes such that

each of them is labeled with a 1 in at least one TOG. Then

every node on the path connecting u and v must be labeled

with a 1 in at least one TOG.

The intertree constraint makes sure that no gene is born twice in

evolution, which is a commonly accepted hypothesis in molecular

evolution since double gene birth events are extremely rare. The

intratree constraint follows from the definition of orthology (that

orthologs evolved through speciation only).

Among all the labelings of the TOGs satisfying the above two

constraints, we would like to find one that minimizes the number

of gene births, duplications and losses in the evolution of the

family. Since each edge of a TOG whose nodes are labeled with

01 or 10 represents a gene birth/duplication or a gene loss, we

need to find a parsimonious way to label the internal nodes so that

the number of 01 or 10 edges is minimized. For simplicity, let us

call a 01 or 10 change on an edge a flip.

We can now formulate the TOG labeling problem as a

combinatorial optimization problem as follows:

TOG Labeling: Given N TOGs, find a binary labeling of all the

internal nodes of the TOGs so that both intratree and intertree constraints are

satisfied and the total number of flips is minimized.

The problem can be solved by a trivial exhaustive search

algorithm that considers all possible labelings of the TOGs.

However, since a binary tree with S leaves has S{1 internal

nodes, this algorithm runs in time O(2N:(S{1)), which is impractical

even if N~S~10. We need to find more efficient solutions to this

problem.

Before we proceed with our algorithms, we first prove the

following two lemmas, which will help accelerate the speed of our

labeling algorithm.

Lemma 1 If two child nodes are labeled as 1, then in any optimal

labeling, their parent node must be labeled as 1.

Proof. Suppose that in an optimal labeling L, an internal node P
is labeled as 0 in some TOG but both of its children are labeled as

1. If we change the label of P to 1, the two constraints will not be

violated, and there will be two fewer flips on the two edges from P
to its two children. Even if this change might incur a new flip on

the edge from P to its parent node, the total number of flips will

still be reduced. This is a contradiction to the assumption that L is

an optimal labeling, which completes our proof.

Lemma 2 If two child nodes are labeled as 0, then there is an optimal

labeling, where their parent node is labeled as 0.

Proof. Suppose that an internal node P of some TOG T is

labeled as 1 while both of its children are labeled as 0 in some

optimal labeling. If we change the label of P to 0, it is easy to see

that the intratree constraint will not be violated. However, the

intertree constraint might be violated if the node P is also labeled

as 0 in all other TOGs. Then, according to Lemma 1, the two

child nodes of P cannot be labeled as 1 at the same time in each

of the other TOGs. If each of the two child nodes of P is labeled

as 0 in all other TOGs, then we are safe to change the label of P
from 1 to 0 in the TOG T since the change will not violate the

intertree constraint. Otherwise, there is at least one TOG T ’, in

which the two child nodes of P are labeled as 0 and 1,

respectively. In this case, we can change the label of P in T ’ to 1.

From the proof of Lemma 1, we know that changing the label of

P in T will decrease the number of flips by at least 1, while

changing the label of P in T ’ may increase the number of flips by

at most 1. If we change the labels of node P is TOGs T and T ’
simultaneously, the total number of flips will not increase and

thus the labeling is still optimal. Moreover, such a simultaneous

change will keep the intertree constraint satisfied. This completes

the proof of Lemma 2.

The TOG labeling problem is trivial to compute without the

intratree and intertree constraints. If we only consider the intratree

constraint, the problem can still be solved by using dynamic

programming in polynomial time. However, the intertree

constraint makes the problem much harder. Here, we propose

two different algorithms to solve the TOG labeling problem: the

NodeCentric algorithm and the TreeCentric algorithm. The algorithms

are sketched below.

The basic idea behind the NodeCentric algorithm is to label all N
TOGs simultaneously by dynamic programming. In other words, it

labels each internal node of the species tree with a binary vector of

N bits. In order to keep track of the validity of the two constraints,

we will use label 0’ (when considering some TOG) to indicate that (i)

the current node is labeled as 0 in the TOG and (ii) some

descendant of the current node is labeled as 1 in the TOG. Thus,

the label 0 now means that all descendant nodes are also labeled as

0. The algorithm proceeds in post-order. For each internal node u in

the species tree, it enumerates all possible label vectors at u and for

each vector, it computes the minimum number of flips in the subtree

under node u by considering all feasible label vectors of its two

children without violating the two constraints. By Lemmas 1 and 2,

we can quickly fix the label of u in a TOG if the labels of its two

children in the same TOG are both fixed as 0 or both fixed as 1.

Since the left and right children can be considered separately, it

seems that the above algorithm would run in O(S:(3N :3N ))~
O(S:9N ) time, which could be impractical if N is large. However,

with a careful analysis, we find that at most 3 (instead of 9)

combinations of the parent-child labels are possible in a TOG. If

the parent label is fixed as 0, then the child label must be fixed as 0

as well. Otherwise, the parent label could be 0’ or 1. If it is 0’, then

the child label could be either fixed as 0 or one of 0’ and 1. If the

parent label is 1, then the child label must be fixed either as 0 or as

1 due to the intratree constraint. So, in any case, at most 3

combinations of the parent-child labels should be considered in a

TOG and hence, a total number of 3N values need to be

computed. The intertree constraint may reduce the number of

legal combinations even further. This implies an efficient

implementation of the NodeCentric algorithm with time com-

plexity O(S:3N ).

Identify Ortholog Groups among Multiple Genomes
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While the NodeCentric algorithm goes through each node

sequentially, the TreeCentric algorithm goes through each TOG

sequentially. For a subset of fully labeled TOGs on the same

species tree, the union TOG is a fully labeled TOG obtained by

taking the Boolean or operation on the labels of each given TOG

at the same node of the species tree. Let us order the TOGs

arbitrarily as T1,T2, . . . ,TN . For each TOG Ti, the TreeCentric

algorithm enumerates all feasible binary labelings of the TOG Ti

by taking into account the intratree constraint. This can be done

efficiently by dynamic programming. For each such labeling of Ti,

it enumerates all possible union TOGs Ti covering T1,T2, . . . ,Ti,

and then computes and records the minimum number of flips in

the TOGs T1,T2, . . . ,Ti for each union TOG Ti, by taking

advantage of the previously recorded minimum number of flips in

T1,T2, . . . ,Ti{1 for each union TOG Ti{1. Finally, the minimum

number of flips in all TOGs T1,T2, . . . ,TN is obtained by

considering all possible union TOGs covering T1,T2, . . . ,TN and

taking into account the intertree constraint. Since the number of

different union TOGs is 2S{1, the above algorithm runs in

O(N:4S{1) time.

More detailed pseudocodes of both algorithms are given in

Algorithms 1 and 2. For the convenience of the reader, we list the

notations used in the algorithms and their brief explanations

explicitly below.

N T : the species tree.

N N : the number of TOGs in a gene family.

N Ti(1ƒiƒN): the TOGs in the gene family.

N Ti(0ƒiƒN): the union TOG covering TOGs T1,T2, . . . ,Ti.

N lu(Ti)(1ƒiƒN): the label of node u in Ti.

N lu(T): the label vector of node u in T with N bits, where the

i-th bit is lu(Ti)(1ƒiƒN).

N l(Ti)(1ƒiƒN): the labeling of TOG Ti.

N flip(lu(T),lv(T)): the number of flips (i.e., Hamming distance)

between two labelings lu(T) and lv(T).

N cost(l(Ti))(1ƒiƒN): the number of flips in T when labeled as

l(Ti).

N cost(u,lu(T)): the total number of flips in the subtree of T
rooted at u with labeling lu(T).

N cost(Ti)(0ƒiƒN): the total number of flips in the first i
TOGs when their labelings satisfy the intratree constraint and

form the union TOG Ti.

N l(Ti)_l (Tj): the boolean or operation between labelings l(Ti)
and l(Tj).

Algorithm 1 NodeCentric (T1,T2, . . . ,TN )

1: Traverse T in post-order

2: for all node u[T do

3: if u is a leaf node then

4: lu(T)/lu(T1)lu(T2) � � � lu(TN )

5: cost(u,lu(T))/0

6: else

7: for all possible labeling lu(T) at node u do

8: cost(u,lu(T))/minfcost(v,lv(T))zcost(w,lw(T))zflip(lu(T),
lv(T))zflip(lu(T),lw(T))g, where v,w are the two child

nodes of u, and lv(T),lw(T) are their labelings such that

lu(T),lv(T),lw(T) satisfy the two constraints

9: end for

10: end if

11: end for

12: Traverse T in pre-order and retrieve the labeling of each

node that gave rise to the minimum cost by a standard backtracing

Both algorithms NodeCentric and TreeCentric are exponential

time algorithms. However, in practice, the number of genomes in

comparison is expected to be small (usually Sƒ15). So we can use

the TreeCentric algorithm to find an optimal TOG labeling

efficiently. When the value of N is smaller, it is faster to apply the

NodeCentric algorithm. Note that, the two algorithms may find

different labelings for the same input, both of which are optimal.

Algorithm 2 TreeCentric (T1,T2,:::,TN )
1: Initialize union TOG T0 by labeling T with 0’s

2: cost(T0)/0
3: for i/1 to N do

4: for all union TOG Ti do
5: cost(Ti)/?
6: end for
7: for all labeling l(Ti) do
8: if l(Ti) satisfies the intratree constraint then

9: for all union TOG Ti do
10: cost(Ti)/minfcost(Ti),cost(Ti{1)zcost(l(Ti))g,

where Ti~Ti{1 _l (Ti)
11: end for
12: end if
13: end for
14: end for
15: Let TN

opt denote a union TOG that minimizes cost(TN
opt) and

satisfies the intertree constraint Traverse the TOGs in reverse

order ( i.e., TN ,TN{1, . . . ,T1) and retrieve the optimal labeling for

each TOG Ti that gave rise to TN
opt by a standard backtracing.

Ortholog Group Identification
After labeling all TOGs, it is straightforward to identify ortholog

groups. Starting from the root of each TOG, we can find the

highest ancestral nodes labeled as 1. All genes at the descendent

leaves of such an ancestral node form an ortholog group. An

example is shown in Figure 1(g). In addition, with the labeling of

each TOG, we can easily identify evolutionary events including

gene births and losses as well as duplications. For each edge in the

TOG, if the parent-child labeling is 1-0, then there is a gene loss. If

the labeling is 0-1, and the parent node is labeled as 0 in all other

TOGs, then it represents a gene birth. Otherwise, it represents a

gene duplication.

Results

In order to test the performance of our system MultiMSOAR

2.0, we first apply it to simulated data, and compare it with the

popular ortholog assignment tool MultiParanoid [27] for multiple

genomes. For real data experiments, besides comparison with

MultiParanoid, we also compare our results with Roundup [28],

which is a well known multi-genome repository of orthology

information and the Ensembl ortholog database.

Simulation Results
Our simulation test is an extension of the one in Ref. [5] for

testing the performance of MSOAR 2.0. However, we now need

to simulate more genome evolutionary events, including gene

mutations, gene births, gene duplications, gene losses, genome

rearrangements (including reversals, translocations, fusions and

fissions) and speciations (graphical examples of these events are

shown in Figure S2 in Materials S1). To make things easier, we

only simulate the evolution of S (Sƒ15) single-chromosomal

genomes as done in Ref. [5]. In order to generate S contemporary

genomes, we first generate a random species tree T with S leaf

nodes. Each internal node in T represents an ancestral genome

while the leaf nodes represent the current genomes. Each edge in
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T represents a speciation event. We then randomly generate a

genome with 100 genes consisting of 3,000 nucleotides each at the

root of T . For each speciation event, we simulate E evolutionary

events, which include a gene duplications, b gene births, c gene

losses, and (1{a{b{c) genome rearrangements. To generate

the gene duplications, we randomly choose a gene, copy it and

insert it into the genome next to the original copy or at a random

position, depending on whether the duplication is tandem or

random (here we assume 50% of all duplications are tandem, as

done in Ref. [5]). To simulate the birth of a new gene, we create a

new gene and randomly insert it into the genome. To simulate the

loss of a gene, we randomly choose a gene and delete it from the

genome. For genome rearrangements, since there is only one

chromosome, only reversals are considered. Reversals are

simulated by randomly choosing two positions on the genome

and reverse all the genes between them.

To simulate gene (point) mutations, we use a popular sequence

simulation tool evolver from the PAML package [29]. By running

evolver with default options on the codon sequence at the root of a

branch, we can obtain the mutated codon sequence over a pre-

specified branch length m. Since branch length can be measured in

terms of the expected number of substitutions per site, we may use

m to control the mutation rate of a gene. We assume that between

every two (genome-level) evolutionary events, all the genes on the

existing genomes evolve at the same rate. In other words, a

molecular clock is assumed.

In summary, our simulation data is controlled by a 6-parameter

set: (S,E,m,a,b,c), where S is the number of species, E the total

number of evolutionary events after each speciation, m the gene

mutation rate, and a,b,c the percentages of gene duplications,

births and losses among the E events, respectively.

To study the effects of different parameters on the performance

of MultiMSOAR 2.0, we set the default values for each parameter

as S~5,E~10,m~0:05,a~40%,b~10%,c~10%, and we will

vary one parameter at a time. To measure the prediction

accuracy, we use two popular measurements: sensitivity and

specificity. Here, sensitivity is defined as the number of the true

ortholog groups (i.e., true positives) identified by a program divided

by the total number of known ortholog groups, and specificity is

defined as the number of true ortholog groups identified divided

by the number of ortholog groups output. We compare the

ortholog groups found by MultiMSOAR 2.0 and MultiParanoid.

In order for an identified ortholog group to be a true positive (i.e.,

TP), we require that all genes in the identified ortholog group

match exactly with all the genes in a known ortholog group. For

each parameter set, we generate 10 simulated data sets and run

MultiMSOAR 2.0 and MultiParanoid on these data respectively.

Finally we calculate the average prediction accuracies of the two

programs on each parameter set. The prediction accuracies of the

two programs are shown in Figure 3.

Figures 3(a), (b), (d) show that with the increase of the number of

species, the number of evolutionary events, and the number of

gene duplications, the prediction accuracies of both programs

decrease since it becomes harder for them to correctly identify

ortholog groups. However, we notice that the decrease in accuracy

for MultiMSOAR 2.0 is mild while the decrease is sharp for

MultiParanoid, especially in Figure 3(d). This could be because

when more genes are duplicated, it becomes increasingly difficult

for MultiParanoid to decide if a duplication happened in an

ancient genome or in a more recent genome. Thus, it might

confuse some ancient duplications with recent duplications and

miss calling some true ortholog groups. On the other hand,

MultiMSOAR 2.0 infers the time of each duplication explicitly

when labeling TOGs, and is thus more resilient to the increase of

gene duplication events. However, since the labeling algorithm

used in MultiMSOAR 2.0 is based on the parsimony principle and

the optimal labeling might not be unique, the actual labeling given

by MultiMSOAR 2.0 may not necessarily reflect the true

evolutionary history. As a result, when the number of gene

duplications increases, the prediction accuracy of MultiMSOAR

2.0 also decreases, but much more slowly than in the case of

MultiParanoid.

Figure 3(c) is interesting and deserves some explanation. With

the increase of the branch length m defined in evolver from 0.01 to

0.04, both the sensitivity and specificity of MultiMSOAR 2.0

increase a little bit. This is because when m increases, it becomes

slightly easier for MultiMSOAR 2.0 to differentiate duplicated

genes from their original copies based on sequence similarity.

However, when m goes from 0.07 to 0.15, the prediction

accuracies of both programs sharply decrease. This is because

the sequence similarity between homologous genes originated

from a common ancestral gene becomes weaker with the increase

of m. As a result, it becomes harder for MultiParanoid to identify

ortholog groups solely based on sequence similarity, and for the

MCL algorithm used in MultiMSOAR 2.0 to correctly cluster

homologous genes into a gene family. Without correct gene

families, we cannot expect MultiMSOAR 2.0 to find the ortholog

groups correctly.

Generally speaking, from the four figures above, we can see that

the prediction accuracy of MultiMSOAR 2.0 is significantly higher

than that of MultiParanoid. With more species, more evolutionary

events and more gene duplications, the advantage of Multi-

MSOAR 2.0 over MultiParanoid becomes more apparent.

Besides, in the simulation, MultiMSOAR 2.0 is always able to

achieve more than 90% prediction accuracy (in terms of sensitivity

and specificity) as long as the gene mutation rate is not too high.

This is pretty remarkable considering the large number of species

and evolutionary events involved. Moreover, MultiMSOAR 2.0

can provide more information about gene births, losses and

duplications in addition to identifying ortholog groups. In the

simulation experiments, we also tested the accuracy of MulitM-

SOAR 2.0 in inferring gene births, losses and duplications, and

compared its performance with Notung, a well-known software

tool for reconciling genes trees with species trees by taking into

account gene duplication and loss events [30,31]. Since Notung

does not consider gene births, we only compare the sensitivity and

specificity of MultiMSOAR 2.0 and Notung with respect to gene

duplication and loss events. It turns out that the prediction

accuracies of MultiMSOAR 2.0 on duplications and losses are

generally much higher than those of Notung. Due to the page

limit, the prediction accuracies concerning these events by

MultiMSOAR 2.0 and Notung on simulated data are summarized

in Tables S1, S2, S3, S4 in Materials S1. Note that Notung fails to

detect most gene losses because it prunes the species tree when an

entire gene family is missing in a genome.

Real Data Experiments
Since MultiMSOAR 2.0 is a tool to identify ortholog groups for

multiple genomes that are closely related on a genome scale, to test

its performance on real data, we choose to use the mammalian

genomes that have been completely sequenced. We downloaded

seven mammalian genomes from the Ensembl genome browser

(http://www.ensembl.org/): human (Homo sapiens), chimpanzee

(Pan troglodytes), macaque (Macaca mulatta), mouse (Mus musculus), rat

(Rattus norvegicus), cow (Bos taurus) and opossum (Monodelphis

domestica) (version 57, March 2010). The species tree for the seven

mammalian genomes is downloaded from Ensembl as well.
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For the purpose of comparison, we choose to compare the

results of MultiMSOAR 2.0 with those of the popular tool

MultiParanoid, Roundup and the Ensembl ortholog database. For

MultiParanoid, we deem all the genes in the same cluster output

by the program as an ortholog group assigned by MultiParanoid.

We run MultiMSOAR 2.0 and MultiParanoid on the real data

sets respectively and compare their results. Roundup is a recently

developed multi-genome repository of orthologs for over 250

genomes [28]. We download the ortholog groups for the

concerned genomes from its website (http://roundup.hms.

harvard.edu/). Since Roundup uses genomes from different

sources, we need to map the genes used in Roundup to the

corresponding genes used in Ensembl. For the Ensembl ortholog

database, we download the reconciled EnsemblCompara gene

trees, and extract the orthology information for the genomes being

compared. Each group of genes of the concerned genomes that

descended from the lowest common ancestor of the concerned

genomes defines an ortholog group.

Some other tools and databases are also available for ortholog

assignment among multiple genomes, such as the OrthoFocus

program [32] and the PhylomeDB ortholog database [33].

However, OrthoFocus is a program to identify orthologs in

family-focused studies and it is inapproriate for genome-scale

comparisons. PhylomeDB is a major source for phylogeny-based

orthology and paralogy prediction, covering about 5 million

proteins in 717 fully-sequenced genomes. However, since it

involves a large number of genomes in the comparison, we are

unable to retrieve reconciled gene trees concerning only genes

from genomes of interest to us. Instead, we are only provided with

orthology relationship with respect to a ‘‘seed’’ genome. This

Figure 3. Comparison of MultiMSOAR 2.0 and MultiParanoid on simulated data. (a) Simulation results on the parameter set
( � ,10,0:05,40%) where the parameter S is varied. (b) Simulation results on the parameter set (5, � ,0:05,40%) where the parameter E is varied.
(c) Simulation results on the parameter set (5,10, � ,40%) where the parameter m is varied. (d) Simulation results on the parameter set (5,10,0:05, � )
where the parameter a is varied.
doi:10.1371/journal.pone.0020892.g003
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means that we would need to use a single-linkage method to

combine ortholog groups via ‘‘seed’’ genomes, which is clearly

undesirable. Besides, PhylomeDB generally presents orthology as a

many-to-many relationship. Without reconciled trees, it is hard for

us to refine the relationship into a one-to-one relationship, which

makes the comparison with our results very difficult. Moreover,

PhylomeDB uses a data source different from Ensembl, and the

conversion of gene names between the two databases could be

quite non-trivial.

Results on Human, Mouse and Rat. Since human, mouse

and rat are the best annotated genomes, we can use gene symbols

to validate the ortholog groups assigned among the three genomes

by different programs. The same validation method has been used

in many other papers [5,19,20]. Note that since some gene

symbols were assigned using information from certain orthology

databases, we should take the validation results based on gene

symbols with a grain of salt. By using gene symbols, we can define

true ortholog groups (TPs), false ortholog groups (FPs), and

unknown ortholog groups as follows. If an ortholog group contains

genes that have different gene symbols, then this group is counted

as an FP. If at most one of the genes in the group have gene

symbols, then this group is counted as an unknown. Otherwise, we

treat the group as a TP. An ortholog group is defined as assignable if

its genes appear in at least two genomes and have exactly the same

gene symbol. We use the same measurements sensitivity and

specificity as defined in the simulation to measure the prediction

accuracies of the three programs. The performance of the

programs is shown in Table 1.

The low sensitivity of Roundup in Table 1 may be caused by the

mapping of gene IDs from Roundup to Ensembl since quite a few

of the genes in Roundup were mapped to the unknowns in

Ensembl. Nevertheless, we can see that MultiMSOAR 2.0

achieves the best sensitivity and specificity among all four

programs. This is mainly because MultiParanoid only considers

sequence similarity when assigning ortholog groups, while

Ensembl ortholog groups tend to include lots of lineage-specific

duplicated inparalogs. Though Roundup is based on the

reciprocal smallest distance algorithm, which is different from

the reciprocal BLAST hits used in MultiParanoid, it fails to

consider other information as well. In contrast, MultiMSOAR 2.0

combines gene order with sequence similarity, as well as

phylogenetic information, and thus is able to make more accurate

predictions.

Results on All Seven Mammalian Genomes. When

comparing the seven mammalian genomes including human,

chimpanzee, macaque, mouse, rat, cow, and opossum, we cannot

validate the ortholog groups predicted by the three programs using

gene symbols since not all of the genomes have been annotated

with gene symbols. So, we only consider the common and different

ortholog groups constructed by MultiMSOAR 2.0,

MultiParanoid, Roundup and the Ensembl ortholog database.

The comparison results are shown in Table 2 (since we are not

able to find a good mapping from the data used in Roundup

repository to the data used in Ensembl concerning all seven

genomes, the comparison results with Roundup are not included

in the table).

Table 2 shows the numbers of ortholog groups involving 2 to 7

genomes that were identified by MultiMSOAR 2.0, MultiPar-

anoid and Ensembl. From Table 2, we can see that the numbers of

ortholog groups found by all three programs are similar to each

other for each number of genomes involved. Most of the ortholog

groups identified by each of the three programs all involve seven

genomes. Among such large ortholog groups identified by each

program, more than a half (7,763) are shared by all three

programs, which provides an indirect support for the ortholog

groups found by MultiMSOAR 2.0. The large number of ortholog

groups involving all seven genomes found by the three programs

also manifests the evolutionary closeness of the seven mammalian

species. The number of ortholog groups involving 4 genomes

found by the three programs is pretty small here, since there is no

subtree in the species tree consisting of exactly four species. Hence,

an ortholog group of size four would have to involve gene losses.

Table 1. Performance of the four programs on human, mouse and rat.

Program Assignable TPs TPs FPs Unknowns Total Sensitivity Specificity

MultiMSOAR 2.0 15,598 14,051 2,399 2,919 19,369 90.08% 85.42%

MultiParanoid 15,598 13,697 2,609 2,328 18,634 87.81% 84.00%

Ensembl 15,598 13,474 2,495 2,091 18,060 86.38% 84.38%

Roundup 14,616 10,094 2,424 6,790 19,308 69.06% 80.66%

doi:10.1371/journal.pone.0020892.t001

Table 2. Ortholog groups shared by MultiMSOAR 2.0, MultiParanoid and Ensembl on the seven mammalian genomes.

Programs 7 genomes 6 genomes 5 genomes 4 genomes 3 genomes 2 genomes

MultiMSOAR 2.0 12,034 3,772 1,337 584 875 3,195

MultiParanoid 11,397 3,311 1,127 609 800 2,728

Ensembl 13,566 2,002 493 270 363 991

MultiMSOAR 2.0 and MultiParanoid 9,075 2,237 633 239 348 1,483

MultiMSOAR 2.0 and Ensembl 8,722 1,003 225 104 131 524

MultiParanoid and Ensembl 8,438 983 237 117 143 587

All three programs 7,763 872 202 92 119 505

doi:10.1371/journal.pone.0020892.t002
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Since there is only one subtree consisting of three species (i.e.,

human, chimpanzee, and macaque), most of the 875 ortholog

groups of size 3 found by MultiMSOAR 2.0 (679, or about 77.6%)

consist of genes from the three species. Similarly, 1,772/3,195

(55.46%) and 1,083/3,195 (32.49%) of the ortholog groups of size

two consist of genes from mouse-rat and human-chimpanzee

respectively, both of which are the closest pairs in the species tree.

Conclusion
In this paper, we have extended the pairwise ortholog

assignment system MSOAR 2.0 to a multi-genome ortholog

assignment system MultiMSOAR 2.0. By comparing with the well

known multi-genome ortholog assignment tool MultiParanoid on

simulated data, we demonstrated that MultiMSOAR 2.0 achieves

a significantly higher prediction accuracy. Our real data

experiments on closely related mammalian genomes also show

the superior performance of MultiMSOAR 2.0 over Multi-

Paranoid, the multi-genome ortholog repository Roundup and

the Ensembl ortholog database. Moreover, not only can Multi-

MSOAR 2.0 identify ortholog groups accurately, it can also

provide accurate information about gene births, losses and

duplications, which may shed additional insight on genome

evolution.

Supporting Information

Materials S1 Additional Experimental Results on Simulated

Data.

(PDF)
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curated database of phylogenetic trees of animal gene families. Nucleic Acids
Res 34: D572–580.

11. Goodstadt L, Ponting CP (2006) Phylogenetic reconstruction of orthology,

paralogy, and conserved synteny for dog and human. PLoS Comput Biol 2:
e133.

12. Han MV, Hahn MW (2009) Identifying parent-daughter relationships among
duplicated genes. Pac Symp Biocomput. pp 114–125.

13. Boyer F, Morgat A, Labarre L, Pothier J, Viari A (2005) Syntons, metabolons
and interactons: an exact graph-theoretical approach for exploring neighbour-

hood between genomic and functional data. Bioinformatics 21: 4209–4215.

14. Deniélou YP, Boyer F, Sagot MF, Viari A (2008) Recovering isofunctional
genes: a synteny-based approach. Actes des Journée Ouvertes de Biologie,

Informatique et Mathématiques.
15. Hannenhalli S, Pevzner PA (1995) Transforming men into mice (polynomial

algorithm for genomic distance problem). FOCS ’95. Washington, DC, , USA:

IEEE Computer Society.
16. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) Evolution’s

cauldron: Duplication, deletion, and rearrangement in the mouse and human
genomes. Proc Natl Acad Sci U S A 100: 11484–11489.

17. Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution:

Lessons from human and mouse genomes. Genome Res 13: 37–45.

18. Semon M, Wolfe KH (2007) Rearrangement rate following the whole-genome

duplication in teleosts. Mol Biol Evol 24: 860–867.

19. Fu Z, Chen X, Vacic V, Nan P, Zhong Y, et al. (2007) MSOAR: A high-

throughput ortholog assignment system based on genome rearrangement.

J Comput Biol 14: 1160–1175.

20. Fu Z, Jiang T (2008) Clustering of main orthologs for multiple genomes.

J Bioinform Comput Biol 6: 573–584.

21. Shoja V, Zhang L (2006) A roadmap of tandemly arrayed genes in the genomes

of human, mouse, and rat. Mol Biol Evol 23: 2134–2141.

22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

23. Enright AJ, Van Dongen S, Ouzounis CA (2002) An e6cient algorithm for

large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.

24. Vashist A, Kulikowski CA, Muchnik I (2007) Ortholog clustering on a

multipartite graph. IEEE/ACM Trans Comput Biol Bioinformatics 4: 17–27.

25. Kann V (1991) Maximum bounded 3-dimensional matching is max snp-

complete. Inf Process Lett 37: 27–35.

26. Kuhn HW (2005) The hungarian method for the assignment problem. Nav Res

Log 52: 7–21.

27. Alexeyenko A, Tamas I, Liu G, Sonnhammer ELL (2006) Automatic clustering

of orthologs and inparalogs shared by multiple proteomes. Bioinformatics 22:

e9–15.

28. DeLuca TF, Wu I, Pu J, Monaghan T, Peshkin L, et al. (2006) Roundup: a

multi-genome repository of orthologs and evolutionary distances. Bioinformatics

22: 2044–2046.

29. Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol

Evol 24: 1586–1591.

30. Durand D, Halldorsson BV, Vernot B (2006) A hybrid micro-macroevolutionary

approach to gene tree reconstruction. J Comput Biol 13: 320–335.

31. Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-

binary species trees. J Comput Biol 15: 981–1006.

32. Ivliev AE, Sergeeva MG (2008) OrthoFocus: program for identification of

orthologs in multiple genomes in family-focused studies. J Bioinform Comput

Biol 6: 811–824.

33. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, et al.

(2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of

trees, alignments and phylogeny-based orthology and paralogy predictions.

Nucleic Acids Res 39: D556–D560.

Identify Ortholog Groups among Multiple Genomes

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20892


