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Abstract

Pairing-based cryptosystems have been the subject of much recent research because

of the unique features they provide. As the technology matures, research is looking to

the future. Efficient implementation is of greater importance at high-security levels.

Generalized Mersenne (GM) numbers can impact performance in two ways. Their

structure can be exploited to perform fast modular reduction, a costly part of field

arithmetic. The second opportunity to make use of generalized Mersenne numbers is

Miller’s algorithm, the workhorse of pairing computations. This second use is possible

when the elliptic curve used is chosen such that it has a subgroup of order n where n

is a low-weight GM prime.

Of particular interest to pairing-based cryptography are elliptic curves which pro-

vide both speedups. Due to the limits of known curve construction techniques, only

supersingular curves with embedding degree one and two can be created with GM

parameters. In the case of embedding degree one, we argue that current construction

techniques are impractical. For embedding degree two, we find parameters suitable

for implementation and quantify their impact on the computation of the Weil and

Tate pairings.

This work is the first to quantify the efficiency gained by arithmetic modulo GM

numbers. The moduli used to benchmark GM methods cover a range of sizes and

modular reduction weights. A drawback we consider is the increased vulnerability to

a variant of the number field sieve. We show that despite requiring larger parameters

to maintain security, GM primes can still offer improved performance over general

primes. Finally, we use our results to strengthen previous analysis. This puts our

work into a larger context, allowing for comparisons and recommendations relevant

to cryptographic applications based on pairings.
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Chapter 1

Introduction

In this work, we examine two ways that generalized Mersenne numbers can be used

to reduce the time required to compute pairings on elliptic curves. Our goal is to

quantify the benefits provided by generalized Mersenne numbers across a broad range

of parameter sizes.

1.1 Motivation

In recent years fascinating cryptographic applications of the Tate and Weil pairings

have been discovered. Pairings have become the primitive at the center of new cryp-

tosystems which provide unique features. The example which generated the most

interest is Identity Based Encryption (IBE). IBE is a public key cryptosystem where

an arbitrary string can be used as a public key. For example, a user’s email address

can be used by the sender to encrypt mail for them. This is much simpler for the

sender, who does not need to obtain and verify the authenticity of a public key. To

date, the only practical and satisfactory IBE scheme [16] is based on admissible bi-

linear maps. In practice, the Weil and Tate pairings on elliptic curves provide these

maps. After reviewing some related background on elliptic curves in Chapter 2, we

discuss IBE in detail, as well as other applications in Section 2.5.

When high security is demanded from pairing based cryptosystems, implementa-

tion decisions suitable at lower levels may no longer be optimal, and the choice of

parameters must be re-examined. Due to the “layered” nature of paring-based cryp-

tosystems, there are a large number of these decisions, and tradeoffs arise. The layers

of a pairing-based cryptosystem begin with a finite field and corresponding arithmetic.

Then follows the elliptic curve group and group arithmetic, then the computation of

pairings by Miller’s algorithm. These pairings finally get used as building blocks in

protocols. The layered complexity of pairing based cryptography is shown in Table

1.1.

1
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5 Pairing-based cryptosystem
(IBE, BLS signatures, . . . )

4 Tate or Weil pairing
3 Miller’s algorithm
2 Elliptic curve group arithmetic
1 Finite field arithmetic (Fpk)

Table 1.1: The “layers” of a pairing-based cryptosystem. Lower layers are used to
implement upper layers.

Generalized Mersenne (GM) numbers appear at layers 1 and 3. At the first layer,

if p is a GM number (with certain additional properties) then the structure the GM

number provides can be exploited to improve the efficiency of reduction modulo p.

A significant cost of arithmetic in finite fields is modular reduction, and typically

one reduction is performed after every multiplication. Chapter 4 will focus on GM

numbers used for field arithmetic.

The other layer at which GM numbers play a role is in Miller’s algorithm (layer

3), used to compute both the Tate and Weil pairings. We review the background for

Miller’s algorithm in Chapter 2 and the algorithm itself in Chapter 5.

1.2 Goals and Objectives

Although using generalized Mersenne numbers for fast modular reduction has been

known for some time, limited research has been done to quantify the improvement.

It is assumed to be faster than other reduction algorithms, but we cannot say by

how much, and do not know how performance changes as the operand sizes increase.

There is also a measure called the modular reduction weight (§4.3) for a generalized

Mersenne number which describes the cost of reduction. We would like to know

the practical upper bound for this weight, and determine how reduction slows as it

increases. To support these goals, we are also interested in efficient methods to find

primes with modular reduction weight below the practical upper bound.

Likewise, many authors recommend the use of GM primes when computing pair-

ings, to allow a variant of Miller’s algorithm to take advantage of their structure. This

choice reduces the time required to compute the pairing, but again the improvement

is not quantified. For instance, it has not been compared to a competing strategy —
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choosing a key parameter to be a prime with low Hamming weight.

We also consider the associated problem of finding suitable elliptic curves with

parameters which are GM primes. We require a curve over a field of characteristic p,

where p is a GM prime, and the order of the curve must also be divisible by a GM

prime n. If this curve is to be used for cryptography, then p and n must be large

enough to provide adequate security, but not much larger, for the cost of arithmetic

also increases with their size.

To date, curves with GM parameters can be chosen in two situations, supersingular

curves with embedding degree one and two. However, the construction techniques

ignore the modular reduction weight, as well as another property which facilitates

practical implementation. We will determine whether these methods produce curves

which are useful in practice. This question is addressed in Chapter 5.

We are ultimately interested in the effect these parameters will have on pairing-

based cryptography. How important are GM primes, and what characteristics are

necessary for them to be practical? Choosing to use GM parameters often involves a

tradeoff of competing optimizations. Since the cases where curves can be constructed

with GM parameters are limited, we may be forced to forgo other optimizations.

Once the benefits of GM parameters have been quantified, it will be possible

to make comparisons when making implementation decisions. In addition, knowing

when GM parameters are most effective may motivate further research into curve

construction techniques.

There is also the potential that using these parameters reduces the security pro-

vided. Cryptanalysis may be adapted to exploit the the same structure that allows

fast implementations, presenting a serious threat to security. We take this into consid-

eration when discussing the implications to pairing-based cryptography in Chapter 6.

1.3 Thesis Summary

This thesis spans a broad range of topics required for a comprehensive quantitative

evaluation of pairings with generalized Mersenne primes. We have brought together

the work of Solinas (modular arithmetic) and Miller (pairing computations) and im-

proved the analysis of Koblitz and Menezes by including new empirical results. Before

making recommendations, we also incorporate performance estimates of the number
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field sieve. All together, we compare implementation options at a range of security

levels. As well as quantifying performance, we identify some practical limitations of

generalized Mersenne parameters.

We present timings from multiple implementations of modular reduction functions.

We then compare them for a variety of moduli — with different modular reduction

weights and sizes. The range of sizes spans the current requirement for pairing-based

cryptography, to anticipated future requirements. A hurdle for this large number of

comparisons is that each modulus requires a unique implementation of the reduction

function, since reduction is based on the structure of the modulus. This was possible

due to a new code generation tool, which we developed and used to create all the

required modular reduction functions. We identify what performance can be expected

at each weight and size, and discover what modular reduction weights are practical.

As the weight changes, we will describe the corresponding performance changes. This

knowledge of what moduli are practical, is put to use to guide the next part of this

work.

We then move on to examine curve construction methods for supersingular curves

with embedding degrees one and two. Curves of embedding degree one have been

overlooked by researchers, who have favored curves with large embedding degree.

Until now, these curves were discarded without good reason. After examining curve

construction techniques (which yield GM parameters), we identify issues that frustrate

implementation and incorporate them into a search for suitable parameters. Negative

results lead us to argue that current methods are not practical. We give the first solid

reasons to avoid curves of embedding degree one, supported by a combination of our

empirical results and previous analysis.

At embedding degree two, we confirm that curve construction methods can lead

to practical implementations. By including some additional constraints, we found

parameters well suited to implementation. We describe our implementation and pro-

vide timings; again, with a variety of GM parameters over a range of sizes. These

timings can also be used as good estimates for the relative speed of low-Hamming

weight implementations. This optimization is similarly frequently recommended, but

without implementation experiments it can be difficult to asses its importance.

Our arithmetic timings were also used to strengthen previous analysis. With added
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knowledge of the performance of GM arithmetic we were able to make comparisons

in a larger context. The timings for pairing computation in our implementation also

lend credibility to this analysis.

A recently discovered optimization to the number field sieve reduces the time re-

quired to solve discrete logarithms in a finite field when the characteristic is a GM

prime. Maintaining the difficulty of this problem is necessary for pairing-based cryp-

tosystems. Based on our results, we suggest that this threat is not significant enough

to abandon the use of GM primes. When we consider the time savings provided by

GM primes, even in a larger field they are still far faster than competing methods.

During the course of this work, we have identified new and interesting open prob-

lems. We will list and describe them in the final chapter.

1.4 Contributions

We would like to emphasize the following main contributions of the thesis:

• Quantify the performance of arithmetic modulo GM primes with modular re-

duction weight from 1-200 and bitsize from 0-16000.

• Examined curve construction techniques for creating curves with GM prime pa-

rameters, and found to be inadequate at embedding degree one. At embedding

degree two we modified existing methods to produce parameters that have low

modular reduction weight, and are word aligned.

• Used knowledge of arithmetic costs to compare implementation options for pair-

ing based cryptography at high security levels.

• Offer the first discussion of the impact of the Schirokauer’s NFS on pairing

based cryptosystems. Our work suggests that the benefits of arithmetic modulo

GM primes outweigh improvements to the NFS.



Chapter 2

Background

This chapter begins with a brief review of some related topics in algebra. We then

review elliptic curves, function fields and divisors in §2.2, §2.3 and §2.3. At this

point we will have covered the required background to describe the Weil (§2.4.1) and

Tate (§2.4.2) pairings. In the last section (§2.5) we will discuss some applications of

pairings.

2.1 Algebraic Background

2.1.1 Groups, Rings and Fields

A set G closed under a binary operation ∗ forms a group (G, ∗) when the following

properties are satisfied.

1. ∗ is associative; a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀ a, b, c ∈ G.

2. There exists an identity element e ∈ G, such that a∗ e = a = e∗a for all a ∈ G.

3. Inverses exist for all elements, a ∗ a−1 = e = a−1 ∗ a for all a ∈ G.

When the operation ∗ is also commutative, i.e. a ∗ b = b ∗ a, for all a, b ∈ G, we call

G an abelian group. The groups of interest to us will always be abelian, and we will

often write “group” in place of “abelian group”.

There are two concepts that will prove useful when dealing with finite groups.

First, we have the order of a ∈ G, which is the smallest positive integer n such that

an = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
n times

= e .

The accompanying notation is ord(a) = n. Equivalently this can be defined as

ord(a) = |〈a〉|, where 〈a〉 is the subgroup of G generated by a. The group order,

is simply the number of elements in G, denoted |G|. A famous theorem of Lagrange

6
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states that |H| divides |G| for any subgroup H ⊆ G. This implies that the ord(a)

divides |G|.

Second, for a finite group G, the exponent of G, denoted exp(G), is the smallest

integer n such that gn = 1 for all g ∈ G. If G is abelian, then there exists g ∈ G such

that ord(g) = exp(G).

In some cases a set R is closed under two operations, an addition (written a + b)

and a multiplication (written a · b or ab). If this is the case, (R, +, ·) is a commutative

ring with unity if

1. (R, +) is an abelian group (with identity element 0),

2. (R, ·) is a monoid, i.e. multiplication is a valid operation with identity element

1 (called the unity),

3. multiplication is commutative,

4. and multiplication distributes over addition, i.e. a(b + c) = ab + ac = (b + c)a.

An ideal I of R is an additive subgroup such that for all r ∈ R, s ∈ I their product

rs ∈ I.

A field is a set K closed under an addition operation and a multiplication operation

such that (K, +) and (K − {0}, ·) are abelian groups. Examples of common infinite

fields are C, R and Q the fields of complex, real and rational numbers. Fields can also

be finite, for example the integers mod p, where p is a prime. The following section

reviews these fields in greater detail. In what follows, when the particular field is not

important we will refer to it as “a field K”.

A ring of polynomials, denoted K[x1, . . . , xn], is the set of all polynomials in

indeterminates x1, . . . , xn with coefficients in the field K, and the familiar polynomial

arithmetic operations. As an example, R[x, y] is the ring of polynomials in x, y with

real coefficients, one element being x2 + 3y2 +
√

19.

2.1.2 Finite Fields

For the applications we will discuss, the field K is chosen to be finite. The fields used

are the Galois fields, written GF (pm), or Fpm where p is prime and m ∈ N.
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To define Galois fields, there are two cases, when m = 1 and when m > 1. In the

prime field case (m = 1), we have the integers modulo p, Fp = Z/pZ = Zp. Galois

fields with m > 1 are called extension fields. We will describe them shortly. For

cryptographic applications the field GF (2m) is common because it can be represented

in a way that allows fast arithmetic using basic operations. A modern reference on the

subject of arithmetic and representation in finite fields for elliptic curve applications

is [38]. More general references on the subject are [25], Chapter 9 and [39], Chapter

4. Unless stated otherwise, we will write Fq for the field with q = pm elements.

The characteristic of a field K is the least integer c such that c · a = 0 for all

a ∈ K. For example F2m has characteristic 2, F101 has characteristic 101, and in

general Fpm has characteristic p.

Extension Fields

We start with an example of an extension field. Consider the polynomial x2 + α in

the ring Fp[x], and further suppose that −α is not a quadratic residue mod p. Then

x2 ≡ −α (mod p) has no solution in Fp, and the roots ±
√
−α are not in Fp. To

remedy this situation we will adjoin an element θ to the field such that θ2 = −α and

call this new larger field Fp(θ). The general form of elements in this field is a + bθ

for a, b ∈ Fp. The larger field has p2 elements. By adjoining θ, we have created

Fp2 , an extension of Fp with degree 2. This field is isomorphic to the quotient group

Fp[x]/〈x2 + α〉, where 〈x2 + α〉 is the ideal of Fp[x] generated by x2 + α. The result

of repeatedly adjoining elements is often referred to as a tower a fields or a tower of

extensions.

In general, extension fields can be created using

Fpm =
Fp[x]

〈p(x)〉
where p(x) ∈ Fp[x] is a monic irreducible polynomial of degree m

in a way analogous to Z/pZ, except instead of reduction mod p we reduce polynomials

mod p(x) using the division algorithm in Fp[x]. This variation of Euclid’s classic

algorithm is described in §2.2 of [25].

The field Fpm is an extension of degree m of Fp. In general, if E is an extension of

F , the degree of this extension, [E : F ], is the degree of E as a vector space over F .

To clarify this, we generalize our example. Elements of a degree m extension will look
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like a0 + a1θ1 + ... + am−1θm−1, and we can represent elements as (a0, . . . , am) ∈ Fm

with respect to a basis {1, θ1, . . . , θm−1}.

Algebraic Closure

A field K is algebraically closed if every polynomial in K[x] has a zero in K. Equiv-

alently, this can be defined in terms of the factorization of polynomials.

Theorem 1 A field K is algebraically closed iff every nonconstant polynomial in

K[x] can be written as a product of linear factors in K[x].

See [32], §31 for a proof. An algebraic closure exists for every field, and we write it

K. Any algebraically closed field is infinite1. The field Fq is not algebraically closed;

and Fq is an infinite field.

2.2 Elliptic Curves

In this section we review necessary material related to elliptic curves. References

covering this material in greater detail are [19, 20, 70, 71].

Let K be a field. An elliptic curve E over K (denoted E/K ) is a non-singular

cubic curve given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

where ai ∈ K. This standard form is called the long Weierstrass form, but often2 in

applications a1 = a2 = a3 = 0 and the shorter form:

y2 = x3 + ax + b (2.2)

(a, b ∈ K) is used instead. In order for the curve (2.2) to be non-singular, the

discriminant ∆ = 4a 3 + 27b 2 must be nonzero. (For an equivalent condition for (2.1)

see [70] p. 46–50.) We are most interested in the set of points

E(K) = {(x, y) ∈ K2 : y2 = x3 + ax + b} ∪ {O} .

1Exercise 85 of the Supplementary Material section of [69], available from http://shoup.net/ntb
2Primarily when char(K) 6= 2, 3.
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E(K) contains one extra point O, called the identity or the point at infinity. In

the affine model, this point is simply represented O = (∞,∞) however in projective

coordinates [X : Y : Z], where x = X/Z, y = Y/Z we can write O = [0, 1, 0].

Naming O the identity suggests a group structure, and indeed this is the case.

The group operation is written additively. For points Pi = (xi, yi) ∈ E(K) (where

E(K) is of the form (2.2)) the sum P3 = P1 + P2, can be computed as follows.

x3 = λ2 − x1 − x2

y3 = λx3 + y1 − λx1 = λx3 + y2 − λx2

where the slope, λ is given by

λ =
y1 − y2

x1 − x2

when P1 6= P2 and

λ =
3x2 + a

2y

when P1 = P2. The quantity λ is called the slope because the group laws are derived

geometrically. Many introductory texts cover this derivation in detail, we simply

include Figure 2.1 as a reminder. See the references given at the beginning of this

section for the group operation when the curve is in another form. For arithmetic in

projective coordinates (and variations thereof) see [38].

As suggested above, O is the identity, and the inverse of a point P = (x, y) is

defined3 to be −P = (x,−y). There is no multiplication operation in this group, but

a “scalar multiplication” is frequently used. This allows a point to be “multiplied” by

an integer, written [m]P (or sometimes just mP ) which amounts to repeated addition

[m]P = P + P + P + . . . + P︸ ︷︷ ︸
m times

.

Since this operation is analogous to exponentiation, it enjoys all of the existing fast

methods allowing computation in O(log m) point additions.

2.3 Elliptic Curves Over Finite Fields

Let K be a finite field K = Fq. The group E(K) is then finite, and the field elements

have a bounded size, facilitating elliptic curve arithmetic with computer hardware.

3For curves in Weierstrass form.
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Figure 2.1: Geometric interpretation of addition on an elliptic curve over R.
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Point Counting

When working with E(Fpm) the group order is finite and often required by applica-

tions. We use #E(Fpm) to denote the group order of E. An elegant theorem, due to

Hasse bounds the number of possible solutions to (2.1).

Theorem 2 For an elliptic curve E defined over Fq,

#E(Fq) = q + 1− t where |t| ≤ 2
√

q

A proof of the theorem is available in [70], §V.1 as well as [20] page 50. The integer

t is called the trace of the curve. In §2.3 we will classify a family of curves based on

their trace.

While once a difficult problem, recent advances in point counting algorithms have

been dramatic. It is now practical to determine the group order of much larger curve

groups than those used in practical cryptographic applications. Further, most ap-

plications only require that the group order be computed once at the outset, which

can be done offline. Interested readers should consult [28] Chapters VI - Determining

the Group Order and VII - Schoof’s Algorithm and Extensions, as well as [29] Chap-

ter IV Advances in Point Counting. These sources also include extensive references

on this subject. Most symbolic calculators (e.g. PARI/GP, Maple, Mathematica)

and programming libraries supporting computations with elliptic curves (e.g. LiDIA,

MIRACL) include implementations of point counting algorithms suitable for our pur-

poses.

The n-torsion subgroup

As is the case in all finite groups, the smallest positive integer n such that [n]P = O
is called the order of a point. The n-torsion subgroup E[n] is the subgroup of points

having order dividing n, i.e.

E[n] = {P ∈ E : [n]P = O}

Over an algebraically closed field, E(K) has n2 points, and the group structure

Zn × Zn ([70], §III.4). In the case of non-algebraically closed fields, a theorem of

Balasubramanian and Koblitz [10] describes E[n].
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Theorem 3 Let E be an elliptic curve over Fq, where q = pm. Let n be a positive

integer dividing #E(Fq) and not dividing (q − 1). Then the n-torsion subgroup of

E(Fqk) has size n2 if and only if n|(qk − 1).

Supersingular Curves

Supersingular elliptic curves are an important family of curves in cryptographic appli-

cations because of some of the properties they possess. There are multiple equivalent

definitions for a curve to be supersingular. The one that follows is most useful in this

work.

Definition 1 An elliptic curve E(Fq), q = pm, with order #E = p + 1− t is said to

be supersingular iff

t2 ∈ {0, q, 2q, 3q or 4q}

This definition is a refinement, obtained by combining the more general definition:

E/K is supersingular if char(K)|t, with some results on the existence of curves (see

[49]). For some other, more theoretical definitions of supersingular curves see [70],

§V.3. Supersingular elliptic curves can classified into six classes according their trace4.

Function Fields

We will need a few pieces in order build up a function field. For this section, let E/K

be an elliptic curve in short Weierstrass form (2.2). The end result will be a field of

rational functions related to a particular curve.

First consider the polynomial ring K[x, y]. We can limit its size by considering

the coordinate ring

K[E] =
K[x, y]

〈y2 − x3 − ax− b〉
.

This equates polynomials that differ by a multiple of the equation of the curve. It is

still an infinite ring of polynomials, but their degree is bounded. To create a function

field, consider the fractions

K(E) =
a(x, y)

b(x, y)
a(x, y), b(x, y) ∈ K[E] .

The elements of K(E) are often referred to as rational functions.

4For a table, see [49].
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We can represent all the rational functions r ∈ K(E) (that are not identically zero)

in a uniform way with respect to a point P ∈ E. There exists a rational function uP

with uP (P ) = 0 such that

r = uP
ds , d ∈ Z, s ∈ K(E), s(P ) 6= 0

The rational function uP is called a uniformizer at P . The order of a rational function

f at a point P ∈ E, denoted ordP (f) is the integer d.

Divisors

A divisor is a formal sum of points;∑
P∈E

mP (P ) = mO(O) + mP1(P1) + mP2(P2) + . . .

with a finite number of nonzero mP ∈ Z. The set of points having nonzero mP is

called the support of a divisor. An addition operation for divisors is defined for two

divisors D1 and D2 as follows:

D1 +D2 =
∑
P∈E

mP (P ) +
∑
P∈E

nP (P ) =
∑
P∈E

(mP + nP )(P ) (2.3)

Under addition of divisors, the set of all divisors forms a group, denoted Div(E).

The degree of a divisor D ∈ Div(E) is

deg(D) =
∑
P∈E

mP

The divisors with degree zero form an important subgroup, denoted Div0(E). To

every rational function f , the associated divisor is given by

div(f) =
∑
P∈E

ordP (f)(P ) .

The converse however, that every divisor can be associated to a rational function,

is not always true divisors that actually “belong” to some rational function are called

principal divisors. Prin(E) denotes the set of principal divisors, and

Prin(E) ⊆ Div0(E) ⊂ Div(E)

principal divisors ⊆ divisors of degree 0 ⊂ all divisors .
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For our purposes, one further refinement is necessary. To work with the divisors of

degree zero that are not principal, we define the the divisor class group 5:

Pic(E) = Div(E)/Prin(E)

and the degree zero part of the divisor class group or Jacobian:

Pic0(E) = J(E) = Div0(E)/Prin(E) .

Two divisors D1 and D2 are in the same coset, or in the same divisor class if D1−D2 is

principal (D1 and D2 may also be called linearly equivalent). Equivalence is denoted

D1 ∼ D2. Every divisor class has a unique representative of the form (P ) − (O) for

all P ∈ E giving a one-to-one correspondence between the Jacobian and the points

on the curve, given by

φ : E → J(E)

φ(P ) = (P )− (O)

One can make use of φ and the fact that divisor addition (2.3) is trivially associative

to give an elegant proof of the associative law in E(K).

A function f can be evaluated at a divisor D =
∑

P∈E mP (P ) as follows

f(D) =
∏
P∈E

f(P )mP

When f and D are defined over a common field K, the product f(D) ∈ K as well.

2.4 Pairings

First we will explain the general characteristics of a mapping that make it a pairing,

then we will look at two specific pairings of importance to cryptography in §2.4.1 and

§2.4.2.

Bilinear Mappings

For groups G1, G2, G3, where G1 and G2 have exponent n and G3 cyclic of order n,

a pairing is a map:

e : G1 ×G2 → G3 ,

5We make two remarks:
i) the divisor class group is sometimes also called the Picard group, which explains the notation,
ii) note the similarity to the class group in an algebraic number field which is all fractional ideals

modulo all principal fractional ideals.
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which satisfies the following two conditions:

1. Bilinearity: For all P, P ′ ∈ G1 and Q, Q′ ∈ G2

e(P + P ′, Q) = e(P, Q)e(P ′, Q)

and

e(P, Q + Q′) = e(P, Q)e(P, Q′) .

Bilinearity can be thought of as a generalized multiplication that satisfies the

distributive law.

2. Non-Degeneracy: For all P ∈ G1, P 6= 0 there is some Q ∈ G2 such that

e(P, Q) 6= 1. Likewise, for all Q ∈ G2, Q 6= 0 there is some P ∈ G1 such that

e(P, Q) 6= 1. A non-degenerate map is one that “does something”, it does not

simply map everything to the identity of G3.

3. Alternating: e(P, P ) = 1, and so e(P, Q) = e(Q,P )−1

In the terminology of [16], a bilinear map that is also efficiently computable is called

an admissible bilinear mapping. In this work all bilinear mappings discussed will be

efficiently computable, hence admissible.

2.4.1 The Weil Pairing

We define the n-th roots of unity of a field K as

µn = {x ∈ K|xn = 1}

which forms a group under multiplication. There are multiple ways the Weil pairing

can be defined [20, 28, 53, 70]. We present the definition that most easily lends itself

to computation of this pairing, Proposition 8 of [53].

Definition 2 Let E(K) be an elliptic curve, and P, Q ∈ E(K). The Weil pairing is

a bilinear mapping

en : E[n]× E[n]→ µn

en(P, Q) = (−1)n fn,P (Q)

fn,Q(P )
, P 6= Q
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where fn,P and fn,Q are rational functions in K(E) with divisors

div(fn,P ) = n(P )− n(O)

div(fn,Q) = n(Q)− n(O)

We will use the notation fn,P , fn,Q throughout this work. When K = Fq, the n-th

roots of unity belong to a finite extension of Fq, i.e. µn ⊂ Fqk . The integer k is

called the embedding degree, or sometimes the security multiplier. The field Fqk is the

smallest extension of Fq which contains µn.

2.4.2 The Tate Pairing

First we create a quotient group from the field K. Let K∗ be the multiplicative group

of K (i.e. K∗ = K − {0}). Define

(K∗)n = {an : a ∈ K} .

(K∗)n is a subgroup of K∗, so the group K∗/(K∗)n exists. The groups K∗/(K∗)n and

µn are isomorphic.

Example. Let K = F7, n = 3.

F∗
7 = {1, 2, 3, 4, 5, 6}

(F∗
7)

3 = {1, 6}
F∗

7/(F∗
7)

3 = {1{1, 6}, 2{1, 6}, 3{1, 6}, 4{1, 6}, 5{1, 6}, 6{1, 6}}
= {{1, 6}, {2, 5}, {4, 3}}

µ3 = {x ∈ F7 |x3 = 1}
= {1, 2, 4}

with φ : F∗
7/(F∗

7)
3 → µ3 given by φ(a(F∗

7)
3) = a.

K∗/(K∗)n can also be though of as an equivalence relation on K where r ∼ s for

r, s ∈ K if rs−1 ∈ (K∗)n.

Now we repeat a similar process on the elliptic curve group. Define

nE(K) = {[n]P : P ∈ E(K)} ,

which is a subgroup of E(K) with exponent n. Again, we create the quotient group

E(K)/nE(K), which also has exponent n. We can describe this group as an equiva-

lence relation on E(K) where two points are related if P1−P2 ∈ nE(K). The groups
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E(K)/nE(K) and E[n] have the same number of points, and for certain supersingular

curves, E[n] can be used as representatives (see Theorem IX.22 [29], Lemma 3 [49]).

The Tate pairing is a mapping:

〈·, ·〉 : E(K)[n]× E(K)→ K∗/(K∗)n

Choose points P ∈ E[n] and Q ∈ E(K). Think of Q as a representative for a

class of E(K)/nE(K). The Tate pairing is defined

〈P, Q〉n = fn,P (DQ)

where fn,P is a function such that div(fn,P ) = n(P )−n(O), and DQ be a degree zero

divisor equivalent to (Q)− (O).

Further, the support of DQ must be disjoint from the support of div(fn,P ). Since

the supports of div(fn,P ) and DQ are disjoint, fn,P (DQ) 6= 0, and so fn,P (DQ) ∈ K∗.

The quantity fn,P (DQ) should however, be interpreted as an element of K∗/(K∗)n,

which are equivalence classes. An equivalent definition of the Tate pairing simplifies

it to fn,P (Q), this will be discussed in §5.1.1.

2.5 Applications of Pairings

We now turn to some of the applications of pairings in cryptography. We will present

two cryptographic applications, one destructive, one constructive. The MOV re-

duction was one of the first applications of pairings to cryptography; it reduces the

discrete logarithm problem in the group of points on a supersingular elliptic curve

to the discrete log problem in µn ∈ Fqk , where it is easier to solve (in certain cases).

Later, the identity based encryption (IBE) scheme of Boneh and Franklin [16] used

pairings to create a cryptosystem that allowed an arbitrary string to be used as the

public key.

Before discussing applications, we will describe a few of the computational prob-

lems commonly used to build cryptosystems.
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2.5.1 Relevant Presumably Hard Problems

The Discrete Logarithm Problem (DLP)

The discrete logarithm problem has been used as the underlying hard problem in

various cryptosystems. The most notable are the Diffie-Hellman key exchange [27]

and ElGamal encryption/signature algorithms [30, 31].

In a general finite group (G, ∗) the problem is the following: Given group elements

g and h find l ∈ Z such that

h = l(g) = g ∗ g ∗ . . . ∗ g︸ ︷︷ ︸
l times

.

(Further, g and h are chosen such that l always exists. When G is cyclic, this is true

for any two elements.)

Originally for cryptography, G was chosen to be F∗
p. In this case the problem is

written multiplicatively as: Given α, β ∈ Fp, find the integer l ∈ [1, p − 2] such that

α ≡ βl (mod p). Extension fields F∗
pk are also widely used, especially of characteristic

two. Methods for solving the DLP in finite fields are faster than in an elliptic curve

group, requiring the size of cryptographic parameters to be larger. For a survey, see

[47, 55].

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

Since the DLP is defined in terms of general groups, the group of points E(Fpk) of an

elliptic curve E/Fpk is no exception. This was the insight that led Koblitz [40] and

Miller [52] to suggest they be used in cryptography. In this case l must be recovered

such that

Q = [l]P = P + P + . . . + P︸ ︷︷ ︸
l times

where the points P and Q are given, and the addition above is the group operation on

the curve. Elliptic curve groups seem to lack the properties of finite fields that allow

for efficient algorithms. When combined with the higher cost of group operations

in the group, this allows cryptographic applications to provide higher security with

smaller parameter sizes. This increases efficiency while maintaining security.

Certain classes of elliptic curves admit properties that allow efficient calculation

of ECDLs. To cover them in detail is beyond our current scope. We simply list them:
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• The MOV Attack. For an elliptic curve E over Fpm , this attack replaces the

ECDL with an ordinary DL in the field F(pm)k . This DL is only easier for small

k. If E is supersingular, then k ≤ 6 and the attack may provide a speedup.

Complete details appeared in [49], a condensed description follows in §2.5.3.

• Weil Descent Attacks. These methods compute elliptic curve discrete logs

when E is taken over a non-prime field (i.e. an extension field). The expected

reduction in security declines as the degree of the extension increases, for degrees

larger than 128 the attack is ineffective. Hence the binary extension fields F2m

are safe (for most m of cryptographic size). These attacks are covered in detail

(and well referenced) in Chapter 8 of [29].

• The Anomalous Attack. This attack will solve the ECDLP in O(log p)

group operations, but only works in subgroups of order n = p where p is the

characteristic of the field. If E has trace 1, i.e. #E = p + 1 − t = p, then all

discrete logs are easy. For the subgroup case, see [65], for the #E = p case see

[61, 72].

For general curves, no algorithm is known to solve the ECDLP efficiently. In

[68] it is shown that a general algorithm, one that does not exploit a particular

representation of the group elements has a lower bound of Ω(
√

n) group operations.

These algorithms work in all finite groups in O(
√

n) time and are the best known

for solving the ECDLP. Most square-root algorithms for computing logarithms are

variations of Pollard’s Rho [59] and kangaroo [60] algorithms, or Shank’s baby-step

giant-step [67]. For a survey, see [75]. They may also be efficiently parallelized to

m processors with a linear speedup; van Oorschot and Wiener give a O(n1/2/m)

algorithm in [76].

The Diffie-Hellman Problem (DHP)

The DHP for a group G comes in two flavors. Let g be an element of G and u, v

integers in {1 . . . |G|}. The computational DHP is to compute guv when given only gu

and gv. The Diffie-Hellman assumption is that the computational DHP is hard. It is

often used in proofs of the security of a cryptosystem.
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A closely related variant is the decision DHP. In this case we are given gx, gy, gz ∈
G, the problem requires deciding whether gx = gyz. If the decision DHP is assumed

hard, this implies the computational DHP is hard as well.

It is known that the DHP can be reduced to the DLP in polynomial time in all

groups. Assuming the DLP were easy, it could be used to solve the DHP above;

simply compute the integers u, v, then guv. The converse however, is only known

to be true for some groups. The DLP could be solved using a polynomial number

of calls to an efficient DHP algorithm if the group order meets the conditions given

in [48]. This equivalence was viewed as strong evidence that the two problems were

equivalent, which was reassuring for cryptographers since less was known about the

DHP while most feel the DLP is difficult. The problem of solving the DLP given an

algorithm for the DHP is also called the gap DHP [29].

The Elliptic Curve Diffie-Hellman Problem (ECDHP)

The ECDHP is simply the DHP in the group E(K). Given the points P, [a]P, [b]P ∈
E(K), find the point [ab]P ∈ E(K). The decision ECDHP is to decide whether

[a]P = [bc]P .

The Bilinear Diffie-Hellman Problem (BDHP)

This problem arose during the study of bilinear pairings. Since the only groups used

to implement pairings in practice are elliptic curve groups, we will use their notation.

The BDHP is: given P, [r]P, [s]P, Q in E(K), such that ζ = e(P, Q) 6= 1, compute

ζrs. (Here we use e(·, ·) do denote either the Tate or Weil pairing. Note that by

bilinearity e([r]P, [s]P ) = e(P, P )rs, but the problem asks for e(P, Q)rs.)

The BDHP is closely related to the ECDHP. The relation is due to the fact that

ζrs = e([rs]P, Q). Thus, computing [rs]P (from [r]P , [s]P ) gives ζrs immediately.

However the converse is not known, and the BDHP may be easier than the DHP. To

date the only known way of solving the BDHP is by computing discrete logs [41].

2.5.2 Identity Based Encryption

Identity based encryption (IBE) was an idea of Shamir’s in 1984 [66]. An identity

based cryptosystem is a public key system where an arbitrary string can be used as
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the public key. One application is email. Alice can encrypt a message for Bob using

his email address as the key. Then Bob contacts the Private Key Generator (PKG),

authenticates himself, and obtains his private key to decrypt the message.

An IBE scheme is given by 4 algorithms:

1. Setup: generates system parameters and a master key.

2. Extract: uses the master key to generate the private key corresponding to an

arbitrary ID string

3. Encrypt: encrypts messages using the public key ID

4. Decrypt: decrypts messages using the corresponding private key

Between 1984 and 2001 many IBE schemes for signatures and authentication were

proposed but were not practical or not satisfactory. In 2001 D. Boneh and M. Franklin

proposed an IBE scheme that was practical and satisfactory, based on bilinear maps

of groups. They also gave an example of their scheme using the Weil pairing [16].

IBE from Pairings

The paper [16] gives multiple versions of their IBE scheme. We present the four

algorithms of BasicIdent, the simplest scheme. Although it is not secure against an

adaptive chosen ciphertext attack, it clearly illustrates the use of pairings.

1. Setup

• Generate groups G1, G2 of prime order q, an admissible bilinear map

e : G1 ×G1 → G2 and choose a generator P ∈ G1.

• Randomly choose the master key s ∈ Z+

• Choose cryptographic hash functions;

H1 : {0, 1}∗ → G∗
1 and

H2 : G2 → {0, 1}n (n is the bitlength of plaintext messages)

• The message space isM = {0, 1}n and

the ciphertext space space is C = G∗
1 × {0, 1}n

• set Ppub = [s]P
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• params = [q, G1, G2, e, n, P, Ppub, H1, H2] is made public, while s is kept

secret.

2. Extract

• For a bit string ID, compute QID = H1(ID) ∈ G∗
1 and set the private key

DID = [s]QID

3. Encrypt 6

• QID = H1(ID) ∈ G∗
1

• Choose random r ∈ Z∗
q

• Compute gID = e(QID, Ppub) ∈ G∗
2,

• The ciphertext C = [rP,M ⊕H2((gID)r)]

4. Decrypt

• For ciphertext C = [U, V ] ∈ C encrypted with ID

M = V ⊕H2(e(DID, U))

where DID ∈ G∗
1 is the private key

Let us review why this works. When a message M is encrypted, it is XORed

with the hash of e(QID, U). Decryption XORs the ciphertext V with the hash of

(gID)r = e(DID, Ppub)
r. We can show these are the same by using the bilinearity

property of pairings.

e(DID, U) = e([s]QID, [r]P ) = e(QID, P )sr = e(QID, Ppub)
r

Suppose an eavesdropper had access to ciphertext and the public system pa-

rameters. Their challenge is to compute the decryption mask e(QID, Ppub)
r from

Ppub = [s]P , QID, P , [r]P . This problem is related to the BDHP [29]. They could

also try to recover the master key s by solving an instance of the ECDLP since they

have both P and Ppub.

6In this section we use the symbol ⊕ to denote the bitwise exclusive OR operation. We also write
“XOR” for this operation.
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2.5.3 The Menezes-Okamoto-Vanstone Reduction

The MOV reduction reduces the elliptic curve discrete logarithm problem (ECDLP)

to the discrete logarithm problem (DLP) in a finite field. It originally appeared in

[49] using the Weil pairing, however it was later shown that it could also be done

using the Tate pairing [33]. We will follow [49]. This problem is relevant to the

security of elliptic curve cryptosystems, as their security depends on the difficulty

of the ECDLP. When given two points P, Q ∈ E(K), such that Q = [λ]P for some

λ ∈ Z, the ECDLP is to recover λ.

The basic idea is the following. Establish an isomorphism between the subgroup

〈P 〉 of order n, and the n-th roots of unity of Fpk . Then, provided k is small enough,

solve the DLP in the finite field with a subexponential time algorithm such as the

index calculus [50] or the function field sieve [5]. For supersingular curves, k ≤ 6;

this is small enough for the dual problem to be tractable. However in general, it is

not practical since k is exponentially large. It was shown in [10] that the probability

of randomly choosing a non-supersingular elliptic curve with k ≤ log2 p is negligible.

Algorithm 1 is the algorithm as presented in [29].

Algorithm 1 The MOV reduction algorithm.

INPUT: P , Q ∈ E(Fq) of prime order n such that Q = λP for unknown λ.

OUTPUT: Discrete logarithm λ of Q to the base P

1: Determine smallest k such that n | (qk − 1)

2: Choose S ∈ E(Fqk) with e(P, S) 6= 1 (choose randomly; low probability that

e(P, S) = 1)

3: α = e(P, S)

4: β = e(Q,S)

5: Find λ such that αλ = β in Fqk .

6: return λ

To show why the algorithm works, we need to use the bilinearity property of
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pairings.

α = e(P, S)

β = e(Q, S)

= e([λ]P, S)

= e(P, S)λ = αλ

This algorithm runs in time exponential in k, since the DLP in Fqk has runtime

exponential in k. Following the discovery of this reduction, implementation of elliptic

curve cryptosystems avoided using supersingular curves.

2.5.4 Subgroup Membership

The subgroup membership problem in an abelian group is to decide whether two

group elements are members of the same (proper) subgroup. In [53] Miller gives a

result that allows us to efficiently make this decision for elliptic curve groups and

their torsion subgroups.

Theorem 4 For two points P, Q ∈ E[n], Q ∈ 〈P 〉 if and only if e(P, Q) = 1.

Proof. First note that if Q ∈ 〈P 〉, then Q = [l]P (for some l ∈ Z) and

e(P, Q) = e(P, [l]P ) = e(P, P )l = 1l = 1

In the case where Q 6∈ 〈P 〉, {P, Q} forms a basis for E[n] (recall that E[n] has

structure Zn × Zn).

Claim: If e(P, Q) = 1, then

e(P, [a]P + [b]S) = 1

for all a, b. To show this, we first use linearity to write

e(P, [a]P + [b]Q) = e(P, [a]P )e(P, [b]Q)

= e(P, P )ae(P, Q)b

= ζ a
1 ζ b

2

where ζ1 = 1 by the alternating property, and ζ2 = 1 by assumption. This proves

the claim, which contradicts non-degeneracy, so it must be that e(P, Q) 6= 1 when

Q 6∈ 〈P 〉.

Using this condition we can answer the subgroup membership problem with a

single pairing computation.
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2.5.5 An Easy Instance of the ECDDHP

Verheul [77] uses distortion maps to show that the DDH is efficiently computable for

supersingular curves E : y2 = x3 +a over Fp2 with order #E = p2−p+1. The reason

this particular curve was chosen is because its group of points is isomorphic to the

XTR subgroup — a subgroup of Fp6 of order #E. Some cryptosystems are based on

XTR [44, 45, 46]. The MOV embedding provides the mapping in one direction from

E to the XTR subgroup. The possibility of an inversion of this mapping motivated

Verheul to study the DDH in E(Fp2). Although it is a very specific case, the technique

is interesting because of the use of pairings. In the process, the important concept of

distortion maps were introduced.

Let L be an extension of a field K and let Q be a point in a cyclic subgroup 〈P 〉
of E(K). A distortion map φ : E(K)→ E(L) maps Q to a point φ(Q) ∈ E(L). The

result is that Q and φ(Q) are independent, i.e. φ(Q) 6∈ 〈P 〉. A distortion map is often

used to replace the trivial pairing e(P, P ) with e(P, φ(P )). It was also proven in [77]

(Theorem 6) that distortion maps always exist for supersingular curves and can only

exist for ordinary curves with embedding degree one.

In this case where E : y2 = x3+a, our distortion map will be φ : E(Fp2)→ E(Fp6),

For example, if p ≡ 5 (mod 6), a ∈ Fp2 , a 6∈ Fp and is a square but not a cube, we

could use

φ(x, y) = (xp/(γa(p−2)/3), yp/a(p−1)/2)

where γ ∈ Fp6 and γ3 = a (this example is from [29], p. 204).

We write the DDH (cf. §2.5.1) problem as: Given P , X = [x]P , Y = [y]P and

Z = [z]P , decide if Z = [xy]P

Theorem 5 (Verheul, [77, Th. 3] ) The DDH problem in the group of points of

order p2 − p + 1 of any supersingular curve over Fp2 is efficiently computable.

Proof sketch. First write #E as t · v where t = 3s and gcd(v, 3) = 1. Using the

Pollig-Hellman algorithm [58], reduce the DDHP in E to the DDHP in the subgroups

of order t and v. In the subgroup of order t, the DL is easy, so is the DDH is as well.

For the subgroup of order v, we must decide whether z ≡ x · y mod v. We can use
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the Weil pairing:

ev(X, φ(Y )) = ev(P, φ(P )xy, and

ev(P, φ(Z)) = ev(P, φ(P ))z

The decision can be made since z ≡ xy mod v iff ev(X,φ(Y )) = ev(P, φ(Z)). Each of

the above steps are efficiently computable, hence the DDHP can be solved efficiently.



Chapter 3

Problem Description

3.1 Parameter Sizes and Security Levels

Implementations of cryptosystems have always been faced with the tradeoff of secu-

rity and efficiency. The choice of parameter sizes must be made first and foremost

with the intention of keeping data secure. This requires an estimate of parameter

sizes large enough to prevent cryptanalysis by solving the underlying hard problem

(e.g. the DLP). This estimate should include the threat of current and anticipated

future attacks. To make the decision more difficult, larger parameters slow encryp-

tion and decryption operations. The goal then, is to choose parameters large enough

to maintain security, but not so large that efficiency is decreased any more than

necessary.

For pairing-based cryptography, the ECDHP, ECDLP and ECBDHP must be

difficult in E(Fp) (we focus on prime fields in this section). Since algorithms for

solving the ECDHP and ECBDHP problems compute discrete logarithms, it suffices

to ensure the ECDLP is hard. To do this, the subgroup of order n must be large

enough to resist square-root attacks such as Pollard’s Rho [59] and kangaroo [60]

algorithms. The DLP must also be hard in Fpk , since discrete logs on the curve can

be traded for discrete logs in this field via the MOV reduction.

The parameters and implementation decisions are:

1. the extended field size in bits, bpk

2. the size of the field characteristic

3. the embedding degree k

4. to use an ordinary or supersingular curve

5. the size of the prime order subgroup in bits, bn

28
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6. the Weil pairing or the Tate pairing

In [43], Lenstra determines the key sizes required by public-key systems to have

security comparable to AES (the Advanced Encryption Standard or Rijndael [26, 57]).

The three AES security levels are 128, 192 and 256 bits1. This was done by estimating

the key size required in a public key system to match the security provided at each

AES security level. This may be somewhat inaccurate since the security provided

by AES is not guaranteed, as it is also estimated. Although it may not provide a

concrete recommendation for the size of keys in an implementation, the concept of

multiple security levels is too valuable to abandon in a study of efficiency.

Recent work by Koblitz and Menezes [41] adopted the concept of security levels

when discussing implementation issues related to pairing-based cryptography. The

main benefit is the combination of the implementation decisions 1, and 3 and 5 above.

They introduce the ratio

γ =
bits of Fpk

bits of n
=

bpk

bn

,

and give the table:

AES security level 80-bit 128-bit 192-bit 256-bit
Minimum bn 160 256 384 512
Minimum bpk 1024 3072 8192 15360
Minimum bqk — 4700 12300 24800
γ = bpk/bn 6.4 12 21.3 30

Table 3.1: Minimum bitlengths for n, pk, qk. (p is prime, q is a power of 2 or 3. bqk is
the size of Fqk in bits. Table adopted from [41].)

Table 3.1 gives the minimum bitlengths required to maintain the difficulty of the

ECDLP. The 80-bit security level is not one of the AES levels; it was added to include

the parameters currently being recommended by some pairing-based literature. Due

to the growth of parameter sizes, efficiency will be dramatically affected as the security

level increases. This condition is not unique to pairing-based systems; RSA and other

public-key systems scale with similar awkwardness [43]. There is still motivation

to use pairing-based systems since the features they provide cannot be achieved by

1AES is a block cipher with a variable key length — it can be 128, 192, 256 bits long. AES is
thought to be secure, that is, one can do no better than a brute force search of the keyspace. This
is the reason why a larger key gives more security.



30

other systems. To date, little work has been done to investigate the performance and

feasibility of these systems at high security.

The other two decisions are 2 and 4 from our list (on page 28). With respect to

the field characteristic, the decision is to either use a small characteristic (2 or 3) or

a large characteristic. When Fq is of small characteristic a more efficient algorithm

exists for discrete logarithms, due to Coppersmith [22]. For this reason, the bitlength

of q should be much larger than a prime field, as shown in Table 3.1. Many arithmetic

and representation enhancements are applicable to fields of small characteristic. This

makes them competitive despite their requirement of larger bitlengths.

Large characteristic fields can have a smaller bitlength, however it must still be of

size comparable to an RSA modulus providing similar security. Prime fields do not

enjoy the arithmetic enhancements of binary and ternary fields. In some cases it is

possible to improve the field arithmetic by using GM primes, which we will investigate

in Chapter 4. Not unlike the low-characteristic case, a version of the number field

sieve has recently been discovered [63], specialized to find discrete logarithms in fields

where the characteristic is a GM prime. Once we have quantified the performance of

GM arithmetic, we will assess the impact of this discovery.

One reason for debate on whether to use supersingular or ordinary curves is the

range of values available for k. As mentioned earlier, supersingular curves have k ≤ 6.

A larger value of k increases security by keeping the DLP in Fqk difficult, while the cost

of curve arithmetic used during pairing computation grows only slowly. With ordinary

curves, k is not limited, but constructing curves with a given k can be difficult. A

further disadvantage is the lack of distortion maps, which adversely affects efficiency in

some applications. Our focus on supersingular curves is motivated by the existence of

curve construction methods to allow the use of GM parameters. Comparable methods

are not known for non-supersingular curves.

3.2 Tate vs. Weil

The last implementation decision on our list was the choice of pairing. In the work of

Boneh and Franklin [16], an example IBE system is provided using the Weil pairing.

Their cryptographic scheme was described generally, and requires only a bilinear

pairing. As they noted, it can also be implemented with the Tate pairing.
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Recall the definitions of the Tate pairing 〈P, Q〉 = fP (DQ), and the Weil pairing

en(P, Q) = (−1)n fn,P (Q)

fn,Q(P )
. In §5.1, we will see how Miller’s algorithm works to compute

fn,P (Q), fn,Q(P ) and fP (DQ). The reason the Tate pairing has been favored is that

it requires only a single use of Miller’s algorithm, while the Weil pairing requires

two. Since the Tate pairing maps to equivalence classes, the value computed by the

pairing is not well defined — but this property is required by most cryptographic

applications. Therefore, in addition to the execution of Miller’s algorithm, the Tate

pairing requires that the result be raised to the power (qk − 1)/n.

For the lower security levels (80,128-bit c.f. §3.1) considered in the literature,

the final exponentiation for the Tate pairing is small enough that it remains the

best choice for efficiency. Since the Tate pairing was always favored, a great deal of

research has gone into optimizing it, while comparatively little has targeted the Weil

pairing. That said, many of the optimizations were “pairing indifferent” since they

applied to Miller’s algorithm, which is common to both.

However, if we compare them asymptotically, the Weil pairing requires 2 log n

(curve) operations compared to log n (curve)+ log(qk − 1)/n (field) operations for

Tate. Then we have Weil: O(log n), Tate: O(log qk). Of course this comparison can

only be interpreted to mean that there exist combinations of n and qk such that the

Weil pairing will provide greater efficiency than the Tate pairing.

The work of Koblitz and Menezes [41] makes this comparison at higher security

levels. Their analysis suggests that the crossover point is around the 192-bit security

level. We will confirm this experimentally in Chapter 5.

Subsequent to [41], a recent preprint of Granger, Page and Smart [36] describes

a method to greatly reduce the work of the Tate paring’s final exponentiation. The

applicability of their technique is limited to ordinary elliptic curves, with embedding

degree greater than 6. Using the same cost model as [41] (which we review in Chap-

ter 6) they conclude that the Tate pairing will outperform the Weil pairing in all

cases where their method is applicable.

This new work gives only partial resolution to the issue of which pairing to use, as

supersingular curves of low embedding degrees may provide efficient implementation

(especially k = 2) once the benefit and practicality of GM primes is better understood.

For this reason, it is still beneficial to know the crossover point in the cost of pairings
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at k = 1, 2(ss). †

3.3 Quantitative and Practical Issues

The results of the analysis in [41] are, as the authors admit, difficult to compare. Table

3 (of [41], reproduced as Table 6.1) shows the analysis results for k ∈ {1, 2(ss), 2(ns),

6, 12, 24} and security levels 80, 128, 192, 256. The estimates state the cost in mul-

tiplications for all options. The difficulty in comparing the analysis arises since the

advantage of arithmetic modulo a GM prime is not known. We will study this issue

in Chapter 4, and determine the relative performance, by comparing implementa-

tions. Our benchmarks will cover a range of sizes and will pay close attention to two

practical details largely ignored by previous work. The first is the modular reduction

weight, a property of GM numbers which describes the number of operations required

to perform a reduction. The other property is whether a GM number is word aligned,

which simplifies implementation and yields greater efficiency.

One further parameter choice is intended to speed up computation of Miller’s

algorithm. The order of the prime subgroup n, is chosen to have low hamming weight.

This reduces the number of add operations performed, since it is quite similar to the

“double-and-add” method. A similar outcome is possible by choosing n to be a GM

prime, which we discuss in §5.2.

For our study, the only curve construction techniques known to find curves with

both n and p generalized Mersenne numbers are for supersingular curves of embedding

degree 1 and 2. We will re-examine these two methods, paying special attention to

the practical issues, and if possible implement and benchmark the Weil and Tate

pairings. These timings will quantify the importance of choosing n as a GM prime.

They will also serve to verify the analysis of [41], which suggests that the Weil pairing

should be used at higher security levels.

The next two chapters branch out in two directions. Chapter 4 will deal with

issues related to the efficient implementation of modular arithmetic. Following it,

Chapter 5 will cover Miller’s algorithm in detail, and discuss the issues related to

GM primes in the computation of pairings. In Chapter 6 we explain the cost model

used by Koblitz and Menezes, and strengthen their analysis. By including our new

†“ss”= supersingular; “ns” = nonsupersingular.
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knowledge of arithmetic modulo GM primes, we hope to allow comparison across all

options. We also discuss the results of Chapters 4 and 5 in the context of pairing-based

cryptography and make recommendations for implementation.



Chapter 4

Modular Arithmetic

Part of the cost of computations when our elliptic curve is taken over a finite field

is modular arithmetic. Modular (or field) arithmetic is used to implement group op-

eration on the elliptic curve, which is in turn used by Miller’s algorithm to compute

pairings. Field arithmetic can be divided into two steps; the operation (e.g. multi-

plication, addition) and reduction. Modular reduction, denoted x mod N , gives the

integer remainder when x is divided by N . We will focus on modular reduction.

In this chapter we describe some methods to reduce a number mod N in two

cases; for general N , and when N has a special form. We will then describe the

experiments performed to compare reduction with generalized Mersenne methods to

standard methods. Finally some details of our implementation and the results are

presented.

4.1 Modular Reduction by General Moduli

This section reviews some of the methods for modular reduction that do not require

the modulus to have a special form.

Classical Reduction

To find the remainder of an integer x (mod N), we can use a division. From the

quotient-remainder decomposition

x = qN + r 0 ≤ r < N .

We can solve for r and replace q with bx/Nc to arrive at

r = x mod N = x−Nbx/Nc .

As one would expect, this approach is only as fast as the division step, and the method

is not competitive for large inputs. Classic division algorithms are discussed in [25]

and [39].

34
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Barrett Reduction

Barrett reduction computes x (mod N) by estimating bx/Nc using cheap operations.

Description of the algorithm is best left to references as we will not be using it in this

work. Interested readers can find a description in the original paper [15] and good

presentations in the books [50, 38, 25].

Montgomery Reduction

Montgomery reduction was first described in 1985 by P. Montgomery [54]. The Mont-

gomery and Barrett methods have the same asymptotic complexity [25] and have

similar practical performance [25, 17, 73]. To compute x (mod N), the idea is to

compute xR−1 (mod N) for a carefully chosen R.

We repeat Theorem 9.2.1 as stated in [25]. This theorem shows how to compute

xR−1 (mod N).

Theorem 6 (Montgomery) For coprime integers N, R, let N ′ = −N−1 (mod R).

For any integer x, the number

y = x + N(xN ′ mod R)

is divisible by R, with

y/R ≡ xR−1 (mod N)

Further, if 0 ≤ x < RN , the difference y/R− (xR−1 mod N) is either 0 or N .

The operations of Theorem 6 are quite simple when R is chosen to be 2s > N .

Computing y/R ≡ xR−1 (mod N) can be effected with two multiplications (of num-

bers roughly the size of N).

Since R−1ZN results in a complete set of residues mod N we can compute xR−1

(mod N) then recover x (mod N) by a multiplication by R. This is most useful

when many multiplications are required (e.g. exponentiation), they can all be done

in R−1ZN and only the result is multiplied by R. In this way, the cost of changing

the representation is spread across many operations.
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4.2 Modular Reduction by Special Moduli

When N has special structure, and we wish to compute x (mod N), taking advantage

of this structure can lead to faster algorithms. This section presents some of them.

Modular Reduction by Mersenne Numbers

It is well known that the Mersenne numbers N = 2k−1 allow fast modular reduction.

Instead of doing the reduction using costly integer division, or even multiplications,

it can be done using only addition mod N . If x is a 2k-bit integer less than N2, x

can be written as x = T · 2k + U . In binary T is the k most significant bits and U is

the k least significant bits. Reduction is effected by the addition:

x ≡ T + U (mod N)

which we will explain using (4.1) below. On a machine with a 32-bit word size, the

case k = 32 is especially simple, requiring an addition mod N . Addition mod N is a

simple addition followed by a comparison and possibly a subtraction. Further details

are available in [25, 24].

Modular Reduction by Crandall Numbers

The scheme of the previous section is excellent when one needs arithmetic modulo

a Mersenne number, but is unfortunately limited to this special class of numbers.

In applications requiring a prime modulus, the choice is limited to the 43 known

Mersenne primes.

Crandall [25] offers a partial generalization, to pseudo-Mersenne numbers 2k + c

where |c| is small enough to fit in a machine word. Sometimes, the condition log2 c <

1
2
k is used in the definition [8]. Algorithm 9.2.13 for reduction modulo a pseudo-

Mersenne number N in [25] is based on the theorem

x ≡ (x mod 2k)− cbx/2kc ( mod N) (4.1)

The algorithm uses only shifts and subtractions, and multiplication by c. Due to

patent issues [23], it is avoided in cryptographic applications.

It may also be generalized to the Proth numbers of the form

N = q · 2k + c
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when q and c fit in a single word [25].

Equation (4.1) is especially simple in the Mersenne case when c = 1. The lower

bits are equivalent to reduction mod 2k, which is “close to” the correct answer. The

upper bits are added as a sort of correction factor, to make up for the fact that we

were supposed to reduce mod 2k − 1. When |c| is larger than 1, we must add this

“correction factor” for every |c|, giving (4.1).

4.3 Generalized Mersenne Numbers

The work described in this section is due to Jerome Solinas [74]. Shortly after, field

arithmetic modulo specific generalized Mersenne numbers (or GM numbers for short)

was recommended by the NIST for use in elliptic curve cryptosystems by the US

federal government. 1

The generalization presented by Solinas uses numbers of the form

2d − c12
d−1 − . . .− cd

for integers ci. Generally ci is chosen to be in {1,−1, 0} or integers with a small

absolute value, however the method could work for any ci ∈ Z. Throughout this

section, we will use the class of numbers

p = 23k − 2k + 1 (4.2)

as an example (as in [74]), and use k = 32 to show concrete examples. We will also

assume a wordsize of 32 bits. For k = 32,

p = 23·32 − 232 + 1 = 79228162514264337589248983041.

p is a 96 bit prime and can be represented as three 32-bit words. The integers mod

p can therefore be represented with 3 words or less.

When working in Zp, if we reduce after each multiplication we will never have to

reduce a number larger than (p − 1)(p − 1) < p2. Let n be an integer less than p2.

Then n has 2 · 3k bits (six words in our example). We can write

n =
5∑

j=0

Aj · 2jk .

1The National Institute for Standards and Technology made this recommendation in [56],
Appendix 6: Recommended elliptic curves for federal government use.
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For our example, this would look like

A0

+ A1 0

+ A2 0 0

+ A3 0 0 0

+ A4 0 0 0 0

+ A5 0 0 0 0 0

= n = w5 w4 w3 w2 w1 w0

So if the large number n is represented as k-bit words (w0, . . . , wk−1), the Aj = wj.

Note that it is equally simple for larger k which are divisible by the word size. When

k is not a multiple of the word size, working with the Aj becomes more complicated,

requiring bit shifts.

We now search for some Bi that are linear combinations of the Aj such that

n (mod p) is congruent to their sum (and difference). It is similar in spirit to the

Mersenne case, we will reduce mod 2k (take the lower bits) and apply some “correction

factor” by adding selected upper words.

Computing this sum will then give n (mod p) using only additions (and subtrac-

tions). Continuing with our example, since we are reducing mod p we only need 3k

bits (or 3 words if k = 32).

n =
5∑

j=0

Aj · 2jk ≡
2∑

i=0

Bi · 2ik (4.3)

In our example, this sum looks like

B0

+ B1 0

+ B2 0 0

= n (mod p) = u2 u1 u0

which gives us the words ui of n (mod p). If we revisit the Mersenne case m = 2k− 1

where k is the wordsize we have n (mod m) = B0 = A1 + A0, which amounts to the

lower bits of n plus the upper bits.

The work comes when we want to find the Bi for arbitrary GM primes, and Solinas

presents an excellent method. First, think of p as a polynomial in 2k. Then (4.2)
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becomes:

p = f(2k), f(t) = t3 − t + 1 .

The general form of this polynomial is written

f(t) = td − c1t
d−1 − . . .− cd (4.4)

From this we can see that in general there will be 2d As and d Bs (which generalizes

the sums of (4.3)).

Then write n as

n = (A0 . . . Ad−1)︸ ︷︷ ︸
low words


1
...

td−1

 + (Ad . . . A2d−1)︸ ︷︷ ︸
high words


td

...

t2d−1

 . (4.5)

We now compute td mod f(t), . . . , t2d−1 mod f(t) (and write in matrix form):
td

...

t2d−1

 ≡ X


1
...

td−1

 (mod f(t))

for a d by d matrix X. Then substitute this into (4.5)

n ≡ (A0 . . . Ad−1) + (Ad . . . A2d−1) ·X


1
...

td−1

 (mod f(t))

to get a rule for reduction (mod p).

The square matrix X of size d:

X =


X0,0 . . . X0,d−1

...
. . .

...

Xd−1,0 . . . Xd−1,d−1


can also be created recursively by the following formulas. The first row is the coeffi-

cients in reverse:

X0,j = cd−j for 0 ≤ j < d

while subsequent rows are given by

Xi,j =

{
Xi−1,j−1 + Xi−1,d−1cd−j for j > 0

Xi−1,d−1cd for j = 0
.
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This somewhat cryptic construction is derived from creating a linear feedback shift

register (LFSR) over Z based on f(t) with initial fill 000 . . . 1.

The Bi are given by the matrix equation:

[B0 . . . Bd−1] = [A0 . . . Ad−1] + [Ad . . . A2d−1]X . (4.6)

Back in our example, where f(t) = t3 − t + 1, d = 3, c1 = 0, c2 = 1, c3 = −1, we

create the matrix:

X =


−1 1 0

0 −1 1

−1 1 −1


which we substitute into equation (4.6)

[B0 B1 B2] = [A0 A1 A2] + [A3 A4 A5]


−1 1 0

0 −1 1

−1 1 −1


to get the Bi in terms of the Aj

B0 = A0 − A3 − A5

B1 = A1 + A3 − A4 + A5

B2 = A2 + A4 − A5 .

Now substitute into the sum n ≡
∑2

i=0 Bi · 2jk from (4.3) to get:

n ≡ B0 + 2kB1 + 22kB2

= A0 − A3 − A5 + 2kA1 + 2kA3 − 2kA4 + 2kA5 + 22kA3 + 22kA4 − 22kA5

With a little care, this can be reorganized into contiguous pieces (words) of n (MSB

is leftmost).

T = A2 · 22k + A1 · 2k + A0

S1 = A4 · 22k + A3 · 2k

S2 = A5 · 2k

D1 = A5 · 22k + A4 · 2k + A3

D2 = A5

The result is the simplified mod operation

n mod p ≡ T + S1 + S2 −D1 −D2

which requires only two additions and two subtractions mod p.
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The Modular Reduction Weight

The above example required 2 additions and 2 subtractions mod p. We say the

modular reduction weight (or MRW) of of the polynomial f(t) = t3 − t + 1 is 4, and

write MRW(f) = 4. How can the weight be computed in general?

Using the matrix X we sum the positive entries in column j

Yj =
∑

i
Xi,j>0

Xi,j

then define Ymax as the largest Yj for 0 < j < d− 1.

Similarly we sum the absolute values of negative entries in column j

Zj =
∑

i
Xi,j<0

|Xi,j|

and defined Zmax as the largest in X.

The total number of modular reductions required to reduce n mod p = f(2k) is:

MRW(f) = Zmax + Ymax .

Since a large MRW can slow the speed of modular reduction to the point where other

methods become more efficient, we will search for polynomials of low MRW.

Finding Low Weight Polynomials

In this section, we review some criteria that can be used to find polynomials of low

modular reduction weight (also due to Solinas [74]).

An integral polynomial f(t) is called reduced if for each l ∈ {2, . . . , d} we have

cj 6= 0 for some j 6≡ 0 (mod l). Let’s consider an example.

f(t) = t4 − c1t
3 − c2t

2 − c3t− c4

Suppose that f is reduced. For l = 2, c1 or c3 must be nonzero, when l = 3, one of

c1,2,4 is nonzero, and for l = 4 some c1,2,3 is nonzero. Using these constraints we can

construct some reduced polynomials, say g(t) = t4− 2t− 7, or h(t) = t4 + t3− t2 + 3.

Proposition 10 of [74] proves that no generality is lost by considering only reduced

polynomials. If a number n is represented n = f(2k) for a polynomial f(t) ∈ Z[t],
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it can also be represented as n = g(2k′) where g is a reduced polynomial. Further,

MRW(f) = MRW(g) and if k is a multiple of the word size, then so is k′. This allows a

search for low weight polynomials to only consider reduced polynomials. Proposition

11 states: “ if f(t) = tg(t) then MRW(f) ≥ MRW(g)”. The implication of this result

is that candidates in a search for low-weight polynomials should have the constant

term cd 6= 0.

The polynomial in (4.4) is said to be positive when all cj > 0. Note that this

is slightly misleading since cj appears as −cj for all j in equation (4.4). A positive

polynomial actually has negative coefficients. A new concept is defined, the modular

reduction complement of a polynomial f(t),

f ∗(t) = td −
d∑

j=1

(−1)jcjt
d−j

and it is shown that MRW(f(t)) ≤ MRW(f ∗(t)). The implication for searching in this

case is that only positive polynomials need be checked. Once those with minimum

weight are identified, the weights of their complements can be checked as well.

Search Strategy

Collecting up these restrictions, we have significantly pruned the number candidate

polynomials that can have low reduction weight.

• Reduced polynomials

• Polynomials with constant terms: cd 6= 0.

• Positive polynomials: cj > 0 for all j.

If the goal is to represent prime moduli with the polynomial, there are two further

conditions

• f must be irreducible, otherwise it will admit an algebraic factorization, making

f(2k) composite.

• The constant term should be odd, otherwise f(m) will be even.
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4.3.1 Related Work

Generalizing Further

In a similar fashion to Solinas, Chung and Hasan [21] also generalize Mersenne num-

bers. They take the polynomials f(t) of the previous section, and allow t to be any

integer, not only a power of two. This gives a much larger choice of moduli, and

decreases the specificity of an implementation. A single implementation could handle

multiple polynomials f(t) for any value of t. Unlike Solinas, their work presents a

modular multiplication algorithm and not a reduction algorithm. Their method rep-

resents multiplicands as polynomials in Z[t], then computes their product in Z[t]/f(t)

to get the result mod f(t). For modular multiplication, their method essentially re-

duces computation by 9n2 multiplications but increases it by 3n divisions (where n is

the word length of t). They also give some criteria for selecting polynomials yielding

the best performance.

Subsequently, the work of Bajard [9] approaches the problem by representing

numbers mod N in any base β, and performing polynomial arithmetic in Z[β]. Their

operation counts show their algorithms using n2 fewer multiplications than Mont-

gomery, trading them for approximately 6n2 additions. The authors state that the

incentive to use this representation is the ability to use moduli which are not possible

with the methods of Solinas or Chung and Hasan.

In practice, it seems likely that these methods are faster than Montgomery mod-

ular multiplication. Comparison is difficult however, and without practical tests it is

difficult to gauge the degree of the improvement.

Optimal Extension Fields

Although optimal extension fields (OEF) will not be a part of this study, we will briefly

describe them since they provide fast implementations for cryptographic applications.

Optimal extension fields were first proposed by Baily and Paar [8, 7]. An OEF is

created using an irreducible polynomial as we described in section 2.1.2. The field

Fq, where q = pm is represented

Fq =
Fp[x]

〈f(x)〉
with the following two properties:
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1. The prime p = 2k + c is a Crandall number (described in section 4.2) which is

less than, but close to the word size of the processor, and

2. f(x) = xm − b.

This allows fast subfield arithmetic, since elements of Fp are single word integers,

which can be multiplied with fast modular reduction. The second property allows fast

modular reduction in the extension field. A key result of [8] states that a polynomial

in Fq[x] can be reduced modulo xm − b using only (m − 1) multiplications by b and

(m− 1) additions. When b = 2, the multiplications can be traded for shifts.

Performance Studies

In this section we review the results of some studies comparing the performance of

modular reduction/multiplication methods discussed in the above section. Due to

the popularity of elliptic curve cryptography, many such studies have been done with

binary fields (see the references of [38, 18]). Fewer recent studies exist which focus

on the performance of operations in Fp.

The 1993 paper of Bosselaers, Govaerts and Vandewalle [17], compares classical,

Montgomery and Barrett modular reduction functions. Unfortunately, the work of

Solinas had not been published at this time. They compared the time required to

reduce a number and the time for modular exponentiation. Their C implementations

on an 80386 PC showed similar performance of all three methods. They found Barrett

slightly faster than classical, and Montgomery slightly faster than Barrett for both

reduction and exponentiation. The length of the moduli used in this study ranged

from 128 to 1024 bits.2 Some later work [78] found close similarity between the

Barrett and Montgomery reduction methods for a 192-bit modulus. Five variations

of the Montgomery algorithm were compared in [42], to examine the subtle differences

in their performance.

Crandall and Pommerance [25] give the following comment on the reports that

cryptographic applications see slightly better performance with the Montgomery

method: “reaching the asymptotically best complexity for the Montgomery method

is easier than for the Barrett method.”

2At the time these were considered large, but times have changed.
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A relevant and more recent comparison of field arithmetic is provided by Smart

[73]. He compares timings for operations in the following four fields:

• Prime fields: Fp for a general prime, and a generalized Mersenne prime

• Extension fields: binary fields F2m , and optimal extension fields Fpm

Reduction in the general prime field used Montgomery’s algorithm. For the prime

fields, p = f(264) = 2192−264−1. Here, f is the polynomial we used for our examples

in section 4.3. It has modular reduction weight four, and was the only prime used in

the comparison. In all timings presented, the OEF implementation was fastest.

The most relevant comparison for our work was between the prime field imple-

mentations. With these parameters, multiplication using a GM prime provided a 25%

speedup on the SPARC architecture. On the Pentium CPU, the prime fields require

exactly the same amount of time for modular multiplication. The author offers no

explanation for this difference. We are left with the impression that the author’s

main goal was to verify the efficiency of using an OEF. It is difficult to draw general

conclusions since these timings are specific to prime fields of order roughly 192-bits.

It also provides no guidance to judge the effect of the MRW.

To our knowledge these performance studies are the best available. This leaves us

without precise measurements of the time required for Solinas arithmetic. The rest

of this chapter will establish some.

4.4 Internal Storage of Large Integers

The implementations described in this section will use the GNU Multiple Precision

Library (GMP) [2]. It is a portable C library for arbitrary precision arithmetic on

integers, rational numbers, and floating-point numbers. GMP is the fastest such

library available in the public domain, and is used in many applications. It aims to

provide the fastest possible arithmetic for all applications that need higher precision

than is provided by the basic C types.

The GMP library stores large numbers with a signed magnitude representation.

This representation is both simple and intuitive as it most closely resembles hand

written notation [39, 37]. A big number is represented as an array of unsigned integers,

called the limbs. This is the magnitude of the number. A signed integer keeps track
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of the number of limbs and the sign of the number. A final variable in the structure

records the space allocated for the array. In our benchmarks, we allocate the space

required for our operands when they are declared, avoiding slow reallocations. This

is possible since the size of the operands is bounded by N2 when working mod N

provided we reduce after every operation.

GMP provides two APIs for development. The first is a high level API which

manages memory allocated for operands and the result and keeps track of the size

of the result. It requires the least effort from the user, and provides a consistent

interface.

The second API is used to implement the first. These low-level functions are also

made available for time-critical user code. It requires that the caller specify which

limbs of the operands should be used. The caller must also ensure that sufficient

space is allocated and update the size variable.

4.5 Limb Modular Reduction Weight

The modular reduction weight used by Solinas in [74] measures the total number

of operations required to perform a modular reduction. When comparing moduli of

varying MRW, we found that moduli of different MRW could have nearly the same

practical performance. Figure 4.1 shows plots of the time required to perform 106

reductions modulo numbers of MRW 2,3,4,5. (Note that this is the time to compute

only a modular reduction, and not a modular multiplication.) The time in seconds is

the average of 5 runs — which had very close timings, the largest standard deviation

observed was 0.000122.

One would expect the computation time to increase regularly with the MRW.

However, we observe a large jump between 2 and 3, then 4 and 5 are nearly the same

with 5 slightly outperforming 4. Although this difference was not crucial, as will be

shown, the issue was puzzling prompting further investigation.

This can be explained by considering a more precise measure, which we call the

limb modular reduction weight (LMRW). It refines the MRW by counting the number

of limbs which will be added/subtracted during the reduction. Unlike the MRW,

which ignores the sizes of the operands involved, the LMRW is closer to the number

of machine operations (provided k ≡ 0 (mod w), where w is the word size, cf. §4.3).
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Figure 4.1: Time required to compute m (mod N) for 106 integers N < m < N2.

The LMRW is computed as follows:

LMRW(f) = d +
d∑

i=0

d∑
j=0

|Xi,j|

where d = deg(f) and X is the matrix from section 4.3. This counts the number of

terms Aj in
d∑

j=0

Bj = A0 ± . . . + A1 ± . . . + Ad ± . . . .

The timings in Figure 4.1 are more logical knowing the polynomials of MRW

2,3,4,5 have LMRW 5,13,10,10. Although closer to the observed data, the LMRW

is still not perfect since there are two factors it does not measure. The first is the

overhead of the function call for each operation counted by the MRW. The second is

a quirk of the GMP library — addition of operands having the same number of limbs

is faster than addition of operands of differing size. 3

3There is no magic here, the library simply has an assembly implementation of the mpn add n()
function, and a C implementation of the mpn add() function. In an effort to simplify comparison we
used only mpn add(), however the source code reveals that it will make a call to the faster function if
the operands have the same size. These issues are discussed in [37], Section 8: Low-level Functions.
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The bound LMRW ≤ (d + 1)MRW suggests that when searching for low weight

polynomials of “reasonably” small degree it is sufficient to compute only the MRW.

Since the inaccuracy of the MRW increases with d, for larger d the LMRW might

also be considered. In what follows, where our interest is modular multiplication, the

time for reduction is dwarfed by the time of a multiplication. We found the MRW

sufficient.

4.6 A Family of Generalized Mersenne Numbers

Many of the GM numbers in Table 4.2 are of the form

td − td−1 + 1 .

This family has a predictable MRW of 2d− 1, and

LMRW =
d(d− 1)

2
+ 2(d− 1) + d

which are obvious when one considers the matrix X which always takes the form

X =



−1 0 0 0 . . . 0 1

−1 −1 0 0 . . . 0 1

−1 −1 −1 0 . . . 0 1
...

...
...

. . .
...

...

−1 −1 −1 −1 . . . −1 1

−1 −1 −1 −1 . . . −1 0



Knowledge of such families removes the need for polynomial searches and compu-

tation of the MRW, we can simply test the primality of f(2k) at the desired bitlevel.

Table 4.1 shows a list of primes of this form. Unfortunately, they are not abundant.

Since the coefficients of X are always 1, -1, 0, this family of GM numbers would allow

simpler code generating software. We present this family as an example to supple-

ment those presented by Solinas [74], and leave it as an open problem to find others.

As well, are there any other properties of X which lead to desirable implementations,

or shorter searches for primes?
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Bitlength p MRW
3680 25·32·23 − 24·32·23 + 1 9
576 29·32·2 − 28·32·2 + 1 17
320 210·32 − 29·32 + 1 19
4352 2136·32 − 2135·32 + 1 271

Table 4.1: Table of all primes of the form p = f(232·k) for f(t) = td − td−1 + 1, such
that bitlength(p) < 16000 and d < 104 .

4.7 Modular Arithmetic Experiments

The purpose of this experiment is to compare the modular multiplication methods

described in Section 4. For comparison, we will use two baselines. The first will be

the standard GMP library functions for multiplication and reduction.

The second baseline will be Montgomery multiplication, the REDC algorithm. We

will use the implementation from the GMP-ECM project. (The GMP-ECM project

implements the elliptic curve method for factoring large integers [1].) It is optimized

and implemented at the same level as our generalized Mersenne implementations.

Their REDC implementation consists of a GMP multiplication followed by a special

reduction routine.

The algorithm for modular reduction used in the GMP-ECM implementation is

one of the following three.

1. Montgomery’s REDC algorithm [54] at the word level (REDC1). It is quite fast

for small numbers, but has quadratic asymptotic complexity.

2. GMP arithmetic [37]. Has some overhead when compared to (1) for small

sizes, but is faster than (1) for larger sizes since it has quasi-linear asymptotic

complexity.

3. Montgomery’s REDC algorithm at high level (REDC2). This essentially re-

places each division by two multiplications. Slower than (1) and (2) for small

inputs, but better for large or very large inputs.

(Source: gmp-ecm README file).

The choice of algorithm depends on the size of the modulus, with appropriate

thresholds determined for a given machine by a tuning program. The program multi-

plies progressively larger integers using all three algorithms until the crossover points
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are identified. After running the tuning program and some initial timings, we config-

ured the library to use REDC1 for operands of size less than 111, GMP arithmetic for

operands with 112 to 204 limbs, and REDC2 for operands with 205 limbs or greater.

Since all of our modular multiplication implementations use the same multipli-

cation code, this makes for a level comparison. As well, the REDC algorithms are

implemented using the low-level API of GMP, like the other methods to be compared.

The only difference is the reduction function used.

For the polynomials used in the GM reductions, we use a variety of MRW, to

better understand the impact of this weight on performance. We would like to get

a sense of what is a “high” weight, and at what point performance is significantly

affected.

The timings consist of the time required for 104 modular multiplications, with

operands chosen as follows. Choose 104 numbers m evenly spaced between 1 and n ,

then compute m(m− 1) using the GMP multiply function, then reduce using one of

the mod functions. We favor this choice of operands over a random selection for two

reasons. It allows our experiments to be more easily reproduced, and ensures that

all mod functions work on identical operands. Second, we are guaranteed to test the

functions on a wide variety of input sizes.

Our test system runs Gentoo Linux, with a 2.6 kernel in single user mode. The

CPU is an Intel Pentium 4 at 3 GHZ. Complete system details including compiler

version and flags are included in Appendix B.

In this implementation, we will not differentiate between prime and composite

moduli. The methods work the in same way; the character of the modulus has no

impact on efficiency. The baselines (which do not exploit the structure of the modulus)

were run at various bitlevels with the modulus 2k − 1.

We have implemented multiple mod operations, for families of numbers f(2k)

given by the polynomials f in Table 4.2.

Automatic Generation of Reduction Routines

Fortunately, the method of Solinas described in Section 4.3 lends itself well to au-

tomation. To allow timely implementation of many reduction routines we created a

software tool to generate a GMP implementation for reduction modulo f(2k) where
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f(t) MRW LMRW
t− 1 1 2
t2 + t + 1 2 5
t4 − t− 1 3 13
t3 − t + 1 4 10
t3 − t2 + 1 5 10
t5 − t3 + 1 6 19
t4 − t3 + 1 7 16
t3 − t1 + 3 8 18
t5 − t4 + 1 9 23
t8 − t7 + 1 15 50
t12 − t11 + 1 23 100
t15 − t14 + 1 29 148
t18 − t17 + 1 35 205
t31 − t31 + 1 63 590
t16 − t10 + t7 + t3 + 17 119 798
t71 − t58 − t56 − t32 + t19 + t17 − 1 188 2967

Table 4.2: Polynomials with a variety of modular reduction weights used. The
moduli for benchmarking were set to f(2k) for all k ≡ 0 (mod 32) such that
log2 f(2k) < 16000.

k ≡ 0 (mod 32) and f is a monic polynomial in Z[t]. Although the polynomials

used in our experiments and discussed in related work tend to have coefficients in

{1,−1, 0} this does not exclude other monic polynomials in Z[t]. In general, due to

the way X is constructed higher coefficients lead to higher MRW.

In practical settings, such a tool would be especially important due to the speci-

ficity of a routine to a specific polynomial. An application requiring a change of

modulus would likely require a change of polynomials — which would force the im-

plementation of a new reduction routine. Although implementation “by hand” may

be reasonable at lower modular reduction weights, it is tedious and error-prone.

4.8 Results

We first present an overview of the results with Figure 4.2 , which shows performance

of many MRW across varying bitlevels. The times for MRW 1-35 were so close that

their plots appear as a thick line on the chart. This plot also includes the time

required for the GMP multiplication, to show the fraction of the overall time used by

the multiplication.
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The following figure — Figure 4.3, gives a clearer view, showing only selected

modular reduction weights. The precise numbers at key bitlevels are presented in

tables 4.3, 4.4, 4.5 and 4.6 below. The telling column in these tables is “Fraction”;

which measures the time of the GM method as a fraction of the REDC baseline. The

“Security Level” column represents the security level which a field of this size would

provide to paring-based cryptographic applications (as defined in §3.1).

We note a few things from these charts. In all cases, the performance gained from

using a GM modulus becomes larger as the security level increases. This was mainly

due to the quadratic behavior of the baseline. At very low bitlevels (say less than

1500), we find very little improvement, and depending on the MRW, can even give

worse performance than standard methods. In Figure 4.4, we zoom in on Figure 4.3

to illustrate performance at bitlevels less than 1500.

We also notice that performance differs only slightly between the different MRW

implemented and timed. Given the data presented, we conclude that a modular re-

duction weight of less than 200 will give increased performance, provided the operands

are large enough.4 Of course larger MRW can still be beneficial at higher bitlevels,

but these cases must be considered on an individual basis.

This increases the flexibility when choosing moduli in curve construction tech-

niques. It can also be used to speed searches for prime moduli of practical value, if

a polynomial f(t) has a large MRW it can be discarded immediately (i.e. before the

primality tests of f(232), f(264), . . .). The only drawback to large weight reduction

functions is the corresponding increase in implementation complexity. Implementa-

tion by hand becomes impractical, and a robust method of automatically generating

the mod functions becomes essential. The size of the code increases with the MRW,

which may be a concern for some implementations.

A final note about the timings presented in this chapter is that they are all the

time in seconds to compute 104 modular multiplications, where the operands are

evenly distributed in Fp. Dividing the time presented by 104 gives the average time

in seconds for a single modular multiplication. Again, the times presented in the

tables and plots are the average of five runs, the largest standard deviation observed

was 0.00474.

4See Figures 4.2, 4.3 and 4.4.
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Security Level Bits REDC MRW 1 Fraction
80 1024 0.0955 0.0471 0.5005
128 3072 0.7190 0.2803 0.3898
192 8192 3.9788 1.4283 0.3589
256 15360 10.4551 3.6248 0.3467

Table 4.3: Comparison of REDC baseline to MRW 1.

Security Level Bits REDC MRW 35 Fraction
80 1152 0.1192 0.0922 0.7734
128 3456 0.9194 0.4370 0.4753
192 8640 4.4006 1.7849 0.4056
256 15552 10.7895 4.0909 0.3791

Table 4.4: Comparison of REDC baseline to MRW 35.

Security Level Bits REDC MRW 63 Fraction
80 1024 0.0955 0.1028 1.0764
128 3072 0.7190 0.4093 0.5692
192 8192 3.9788 1.7574 0.4416
256 15360 10.4551 4.2408 0.4056

Table 4.5: Comparison of REDC baseline to MRW 63.

Security Level Bits REDC MRW 188 Fraction
80 – 128 2272 0.4011 0.5116 1.2754
128 – 192 4544 1.4318 1.0540 0.7361
≈ 192 9088 4.6656 2.5227 0.5407
≈ 256 15904 11.4698 5.4706 0.4769

Table 4.6: Comparison of REDC baseline to MRW 188. “Security Level” displays
a range or approximate level when the bitsize of f(2k) differs significantly from the
bitsize required by the security level.



54

 0

 2

 4

 6

 8

 10

 12

 0  2000  4000  6000  8000  10000  12000  14000  16000

Ti
m

e 
fo

r 1
0K

 O
pe

ra
tio

ns
 (s

ec
on

ds
)

Bits in Modulus

Comparison of Modular Multiplication Times

MRW1
MRW2
MRW3
MRW4
MRW5
MRW6
MRW7
MRW9

MRW15
MRW23
MRW29
MRW35
MRW63

MRW119
MRW188

GMP
MUL

REDC

Figure 4.2: Modular multiplication times for varying MRW, the REDC baseline and
the standard GMP library implementations. Most of the MRW plots coincide to form
the thick line.



55

 0

 2

 4

 6

 8

 10

 12

 0  2000  4000  6000  8000  10000  12000  14000  16000

Ti
m

e 
fo

r 1
0K

 O
pe

ra
tio

ns
 (s

ec
on

ds
)

Bits in Modulus

Comparison of Modular Multiplication Times

MRW 3
MRW 63

MRW 119
MRW 188

REDC

Figure 4.3: Modular multiplication times for selected MRW, and the REDC baseline.



56

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 600  700  800  900  1000  1100  1200  1300  1400  1500

Ti
m

e 
fo

r 1
0K

 O
pe

ra
tio

ns
 (s

ec
on

ds
)

Bits in Modulus

Modular Multiplication Times at Low Bitlevels

MRW 3
MRW 35
MRW 63

MRW 119
REDC

Figure 4.4: Modular multiplication times for selected MRW and the REDC baseline
at bitlevels less than 1500.



Chapter 5

Pairing Computations

In this chapter we present Miller’s algorithm, which is used to compute both the Tate

and the Weil pairings. We then discuss some related work used to improve efficiency

of the algorithm. Next, we will review the role of generalized Mersenne numbers, used

to improve the performance of pairing computations. We then focus on two specific

cases (supersingular curves of embedding degree 1 and 2), discuss parameter selection

and present the results of an implementation. The results from this section will be

further discussed in a larger context in the following chapter.

5.1 Miller’s Algorithm

Miller’s algorithm originally appeared in [51], then more formally in [53] (some helpful

examples can be found in [29]). This algorithm is the basis for computing both the

Weil and Tate parings described in Sections 2.4.1 and 2.4.2.

Recall the definition of the Weil pairing:

en(P, Q) =
fn,P (Q)

fn,Q(P )

In order to compute the pairing, we must find the functions fn,P and fn,Q such that

div(fn,P ) = n(P )− n(O) and

div(fn,Q) = n(Q)− n(O) .

First we must work with normalized functions (which will be defined momentar-

ily). To do this, we start by fixing a uniformizer at P (§4.1 of [53] describes how).

Once this is done, any rational function may be be expressed as a Laurent series in

up. A Laurent series is a power series in a variable where a finite number of terms are

allowed to have negative exponents in said variable. 1 For example, take a function

1The full definition can be found in the appendix of [53]. It differs from the definitions of a
Laurent series for a complex function which can have an infinite number of negative terms, i.e.
f(z) =

∑∞
n=−∞ cn(z − a)n for z ∈ C, where a constant a and a collection of complex numbers cn.

57
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f ∈ K(E) with deg(f) = n. Then we can write

f(up) = aun
p + bun+1

p + . . . .

We will denote the leading term by lt(f) = aun
p and the leading coefficient by

lc(f) = a. When f does not have a zero or a pole at P , ltP (f) = f(P ), and

ltP (fg) = ltP (f)ltP (g). The leading coefficient will permit us to identify normalized

functions; for f ∈ K(E), f is normalized if lcO(f) = 1.

The advantage of normalized functions is that for every principal divisor D there

is a unique normalized function f such that div(f) = D. Since the product of

normalized functions is again normalized, from now on we will work exclusively with

normalized functions.

Next, for two points P, Q ∈ E call the normalized line though them LP,Q. If

P = Q, use the equation of the line tangent to the curve (cf. definition of addition

law and Figure 2.1)). The divisor of this function2 can be expressed neatly as

div(LP,Q) = (P ) + (Q) + (−(P + Q))− 3(O) .

Using this notation we could express the vertical line used during point addition as

LP+Q,−(P+Q) (as in [53]). For greater simplicity, we write VP,Q for this vertical line.

Lemma 1 of [53] gives the divisor of the rational function LP,Q/VP,Q ;

div(LP,Q/VP,Q) = (P ) + (Q)− (P + Q)− (O) .

Now the idea is to define functions, fi,P , inductively as

f0,P = 1

f1,P = 1

fm+1,P = fm,P
LP,mP

VP,mP
.

(5.1)

These functions have divisor

div(fm,P ) = m(P )− (m− 1)(O)− (mP ) . (5.2)

2The function that gives the equation of the line, that is LP,Q(x, y) = 0.
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Using them we can build up fn,P , which will have the desired divisor

div(fn,P ) = n(P )− (n− 1)(O)− (nP )

= n(P )− n(O)

since nP = O. Before forging an algorithm, we need two more properties about the

functions fm,P .

fi+j,P = fi,P · fj,P ·
LiP,jP

ViP,jP

(5.3)

and

fij,P = (fi,P )j(fj,iP ) = (fj,P )i(fi,jP ) . (5.4)

Since Miller’s algorithm relies on (5.3) heavily, we verify that the divisors of the left

and right hand side are the same. On the left,

div(fi+j,P ) = (i + j)(P ) + (i + j − 1)(O)− (i + j)(P )

while on the right we first work out the divisors of the lines,

div(LiP,jP ) = (iP ) + (jP ) + (−(iP + jP ))− 3(O)

div(ViP,jP ) = div(L(i+j)P,−(i+j)P )

= (i + j)(P ) + (−(i + j)(P )) + (−(i + j))(P ) + (−(i + j))(P )− 3(O)

= (i + j)(P ) + (−(i + j))(P )− 2(O)

then the quotient,

div
(

LiP,jP

ViP,jP

)
= (iP ) + (jP ) + (−(i + j))(P )− (O)

−((i + j)(P )− (−(i + j))(P ) + 2(O)

= i(P ) + j(P )− (i + j)(P )− (O)

and use (5.2) to get the complete right hand side:

div
(
fi,P · fj,P · LiP,jP

ViP,jP

)
= i(P ) + j(P )− (i− 1)(O)− (j − 1)(O)− (i + j)(P )− (O)

= (i + j)(P ) + (i + j − 1)(O)− (i + j)(P )

which equals the left, so the functions have the same divisor.

The first of these two properties (Equation (5.3)) is similar to exponentiation (but

with the extra quotient L/V , cf. 2i+j = 2i · 2j). This similarity allows fn,P to be

computed using any of the existing fast exponentiation methods, the most common
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being the binary method3 where we iterate over the bits of n ([39] 4.6.3). This gives

Miller’s algorithm for finding fn,P a running time of O(log n).

Although in Section 2.4.1, we defined the Weil pairing as (−1)n fP (Q)
fQ(P )

, to present the

original version of Miller’s algorithm we must use the equivalent definition (−1)n fP (DQ)

fQ(DP )
.

The divisor DQ, must be equivalent to (Q)− (O) and we will evaluate it at a function

fP which has divisor (fP ) = (P )− (O). The denominator is defined analogously.

A simplified version of Miller’s algorithm was discovered later which computes the

pairing as we had originally defined it. Proceeding chronologically, our first algorithm

will find and evaluate fP (DQ), and we will present the simplified version in §5.1.1.

In [29] (page 188, Lemma IX.6) it is shown that finding and evaluating fP (DQ)

is possible by computing (g) = n(Q + S)− n(S) for an arbitrary S. This introduces

“equivalence up to n-th powers”; g(D) is only equivalent to fP (DQ) up to n-th powers.

After raising g(D) to the power (qk − 1)/n, we have fP (DQ) exactly. Algorithm 2

gives pseudocode for Miller’s algorithm.

To complete the computation of the Tate pairing, the returned value f ∈ µn ∈ Fqk

must be raised to the power (qk − 1)/n. This produces a unique value. The Weil

pairing requires two applications of Algorithm 2, and a division in Fqk .

The point S can simply be chosen at random (however this does not necessarily

lead to the most efficient implementation). The only condition on S is that it must

not be a point computed in the addition chain. If S = T at some point during the

algorithm, it will lie on one of L or V , causing L(S) = 0 or V (S) = 0. This happens

with probability O( log p
p

) [16]. For large enough n, S may be fixed as [i]P , for i such

that [i]P does not appear in the addition chain of [n]P .

5.1.1 Related work

In this section we recap state of the art techniques which greatly reduce the compu-

tational cost of pairings, mainly through improvements to Miller’s algorithm. Much

of the work discussed in this section is from Galbraith et al. [34], and Barreto et al.

[13, 12, 14, 11]. Many optimizations are specific to fields of low characteristic F2m

and F3m , and will not be applicable in our study. In this section we limit coverage to

3This method is sometimes also called “square and multiply” for multiplication or “double and
add” for point multiplication on elliptic curves. See [28], IV.2.1 for the latter.
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Algorithm 2 Miller’s algorithm. Compute fP (DQ).

INPUT : points P ∈ E(Fq)[n], Q ∈ E(Fqk), where P has order dividing n

OUTPUT: A value f ∈ µn ∈ Fqk

1: Choose a suitable point S ∈ E(Fqk).

2: Q′ ← Q + S.

3: T ← P .

4: m← blog2(n)c − 1, f ← 1

5: while m ≥ 0 do

6: Calculate lines l and v for doubling T .

7: T ← [2]T .

8: f ← f 2 l(Q′)v(S)
v(Q′)l(S)

.

9: if the m-th bit of n is one then

10: Calculate the lines l and v for addition of T and P .

11: T ← T + P

12: f ← f l(Q′)v(S)
v(Q′)l(S)

13: end if

14: m← m− 1

15: end while

16: return f
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speedups applicable to all curves.

Improvements to Miller’s Algorithm

First off, [34] notes that for the majority of cryptographic applications, P ∈ E(Fq)

and Q ∈ E(Fqk). Consequently, most of the work in Miller’s algorithm, stays in Fq.

Arithmetic in Fpm requires roughly O(m2) Fp-multiplications; therefore smaller m

can give large speedups. The randomly chosen point S can be chosen from E(Fq), in

order to keep more of the arithmetic in the smaller field. These optimizations apply

to computing 〈P, Q〉 but not 〈Q, P 〉. Therefore, computing the Weil pairing, which

is effectively 〈P,Q〉
〈Q,P 〉 costs significantly more than two computations of 〈P, Q〉 (see [29],

p. 192, for details of this equivalence between pairings). While significant at lower

levels, this difference is eventually dominated by the cost of exponentiation in the

Tate pairing, and becomes less important at higher security levels.

A small and simple improvement removes divisions at each iteration of the algo-

rithm. The divisions in steps 8 and 12 of Algorithm 2 can be collected up into a single

division at the end.

As we’ve seen, the running time of Miller’s algorithm is O(log n), so the choice

of n, the order of the subgroup, can reduce the run time. However, n must be large

enough to maintain the difficulty of the ECDLP. To reduce the number of additions

(steps 9 to 13 in Algorithm 2) choose n with low Hamming weight. Some GM primes

also have low Hamming weight, for example 2283 + 2142 + 1 has Hamming weight 3.

If the group order, #E, has low Hamming weight, the authors of [34] note that we

could choose n = #E. In this case (qk − 1)/#E will also have low Hamming weight,

speeding the exponentiation. They also discuss the advantages of using a smaller

subgroup, which would outweigh a larger group with low Hamming weight. The

savings from using a smaller subgroup become even larger at higher security levels.

Another interesting part of [34] is the technique for representing extension fields.

They create a tower of quadratic extensions of F2m to represent F24m . Let F = F2m .

F1 =
F [x]

(x2 + x + 1)
≈ F22m quadratic extension of F

F2 =
F1[y]

(y2 + (x + 1)y + 1)
≈ F24m quadratic extension of F1
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General elements of F2 can be written as a+bx+cy+dxy with a, b, c, d ∈ F2m . These

elements can be multiplied with only 9 multiplications in F . A similar representation

is employed for characteristic 3.

These fields are generalized in [41], and named “pairing friendly fields”. A field

Fpk is pairing friendly if p ≡ 1 (mod 12) and k is of the form 2i3j. Using this repre-

sentation gives multiplications in time 3i5jm where m is the cost of a multiplication

in Fp.

The paper by Barreto et al. [14] begins by describing a procedure for constructing

ordinary curves with arbitrary k. Until recently, the only curves known with k small

enough to be useful for pairings were supersingular curves. Supersingular curves

can have at most k = 6 (see [49]), but with non-supersingular curves, arbitrary k

is possible. A random ordinary curve will have enormous k (shown in [10]), so one

cannot simply choose curves at random. The construction can also be tweaked to find

curves where n has low Hamming weight. An alternate algorithm for constructing

ordinary curves with arbitrary k is also given in [29], Section IX.15.1. The references

of this text present techniques to allow construction of curves with pairing friendly

k = 2i3j.

With respect to the pairing computation, Barreto et al. suggest improvements

to Miller’s algorithm. Theorem 1 states that for linearly independent points P ∈
E(Fq)[n] and Q ∈ E(Fqk), the Tate pairing can be reduced to 〈P, Q〉n = fP (Q)(qk−1)/n

instead of 〈P, Q〉n = fP (DQ)(qk−1)/n, with DQ as defined above in the description of

Miller’s algorithm. This allows the function fP to be evaluated on a point rather than

a divisor.

This result is then combined with another. To find the function fi such that

(fi) = i(P )− ([i]P )− (i− 1)(O), Miller used the formula fi+j = fifj
l
v
. The authors

provide an alternate formula for fi,

fi+j = fi(Q)fj(Q)
l(Q)

v(Q)
,

where l is the line between [i]P and [j]P , v is the line between [i + j]P and −[i + j]P

(vertical). This new formula leads to a simplified version of Miller’s algorithm, which

gets used in practice.

A method is also given ([14], Theorem 3) by which the denominator v(Q) in

the computation of f can be eliminated without changing the value of the pairing.
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Algorithm 3 Simplified Miller

INPUT: Points P ∈ E(Fq)[n], Q ∈ E(Fqk)

OUTPUT: fP (Q)

1: f ← 1

2: T ← P

3: m← blog2(n)c − 1, f ← 1

4: while m ≥ 0 do

5: Find the lines l and v for doubling T .

6: f ← f 2 l(Q)
v(Q)

7: T ← [2]T

8: if the m-th bit of n is 1 then

9: Find the lines l and v for adding T + P

10: f ← f l(Q)
v(Q)

11: T ← T + P

12: end if

13: end while

14: return f
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This simplification is limited to fields with characteristic greater than 3. Using this

method, paring computation for k = 2 can be computed almost completely with Fq

arithmetic.

Implementation Related Work

We end this section by pointing out the scarcity of implementation timings available

in the literature. There are limited timings from implementations in characteristic 2

and 3 in [11] and [34] at low security levels. To our knowledge there has not been a

comprehensive comparison of the various possible implementations. This is likely due

to the complexity of each implementation, coupled with the large number of small

optimizations required for a proper comparison.

The analysis of Koblitz and Menezes [41] is the first to compare a large number

of implementation options over a range of security levels. Although their analysis is

only an estimate which makes some minor simplifying assumptions, it includes the

majority of relevant optimizations. It provides the clearest overall picture to date,

and our results should help clarify our understanding further.

5.2 Pairings with Generalized Mersenne Numbers

As we’ve seen, there are two uses for generalized Mersenne numbers in pairing com-

putations. The first is fast modular reduction. If our elliptic curve E is taken over

a field Fp where p is a generalized Mersenne prime, the field arithmetic required to

implement the operations in the curve group will be improved. Miller’s algorithm

consists of curve group operations and field arithmetic in the extension Fpk . Thus for

pairing computations it is desirable that p be a generalized Mersenne number of low

MRW. With the results of Chapter 4, we would like the MRW of p to be less than

200, and the exponents in the representation of p to be congruent to zero modulo the

word size.

The second parameter we would like to be a generalized Mersenne number is n, the

prime order of the subgroup used in Miller’s algorithm. Let us consider the example

where n = 2a−2b+1. Recall from §5.1 that Miller’s algorithm incrementally computes

functions fn,P for a point P ∈ E. First we compute f2a,P , f2b,P which requires only

doubling operations. Note that f2a can be computed from f2b using a − b double
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operations, hence both are computed with a doubling operations. Then we use the

negation formula from [53],

f−2b,P =
1

f2b,P

(
LnP,−nP

VnP,−nP

)
and then the addition formula

f2a+(−2b) = f2a,P f−2b,P

(
L2aP,−2bP

V2aP,−2bP

)
.

The final addition can be done using formula (5.1). Hence fn,P is computed using

only a doublings, instead of log2(n) ≈ a doublings and Hamming weight(n) additions.

This generalizes to all GM primes, and their structure can be exploited to significantly

increase the performance of Miller’s algorithm.

At this point, some readers may have noticed that we are not concerned about

the MRW of the prime n, nor does it matter that it aligns nicely with the wordsize.

We present a related definition (from [63]). Any integer N can be represented as

N =
∑w

i=1 εi2
ei for ε ∈ {1,−1}, ei ∈ Z. The weight of an integer N is w, the number

of terms in this sum. We note that for the computation of Miller’s algorithm, it

is possible to relax the condition on εi, allowing εi ∈ Z, but do not explore this

possibility here. We call N a low-weight integer (or prime) if w is low 4. Exactly how

low depends on the application.

From the definitions given, a low-weight prime is a generalized Mersenne prime,

and a GM prime is a low-weight prime (depending on ones interpretation of “low”).

The key difference is that a low-weight prime may not be a practically useful GM

prime, if it has high MRW. To differentiate, we will refer to a low-weight/GM prime

as a Solinas prime if it has MRW low enough to be practical (MRW < 200). If we

have the further condition that ei ≡ 0 (mod w) we call N a word aligned Solinas

prime.

Before proceeding, we examine Solinas’ modular reduction algorithm when the

modulus is not word aligned, to gauge the importance of this property. Recall (from

4Note that this differs from the Hamming weight of an integer, which counts the number of 1s
in the binary representation of the integer; a low weight integer can have a high Hamming weight
(e.g. 2n − 1).
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§4.3) that it works by representing an integer m = f(2q) < p2 as

m =
2d−1∑
j=0

Aj · 2jq ,

then re-casting the mod operation as additions/subtractions of the Aj.

The method of Solinas works best when q is a multiple of the wordsize w. When

w 6 |q, just how “inconvenient” is this method, and is it still practical? We consider a

few examples to explore the issue.

Example 1 The first example is when q < w (example 4 from [41]). The polynomial

f is

f(t) = t7737 − t7477 + t7216 + 1

which gives

p = f(22) = 215474 − 214954 + 214432 + 1 .

Then we have q = 2 and d = 7737. To represent some m < p2, we use the sum

m =
15473∑
j=0

Aj · 22j

There are two problems with this. Each Aj is only 2 bits large, and there are 15473

of them. Also, the MRW of the polynomial is high; there will be 3524577 addi-

tions/subtractions required to reduce m (using the method presented in [74]). Recall

that the MRW already counts operations involving contiguous Aj as a single opera-

tion, so we cannot combine any others.

Example 2 The second example considers the case when q > w. We take the

polynomial

p(t) = t3 − t2 − 1

and choose q = 50. Then

p = p(250) = 2150 − 2100 − 1

To represent m < p2, we write

m =
5∑

j=0

Aj · 250j .
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Then there are up to 5 Aj. The MRW of p(t) is 4, so although the Aj are misaligned,

we need only use them for 4 operations.

Though we do not have supporting implementations and benchmarks to support

it, we hypothesize that modular reduction by a misaligned modulus is still signifi-

cantly faster than competing methods; provided the MRW is low. The misaligned Aj

increase the cost of each addition/subtraction, but only slightly. The implementation

complexity is also increased, and not supported by our code generation tool. For this

reason we favor aligned Solinas primes.

With this motivation for using GM primes as parameters, we address the question:

How can we find elliptic curves E(Fp) where p is a GM prime, and n|#E such that

n is a low-weight prime? In addition, the sizes of n and pk must be of appropriate

size to provide the desired security.

5.3 Embedding Degree k = 1

As pointed out by Koblitz and Menezes [41], elliptic curves with embedding degree

one have not been suggested for use in pairing based cryptography, the literature

discusses them only briefly, and dismisses them without thorough consideration.

The only curve construction technique available was presented in [41], and uses

supersingular curves. We review it now.

Chose a prime p = A2 + 1. If A ≡ 0 (mod 4), then

E : y2 = x3 − x (5.5)

if A ≡ 2 (mod 4), then

E : y2 = x3 − 4x . (5.6)

Their Theorem 3 then proves E(Fp) ≈ ZA × ZA and hence #E(Fp) = A2 = p − 1.

Using these curves, we can select parameters by choosing A = nh, where n is prime,

and p = (nh)2 + 1 is also prime. There are a few further constraints:

1. n and p must have bitlengths large enough to provide the desired security;

2. n must be a low-weight prime;

3. p must be a Solinas prime as well, preferably word aligned.
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The authors follow with three examples at the security levels 128, 192, 256. They

appear in Table 5.1. Each of the Solinas primes given in the examples is misaligned,

and the greatest common divisor of the exponents is 1 or 2. The examples also have

a MRW too large to be practical. However, the choice of n in the examples is suitable

for improving Miller’s algorithm.

Example p(t) 2q MRW(p)
2 t3202 − t3121 + t3038 + t2947 − t2865 + t2690 + 1 2 70049975387
3 t8376 − t8333 + t8288 − t7991 + t7947 + t7604 + 1 2 > 1025

4 t7737 − t7477 + t7216 + 1 22 3524578

Table 5.1: Examples from [41] for embedding degree 1. The exact MRW of example
3 would require a careful implementation to compute, but by partially computing X
we were able to determine that it is greater than 1025.

The poor alignment and high MRW motivates a search. Our goal is to find

parameters which are both aligned to our word size (32-bit) and have MRW small

enough to be practical.

5.3.1 Parameter Search

For p to be an aligned Solinas prime, we must have

• p = f(2q) where f ∈ Z[t],

• f is monic and irreducible,

• f has odd, nonzero constant term,

• and q ≡ 0 (mod 32).

We will write the polynomial defining p as:

p(t) = td − c1t
d−1 − . . .− cd−1t− cd ∈ Z[t] . (5.7)

As mentioned in the previous section; the improvement to Miller’s algorithm re-

quires only that n be a low-weight prime, we can ignore the alignment property.

However, since p = (nh)2 + 1, the form p will take depends on n as well, and so

n must be chosen carefully. One possible approach is to choose n and h by using

polynomials in Z[t], then p will have the desired form.
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Proposition 1 Let p = (nh)2 + 1. If n = n(2q), h = h(2q) for h(t), n(t) ∈ Z[t], and

q ∈ Z then p = p(2q) for p(t) ∈ Z[t].

Proof. Set p(t) = [n(t)h(t)]2 + 1 ∈ Z[t].

By the definition of a GM number p(t) is monic, thus n(t) and h(t) must be monic

as well. This provides one way to search for parameters. Ignoring MRW, our search

can proceed by choosing n(t) such that n(2q) is prime, choosing h(t) and checking if

the resulting p(2q) is prime.

What about the converse of Proposition 1? Can we give the search more flexibility

when choosing n? Consider n = n(2r) for r ∈ Z, r 6≡ 0 (mod w). Then

p = [n(2r)h(2q)]2 + 1

The polynomials n(t), h(t) are monic, of degree d1, d2 for some d1, d2 ∈ Z. The leading

term of the product n(2r)h(2q) is then 2d1r · 2d2q = 2d1r+d2q, which, after the squaring

becomes 22d1r+2d2q. The other exponents will also be sums and products of d1, d2, r, q.

It is possible that they will be have q as a common factor or all be congruent to

zero mod w, but this is highly unlikely without special care in the choice of r, q and

consideration of the degrees of the terms in n(t), h(t). For fixed n(t), h(t), r, q one

could prove whether or not it is possible.

Let us consider an example, n(t) = t− 1, r = 13, q = 32, h(t) = t. Then

p(232) = ((213 − 1)232)
2
+ 1

= (226 − 214 + 1)(264) + 1

= 290 − 278 + 264 + 1

In this example p is not prime but it illustrates how the exponents are determined

additively.

Our search for primes p = (nh)2 + 1 will proceed by finding n = n(2q), h = h(2q)

and p = p(2q) where q ≡ 0 (mod 32). It remains an open problem to make use of the

fact that only p must be an aligned Solinas prime, n can be any low-weight prime.

The following steps describe our search:

1. Generate a random irreducible polynomial n(t) ∈ Z[t]

2. Check if n = n(232j) is prime for all j > 0 ∈ Z such that bitlength(n) < 1000.
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3. If n is prime, then compute p(t) = (n(t)h(t))2 + 1 for varying values of h(t).

4. if p(t) is irreducible, evaluate p(232j) and check if it is prime.

For “varying h(t)” we heuristically chose h(t) = ti, ti ± tm for all i, m that kept

the bitlength of p less than 15000. The basis for this heuristic is an attempt to keep

p(t) “simple”. That is, we would like to keep the degree of p(t) low, and keep the

coefficients as small as possible, to produce primes with MRW low enough to be

practical.

This approach was implemented with the PARI/GP scripting language. Some

parameters were found, however the search ignored the MRW. All of the primes

found had a MRW too high to be practical. We were also not searching for n, p of a

specific relative bitlengths. A sampling is listed in Table 5.2.

n(t) h(t) 2q MRW(n(t)) MRW(p(t))
t13 + 3t4 + 2t3 + t2 + 3t + 1 t2 232 63 44263
t3 − t− 1 t8 − t3 264 3 74962
t6 + 3t3 + 2t2 + 1 t2 + t 232 29 91231
t9 + 2t4 + 3t3 + 2t + 3 t3 232 47 112080
t16 − t− 1 t101 − t38 232 3 9804870
t16 − t− 1 t135 − t30 232 3 245350358
t19 − t16 − 1 t108 − t29 232 8 424385648767
t24 − t3 − 1 t114 − t47 232 3 1206254
t9 + 2t5 + 4t4 + 4t3 + t2 + t + 1 t2 232 117 2054435
t3 − t− 1 t45 − t22 264 3 253220781306736
t3 − t− 1 t45 − t28 264 3 256139034781873

Table 5.2: List of polynomials n(t) and h(t) such that n(2q) , and p(2q) are both
prime where p(t) = [n(t)h(t)]2 + 1.

5.3.2 Impracticality of k = 1

Without having found suitable parameters for implementation we now argue that

the curve construction technique we attempted used is impractical. In this section

we attempt to explain why our search failed. With the methods presented in this

chapter, it is impractical to use a curve with k = 1 over a field that is a GM prime.

The search of the previous section did find parameters, but none with an accept-

ably low MRW. The examples of Table 5.2 suggest that MRW(p(t)) is always much
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larger than MRW(n(t)). If this is the case in general, then there is a low probability

of a randomly chosen n(t) and h(t) leading to p(t) with low MRW.

We wish to explore the relationship between MRW(p) and MRW(n). Figures

5.1 and 5.2 plot the MRW of n(t) on the x-axis, and the corresponding weight of

p(t) = [n(t)t]2 + 1 on the y-axis. The choice h(t) = t was made since it would result

in p(t) of lowest degree and coefficients. The monic polynomials n(t) were chosen at

random

These two figures show that the MRW of p(t) is roughly quadratic as a function of

the MRW of n(t). Figure 5.2 limits the y-axis to 2000, to show just how sharply the

MRW of p increases. This leaves few choices for n(t) such that p(t) has low MRW.

Then, amongst these few, we search for a case where n and p are simultaneously

prime, and of appropriate size for our application.
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Figure 5.1: Plot of MRW([n(t)t]2 + 1) for n(t) with modular reduction weight from
0 to 100.
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Figure 5.2: Plot of MRW([p(t)t]2 + 1) for n(t) with modular reduction weight from 0
to 50.

5.3.3 Conclusions for k = 1

Without an efficient way of finding primes n and p with low MRW, the modular

reduction operation in the field cannot be improved by using GM primes. It may

be possible to find parameters when we do not require the word aligned property,

but we have not investigated this possibility. However, n can still be chosen, and its

structure used to render Miller’s algorithm more efficient.

5.4 Embedding Degree k = 2

Curves with embedding degree 2 are more popular for pairing-based cryptography,

and were even used as an example in the first IBE paper [16]. Again, we will present

the curve construction method of [41]. We use the same primes, n and p, however

this time p = nh− 1, and 4|h. Then we can use the supersingular curve

E : y2 = x3 − 3x
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when h is not divisible by 3. If h is divisible by 3, then let E be

y2 = x3 − 1

instead. The order in either case is #E(Fp) = p + 1 = nh.

In table 5.3 we list the examples given in [41] for embedding degree two. Although

the prime p is not word aligned, examples 6 and 9 have low enough MRW to still be

practical.

Example p(t) 2q MRW(p)
6 t520 + t363 − t360 − 1 2 31
7 t1582 + t1551 − t1326 − 1 2 82637
8 t4231 − t3907 + t3847 − 1 2 10571
9 t3882 − t3352 − 1 22 9

Table 5.3: Examples used in [41] for embedding degree two. At the 80 and 256-
bit security levels (Examples 6 and 9) the MRW is low enough to allow practical
implementation.

5.4.1 Parameter Search

We conducted a search for aligned primes to simplify implementation. This search

attempted to find primes where n(t) = ta± tb± 1, using the strategy described in the

previous section for embedding degree one. Since the form of p is simpler, nh− 1 as

opposed to (nh)2 + 1, we expected better results.

This was the case, and we were able to find parameters. The numbers in Table

5.4 are the result of searching for n(t) of the form ta ± tb ± 1, then h(t) = tj or

h(t) = tj − t.

Parameters Used

In Table 5.4 the first 12 numbers have MRW < 200. Examples with low MRW, are

abundant at the 80 and 128-bit levels, but were scarce at 192 bits. None were found

at the 256-bit level. In Table 5.5, we list the parameters that will be used in our

implementation.

We are not claiming that aligned parameters at the 256-bit security level can not

be found, simply that it is difficult with the methods presented. When one drops the
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n(t) h(t) q MRW(n) MRW(p) bn bp

t14 − t17 − 1 t3 32 3 18 448 545
t7 − t3 + 1 t7 − t 32 4 20 224 448
t21 − t6 + 1 t24 − t 32 4 23 672 1440
t7 − t2 + 1 t2 − t 96 4 28 672 864
t13 − t7 + 1 t4 − t 64 6 36 832 1088
t24 − t3 − 1 t27 − t 32 3 39 768 1632
t14 − t7 − 1 t25 32 3 51 448 1248
t3 − t + 1 t10 − t 32 4 77 96 416
t24 − t3 − 1 t72 − t 32 3 123 768 3072
t10 − t9 + 1 t3 − t 32 19 125 320 416
t19 − t16 − 1 t24 − t 32 8 148 608 1376
t10 − t9 + 1 t16 − t 32 19 193 320 832

t7 − t2 + 1 t29 − t 96 4 201 672 3456
t14− t7 − 1 t50 − t 32 3 476 448 2048
t31 − t26 + 1 t109 − t 32 14 2588 992 4480
t3 − t + 1 t24 − t 32 4 4401 96 864
t6 − t2 − 1 t47 − t 32 3 8828 192 1696
t19 − t16 − 1 t200 − t 32 8 207224229 608 7008

Table 5.4: Some polynomials producing primes n = n(2q) and p = n(2q)h(2q) − 1,
sorted by MRW(p). bn and bp are the number of bits in n, p.

restriction that the primes be word-aligned, there is the example from Table 5.3 of

MRW 9, and others are presumably abundant.

Level n(t) h(t) q MRW(p) bn bp

80-bit t3 − t− 1 t5 + t3 − t2 64 36 192 512
80-bit t3 − t− 1 t8 + t6 + t5 64 44 192 704
128-bit t16 − t + 1 t34 − t 32 33 512 1600
192-bit t15 − t2 − 1 t56 − t17 64 188 960 4544

Table 5.5: Parameters used in our implementation.

5.4.2 Implementation and Experiments

In this section we describe an implementation, and benchmarks we performed in order

to determine the impact of using our aligned GM prime parameters. We were fortu-

nate that an implementation of the Boneh and Franklin IBE scheme was available. It

has now been absorbed into the PBC Library [3]. Written by Ben Lynn, the Stanford

IBE software computes both the Tate and Weil pairings, and has implementations
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Miller’s algorithm, one of which can handle GM primes.

The IBE software is implemented to use the curve y2 = x3+1, with p ≡ 2 (mod 3).

The order of this curve† is #E(Fpk) = p+1, and the embedding degree is the smallest

k such that n|pk − 1. Since E is supersingular k ≤ 6, and we can easily determine k.

If k = 1, n 6 |nh − 2, but when k = 2, after substituting p = nh − 1 and expanding

we have n|n(nh2 − 2h), hence the embedding degree is k = 2. The curves are similar

enough that we can use the same parameters as we would with the curves given in

[41], by choosing p = nh− 1.

The PBC library implements arithmetic in Fp2 using the GMP library. We will

replace the calls to gmp mod() with our routines to perform Solinas reduction. We

will not include the REDC reduction algorithm in this set of comparisons. The results

of the previous chapter show that the REDC and GMP modular reduction functions

have very similar performance at the bitlevels under consideration.

Miller’s algorithm is used to implement the Tate and Weil pairings. Along with a

plain version of Miller’s algorithm, a faster variant is implemented to take advantage

of low-weight, n = 2a ± 2b ± 1.

The primes p, n that will be used in our experiments appear in Table 5.5. Using

these parameters, we will compare the performance of the variants of Miller’s algo-

rithm. Then we compare the time required to compute two versions of the Tate/Weil

pairing. The first uses a straightforward implementation of Miller’s algorithm while

the second takes advantage of the special structure of n.

The runtime of the plain version of Miller’s algorithm is greatly affected by the

Hamming weight of n. The Hamming weights of our parameters are

• 80-bit level: n is 192-bits and has a Hamming weight of 129,

• 128-bit level: n is 512-bits, and has Hamming weight 481,

• 192-bit level: n is 960-bits, and has a Hamming weight of 959.

In all of our examples, n has high Hamming weight. As we saw at the beginning

of this chapter, the performance of the low-weight version of Miller’s algorithm is

comparable to Miller’s algorithm on a prime of low Hamming weight. Because of

†This is a class I supersingular curve, see [49].
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this, our comparison of the Miller algorithms also gives insight to the importance of

the Hamming weight in the general case, i.e. when n is not low-weight.

5.4.3 Results

We now present the timing results of our implementation of Miller’s algorithm, and

the Tate and Weil pairings with embedding degree two.

In the timings presented below, each time is the average of 5 runs.5 (Each run

computes 1 pairing, or runs Miller’s algorithm once). The input points used to time

the algorithms were chosen randomly at the outset. The labels (of Tables 5.6 –

5.12 ) used should be interpreted as follows: “Fast” Miller/Reduction refers to the

algorithms which use the structure of the primes, while the “Plain” versions work on

general inputs. The top left corner is the time required when both “Fast” methods

are applied, while the bottom right is when both “Plain” methods are used.

Miller’s Algorithm

We present the timings in Tables 5.6, 5.7, 5.8 and 5.9. First we comment on the

effect of using a low-weight prime n in Miller’s algorithm. The timings observed for

Miller’s algorithm reveal that this optimization provides an average speedup of 61%.

This figure is higher than it would be in the average case, due to the high Hamming

weights of the low-weight primes in our parameters. If we assumed that the average

prime would have a Hamming weight leading to performance in the middle of the

“Fast” and “Plain” Miller algorithms, the speedup would be a more modest 44%.

Though not exact, this approximately quantifies the benefits of choosing n to be of

low Hamming weight, as well as the a GM prime.

With respect to the Solinas reduction algorithm, the difference is smaller. In the

results of the Chapter 4, we saw that the speedup of Solinas arithmetic increases with

the bitlevel. This explains the speedup increase from 11% at 80-bit to 21% at 128-bit

to 22% at 192-bit.

The combination of both special algorithms produced an observed speedup of 67%,

69% and 68% at the 80, 128 and 192-bit security levels.

5Again, the observed standard deviation of the runs was insignificant.
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80-bit Fast Reduction Plain Reduction
Fast Miller 0.0218 0.0238

Plain Miller 0.0564 0.0664

Table 5.6: Miller’s algorithm at the 80-bit security level (MRW 36, bp = 512).

80-bit Fast Reduction Plain Reduction
Fast Miller 0.0374 0.1026

Plain Miller 0.0385 0.1063

Table 5.7: Miller’s algorithm at the 80-bit security level (MRW 44, bp = 704).

Tate vs. Weil

It was suggested in [41] that at higher security levels, it may be more efficient to use the

Weil pairing instead of Tate. Recall that the Weil pairing requires two computations

of Miller’s algorithm and one division in Fpk . By contrast, the Tate pairing requires

only one use of Miller’s algorithm, which is then raised to the power (pk − 1)/n. The

cost of this final exponentiation in the Tate pairing becomes significant at higher

security levels, the analysis of [41] suggests that the Weil pairing is the faster choice

starting at the 192-bit level.

Indeed, the timings observed in this work support this conclusion. In Tables 5.10,

5.11 and 5.12, the time required by the Weil and Tate parings appear for comparison.

The faster time is in bold face, except at the 192-bit security level where they are

nearly identical.

Effect of Curve Selection

When choosing an elliptic curve E : y2 = x3 + ax + b the cost of computing [2]P for

P ∈ E, may differ by an addition (following the group operation in §2.2), and the

cost of computing P + Q is independent of a, b (Q ∈ E, P 6= Q). The time required

for curve addition is dominated by multiplications of the point’s coordinates. The

number of curve group operations in Miller’s algorithm depends only on n, and the

number of times the algorithm is run to compute a pairing is fixed across all curves.

For these reasons any a, b giving a curve with the correct properties (GM prime

parameters and embedding degree) can be considered representative.
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128-bit Fast Reduction Plain Reduction
Fast Miller 0.3038 0.3828

Plain Miller 0.7878 0.9995

Table 5.8: Miller’s algorithm at the 128-bit security level.

192-bit Fast Reduction Plain Reduction
Fast Miller 3.5210 4.4777

Plain Miller 8.5172 11.1640

Table 5.9: Miller’s algorithm at the 192-bit security level.

5.5 Conclusions

Our results confirm that the improvement GM primes provide to Miller’s algorithm is

quite significant. The specific advantage depends on the comparison. A low Hamming

weight n should provide similar performance, while one with high Hamming weight

can be up to 61% slower. As for Solinas arithmetic, at higher security levels it provides

a solid 20% speedup.

We have also confirmed prior analysis suggesting that the Weil pairing outperforms

the Tate pairing at security levels of 192-bits and greater. This result applies to

supersingular curves of embedding degree two.
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80-bit Fast Reduction Plain Reduction
(MRW 36) Tate Weil Tate Weil
Fast Miller 0.0340 0.0466 0.0380 0.0510
Plain Miller 0.0725 0.1208 0.0849 0.1362

Table 5.10: Weil/Tate comparison at the 80-bit security level.

128-bit
Fast Reduction Plain Reduction

Tate Weil Tate Weil
Fast Miller 0.6251 0.6915 0.8018 0.8338
Plain Miller 1.1902 1.6790 1.4919 2.0706

Table 5.11: Weil/Tate comparison at the 128-bit security level.

192-bit
Fast Reduction Plain Reduction

Tate Weil Tate Weil
Fast Miller 8.3680 8.34386 11.3332 10.3823
Plain Miller 14.6979 18.2940 19.3349 23.8012

Table 5.12: Weil/Tate comparison at the 192-bit security level.



Chapter 6

Implications for Pairing-Based Cryptography

This chapter will apply the results of Chapters 4 and 5 to discuss some issues im-

portant to pairing-based cryptography. The first section will discuss and improve

upon analysis from [41], which will put our results in a larger context by comparing a

variety of security levels and embedding degrees. In the second section we assess the

impact of an improvement to the number field sieve for finding discrete logarithms in

Fpk when p has low weight. The chapter ends with some recommendations.

6.1 Time Comparisons

The work of Koblitz and Menezes presents an analysis of the cost of computing the

Tate and Weil pairings with embedding degrees† 1, 2(ss), 2(ns), 4, 6, 12, 24 ([41],

Table 3). For supersingular curves of embedding degree 1 and 2 curve construction

techniques allow one to choose p and n such that both are GM primes. At this time

however, there is no known method to produce practical parameters for embedding

degree 1, as discussed in §5.3.2.

After a careful analysis of the number of operations required to compute each

pairing, formulas are given to count the number of operations required for each bit

of n. The table gives the cost of computing the faster of the two pairings at each

embedding degree and security level. The costs are stated as aT (b) where a is the

number of multiplications and T (b) is the time required to multiply in Fp where p is

a b-bit prime. At embedding degrees 1 and 2, when p is a Solinas prime, the time is

denoted T̃ (b).

We should say a few words about the analysis leading to the cost estimates. It

proceeds by comparing the operations at each of the bn iterations of Miller’s algorithm

(one iteration for every bit of n). Then the assumption is made that n will be a Solinas

prime or of low weight. This allows the analysis to ignore add operations, and to only

†“ss”= supersingular; “ns” = nonsupersingular. 4-24 are non-supersingular.

81
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consider the cost of doubling at each bit of n. This is reasonable, since there will be

a negligible amount of adds relative to doublings.

When k ≥ 2, the estimates also include speedups that come from working in

subfields. If 〈P 〉 is chosen carefully, a significant amount of arithmetic can be done

in Fpk/2 instead of Fpk . There is another optimization when k ≥ 2, which reduces the

work required in the final exponentiation of the Tate pairing.

With respect to the actual operations, they are all stated as multiplications in

Fp. This is achieved by ignoring additions, working out the number of Fp multiplies

required for two Fpk operands 1 and assuming squaring is equivalent to multiplication.

Experiments with the GMP library support this last assumption; for the bitlevels

under consideration squaring was only a constant 10% faster.

Once these costs have all been determined, comparisons can be made at the various

embedding degrees and security levels, but one unknown remains. Without knowledge

of how T (b) compares to T̃ (b), it is not possible to compare a time a1T (b1) to a2T̃ (b2).

Security (bits) 80 128 192 256
bitlength of pk 1024 3072 8192 15360
k = 1∗ 27T (1024) 33T (3072) 42T (8192) 42T (15360)

k = 1 27T̃ (1024) 33T̃ (3072) 42T̃ (8192) 42T̃ (15360)

k = 2(ss) 22T̃ (512) 28T̃ (1536) 36T̃ (4096) 36T̃ (7680)
k = 2(ns) 22T (512) 28T (1536) 36T (4096) 36T (7680)
k = 6 58T (171) 77T (512) 108T (1365) 133T (2560)
k = 12 203T (256) 296T (683) 365T (1280)
k = 24 1049T (640)

Table 6.1: Table 3 from [41], pairing computation cost for each bit of n. An additional
row k = 1∗ was added for the case when Solinas reduction is not used.

We reproduce Table 3 of [41] as Table 6.1. Using the timings in Chapter 4, we can

replace the T (b) and T̃ (b) with the actual times observed. This will allow comparison

of all parameters considered, as all costs will have the same units. It will also show

the relative performance of k = 1. This case will be split into two, when Solinas

reduction is used, and when standard modular reduction is used. We restate that

this is a “what-if” analysis, to determine what performance is possible should a curve

construction method that yields practical parameters be found.

1There are optimizations possible here as well, using the Karatsuba and Toom-Cook methods if
Fpk is “pairing-friendly” (see §5.1.1). This angle is too tangential to be described here, but is clearly
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Security (bits) 80 128 192 256
bitlength of pk 1024 3072 8192 15360
k = 1∗ 2.5793 23.7270 167.0760 439.1142
k = 1 1.5930 10.2399 63.2352 158.9700
k = 2(ss) 0.5412 3.0492 17.2152 47.6676
k = 2(ns) 0.7662 5.4656 40.9104 122.2740
k = 6 0.6356 2.6819 17.8848 65.1567
k = 12 2.9029 15.4304 51.6475
k = 24 52.0304

Table 6.2: Updated Table 3 from [41]. T (b) replaced with faster of REDC, GMP.
T̃ (b) replaced with timing at MRW 15. For b 6≡ 0 (mod 32), the nearest larger timing
was used (ie. 171→ 192, 1365→ 1376, 683→ 704).

Table 6.2 shows good performance in the supersingular k = 2 case. The advantage

is most significant at the highest security level, where the benefits of Solinas reduction

are greatest.

The times for embedding degree 1 with Solinas reduction are on average about

3 times slower than k = 2(ss). It was clear that k = 1 would be slower, however it

was not known how it would compare to the others (this appears as “Open Problems

7” in [41]). The relative performance based on the analysis of [41] and our timings

appear in Table 6.2. It was the slowest of all, even in the (hypothetical) estimates

using Solinas reduction. With standard reduction, it becomes extremely slow (5 to

9 times slower than k = 2(ss)). With the large difference between the two k = 1

cases, should an application have a reason to favor k = 1, effort should be invested

to find a curve construction technique which will allow the use of a Solinas prime

characteristic.

Based on the original table (our table 6.1) the authors suggest that for nonsuper-

singular k ≥ 2 to use larger k for best performance. This is generally supported by

the times in Table 6.2. However, it does not appear that larger is always better, there

are two counter examples: k = 12 is slower than k = 6 at 128-bits of security and

k = 12 is faster than k = 24 at the 256-bit security level. Since these timings are

partially estimates, they are inconclusive, and unfortunately more experimentation is

necessary. In addition, the new methods of [36] are applicable for larger k and it may

always be faster to use the Tate pairing.

described in [41].
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There is an inverse relationship between the embedding degree and the advantage

of reduction modulo a Solinas prime. This caused by the decrease in operand size

at larger k. To achieve the same level of security in Frk as in Fp (for primes p, r) r

must only be bp/k bits. Table 6.1 shows the number of bits in p as k increases. At

the 256-bit security level, k = 2 has bp = 7680, and we can realize a 61% speedup if

p is Solinas with MRW 15 (30% for MRW 35). By contrast, for k = 24, bp = 640,

the speedup provided by Solinas arithmetic drops to 34% at MRW 15, and offers no

speedup for MRW 35. So as k increases, the benefit of choosing p to be a Solinas prime

decreases, providing less motivation for curve construction that sets p to be Solinas

prime with large k. Such a search would also have to find primes of much lower MRW

as the acceptable upper limit drops considerably from 200 (down to about 15 in the

example above).

Finally, we remind readers that the estimates in Tables 6.1 and 6.2 are precisely

that, estimates. When we compare the implementation timings of chapter 5 to the

estimates presented here, the trends are identified correctly, which helps validate this

analysis. The agreement between the analysis and our observations with respect to

the crossover point in the cost of pairings also lends support to the accuracy of the

analysis. However, differences between quantities are not precise, and this should be

understood when making conclusions.

6.2 Vulnerability of Generalized Mersenne Primes to the NFS

Often in cryptography, efficiency enhancements have an impact on security. Take

for example, the case of F2m . Arithmetic is cheaper, however, discrete logs can be

solved more easily (see §3.1). With low weight primes, it was feared that it may be

possible to use the special number field sieve (SNFS) instead of the number field sieve

(NFS) to solve discrete logarithms in Fpk . We do not review these algorithms here,

but borrow a quote from Crandall and Pommerance [25] to describe them: “These

methods may be thought of as grand generalizations of the index-calculus method,

and what makes them work is a representation of group elements that allows the

notion of smoothness”. Some relevant references for using the NFS/SNFS to solve

discrete logs are [35, 64, 4, 5, 62].

The running time required by the SNFS to solve discrete logs in a 2b-bit field
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is roughly the time required by the NFS in a b-bit field [41]. Since the security of

pairing based schemes depends on the difficulty of the DLP in Fpk , this is relevant to

our study (see §2.5.1, “Relevant Presumably Hard Problems”).

A recent preprint by O. Schirokauer [63] investigates improvements to the number

field sieve that can be made when p has low weight. He estimates (and gives examples)

that a bpk-bit field only provides an estimated (bpk−γ)-bits of security. In other words,

discrete logs in the field of size bpk are only as difficult as discrete logs in a field of

size bpk − γ.

We recall the examples (re-used from examples from [41]) where the modified NFS

provides an improvement.

# p k bpk bpk − γ % chg.
1 28376 − 28333 + 28288 − 27991 + 27947 + 27604 + 1 1 8376 7470 11
2 215474 − 214954 + 214432 + 1 1 15474 13180 14
3 2520 + 2363 − 2360 + 1 2 1040 880 16
4 21582 + 21551 − 21326 − 1 2 3162 2250 29
5 24231 − 23907 + 23847 − 1 2 8462 5850 31
6 27746 − 26704 − 1 2 15492 9770 37

Table 6.3: The examples used in [63]. bp is the size of the field Fpk in bits. bp−γ is the
estimated security in bits provided. The last column shows the percentage decrease
in the security provided.

The decrease in security is not as large as the SNFS could have potentially been,

but is still significant. Two things are apparent from Table 6.3 and the comments

made by the author. The modified NFS works faster with larger numbers, and is

significantly faster in an extension field of degree 2 than in a prime field.

Efficiency of field arithmetic in Fp and Fp2

With Schirokauer’s NFS being taken into consideration, the size of our Solinas prime

p must be increased to maintain security. We make the assumption that a low weight

characteristic field of size bpk + γ provides the same (or greater) security as a general

field of size bpk , and revisit some of the examples from the previous section where

security was affected2. Then we compare the time required for modular multiplication

2This is justified by the fact that the running time of algorithms to solve discrete logarithms is
subexponential.
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at the “corrected” bitlevel bpk + γ using Solinas reduction to the time required by

general methods at bpk (the general method chosen was the faster of the REDC and

GMP baselines).

# bpk bpk + γ bpk MRW15 bpk + γ MRW15 bpk Standard
1 8376 9282 1.5304 1.71002 4.1442
2 15474 17768 3.7852 4.8965 13.457
4 3162 4074 0.1089 0.1650 0.3235
6 15492 21214 1.36799 2.2203 6.0089

Table 6.4: Comparison of modular multiplication times. In examples 4 and 6 the
times shown are for multiplication mod a bp2/2 bit prime. We show the timings for
104 modular multiplications.

Table 6.4 suggests that the benefits of Solinas arithmetic outweigh the improve-

ments to the NFS. It shows the original field size (bpk), the number of bits in the

enlarged field (bpk + γ), then the cost of modular multiplication using GM primes at

both of these sizes. The last column shows the time for arithmetic in the original

field using a general algorithm, such as Montgomery multiplication. Even after the

field size has been increased to maintain the difficulty of the DLP, Solinas reduction

provides significant improvement. We used the modular reduction weight of 15 for

comparison, however the numbers would differ only slightly for larger MRWs, as the

results from Chapter 4 have shown. Recall that this conclusion relies on the assump-

tions that the field of size bpk + γ provides as much security as the field bpk . Also,

this conclusion is only applicable in general if the improvements to the NFS in these

examples is representative of all low weight primes. Until more is done to understand

the performance of the modified NFS, hard conclusions will not be possible.

6.3 Recommendations

Collecting up the analysis of this section, we can make some recommendations for

pairing-based cryptography.

The embedding degree k = 1, in both the supersingular and nonsupersingular

cases will unlikely be a viable option where performance is a concern. We make this

recommendation based on the difficulty of the finding suitable parameters (as we

saw in Chapter 5), and the unfavorable relative performance, even in the case when
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Solinas arithmetic is used.

If there is another reason that makes k = 1 attractive for a particular application

or protocol, then a new curve construction technique should be sought. Since it

has the largest operands, Fp at high security levels can gain the most from Solinas

reduction. In addition, low weight prime fields Fp are less vulnerable to Schirokauer’s

NFS (see Table 6.3).

We have also strengthened the analysis of [41] for the case of nonsupersingular

curves with embedding degree k ≥ 2. By adding the timings from Chapter 4, we

can confirm that, in general higher embedding degrees are better. At the same time

we have uncovered some cases where this may not hold, raising doubt that this is

always true. We have also confirmed the suggestion that at security levels greater

than 192-bits, the Weil pairing gives better performance than the Tate pairing. This

recommendation is specific to k = 2 (ss and ns). For ordinary curves of larger

embedding degree, the work of Granger et al. should be considered.

The last recommendation is that the use of Solinas primes should not be aban-

doned because of the improved NFS. We have shown that the benefits of Solinas

reduction greatly outweigh the improvements to the NFS, and that better perfor-

mance can be achieved with a larger Solinas prime than with a smaller general prime.

The parameters at each security level listed in Table 3.1 should be increased to

maintain security when Solinas primes are used. Exactly how much they should be

increased is yet to be determined. The decreased security was estimated by Schi-

rokauer and until the running time of his NFS variant is better understood, we must

tread carefully. On this note, we should say again that [63] is a preprint and still very

new work, which may be improved or changed as the research community reviews it.



Chapter 7

Conclusion

During the course of this work, we found many related interesting problems. This

chapter first gives some concluding remarks then describes them.

The results of this work answer open questions about the use of generalized

Mersenne numbers in computations supporting pairing-based cryptography. We have

quantified their importance to these computations and determined their range of

applicability. Throughout, our attention to real-world implementation issues makes

our contributions ready to be applied to current applications, in both industrial and

research settings. Though not a focus of this work, the results in the area of field arith-

metic and representation of primes are simultaneously applicable to a wider range of

problems in computational number theory. The related problems we have discovered

in the process will serve to motivate future work.

7.1 Future Work and Open Problems

The following list of problems are believed to be open at the time of writing. The first

half are problems that impact a wide range of research that uses modular arithmetic.

1. Can the MRW of a polynomial p(t) be computed (or estimated) quickly from

the coefficients of p(t), without computing the matrix X?

2. Establish bounds on MRW(p) for an arbitrary prime p. Then, for a given prime

p, what is the lowest MRW representation possible? Is it low enough to allow

the efficient reduction methods of §4.3 to be used on all primes? If not, what

is the density of primes with MRW low enough to be practical? How does this

density change when we apply the further restriction that the prime must be

word aligned? (as defined in §5.2).

3. Give an algorithm that takes an arbitrary prime p and returns a polynomial
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p(t) ∈ Z[t] such that p = p(2k) and MRW(p(t)) is minimal. By minimal, we

mean there exists no q(t) ∈ Z[t] such that p = q(2k) and MRW(q(t)) <MRW(p(t)).

4. Generalize the work of [6], which counts the number of GM primes of a certain

form, to include a broader families of GM numbers. If possible, restrict the set

to those with low modular reduction weight (c.f. Problem 2).

5. Find other families of GM numbers with known MRW, like the one described

in §4.6, and those given by Solinas in [74].

This portion of the list deals with problems related to pairing-based cryptography.

6. The modified NFS relies on low-weight primes to find discrete logs quickly.

Fast modular arithmetic depends on the MRW but not the weight. Can primes

with high weight and low MRW be found? These primes would provide some

additional security, however the runtime of Schirokauer’s NFS is only weakly

dependent on the weight, there is also another property (see [63], page 17). Is

it possible to choose primes that sidestep the optimizations of the NFS and

simultaneously have low MRW?

7. Determine the practicality of the new NFS, and provide implementation evi-

dence to support or refute the current estimates. Also, describe the performance

as the embedding degree rises. Do larger embedding degrees provide more, less,

or equivalent security?

8. Devise a curve construction technique to create supersingular curves of embed-

ding degree one where n has low weight and p has low MRW.

9. What is the performance of OEF arithmetic at high security levels? Is it a viable

option? Pairing-based cryptography has considered fields of small characteristic

(2,3) and large characteristic (as in this work) but not of medium characteristic,

i.e. p < 2w (small enough to fit in a machine word).

10. In [21], Chung and Hasan generalize the notion of GM number further to

m = qa0 ± qa1 ± . . .± 1 for any prime q. Explore applications of this concept to

the problems in the previous list, and also to pairing-based cryptography. Does

inclusion of these primes facilitate curve construction and parameter selection?



Appendix A

List of Notation

Symbol Description, Page number of first appearance

K a field, 7

K[x1, . . . , xn] polynomials in x1, . . . , xn with coefficients from K, 7

GF (pm) or Fpm the Galois field with pm elements, 7

exp(G) the exponent of a group G, 7

E/K elliptic curve E over K, 9

char(K) characteristic of K, 9

K the algebraic closure of a field K, 9

E(K) group of points on the elliptic curve E, 10

O the point at infinity, 10

[m]P elliptic curve multiplication, 10

E(K)[m], E[m] m-torsion subgroup, 12

#E(K) order of the curve group E(K), 12

t trace of an elliptic curve, 12

K[E] the coordinate ring of E/K, 13

K(E) function field of E/K, 13

uP uniformizer at P , 14

ordP (f) order of the rational function f at the point P , 14

D a divisor, 14

deg(D) the degree of a divisor, 14

div(f) the divisor of the rational function f , 14

Div(E) the group of divisors of E, 14

Prin(E) the principal divisors of E, 14

Div0(E) degree zero divisors of E, 14

Prin0(E) degree zero principal divisors of E, 14

Pic0(E) = J(E) the Jacobian of E, 14
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e(·, ·) an abstract pairing, 16

µn the n-th roots of unity, 16

en(·, ·) the Weil pairing, 16

K∗ the multiplicative group of a field K, 17

fn,P a rational function in K(E) with divisor n(P )− n(O), 17

〈·, ·〉 the Tate pairing, 18

LP,Q the normalized line through points P, Q, 58

VP,Q the vertical line used to add points P, Q, 58

X matrix used to determine Solinas reduction function, 39

bp the number of bits in p, 75



Appendix B

Test Platform Hardware and Software Particulars

This system was purchased with funds from CFI.

Software Information

uname output: Linux euclid 2.6.13-gentoo #7 SMP i686

Intel(R) Pentium(R) 4 CPU 3.00GHz GNU/Linux

compiler version: gcc version 3.4.5 (Gentoo 3.4.5, ssp-3.4.5-1.0, pie-

8.7.9)

compiler flags: Code for field arithmetic: -O2, code for pairings: -O3

-march=i686

GMP version: 4.1.4-r1

GMP-ECM version: 6.1-beta default compiler flags with redc-asm option

Hardware Information

Make and model Dell Optiplex GX280 (mini-tower)

Microprocessor type Intel Pentium 4

Level 1 (L1) cache 32 KB

Level 2 (L2) cache 1 MB pipelined-burst, eight-way set associative,

write-back SRAM

Memory Type 533 MHz DDR2 SDRAM

Chipset Intel Grantsdale
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