Self-fertilisation can be an evolutionary dead-end
Diala Abu Awad1,*

1 Laboratoire GEPV - UMR CNRS 8198, Bât. SN2, Université Lille 1, 59655 Villeneuve d’Ascq
diala.abu-awad@univ-lille1.fr

Introduction
The “dead-end hypothesis” stipulates that self-fertilising lineages are doomed to extinction due to reduced effective population size (Wright et al. 2008) that simultaneously promotes the accumulation of deleterious mutations and the decrease in genetic variation, the latter potentially reducing their adaptive potential to changing environments (Takebayashi and Morrell 2001). However, theoretical works on the evolution of self-fertilisation find that the greater efficacy of the purging of deleterious mutations due to non-random mating favours the evolution for increased rates of self-fertilisation (Lande and Schenske 1985, Charlesworth et al. 1990). The observation of higher extinction rates of self-fertilising lineages compared to outcrossing ones (Goldberg et al. 2010) therefore seems puzzling, and may be due solely to differences in adaptive potential between the two reproductive strategies (Glémín and Ronfort 2013). As population genetics models consider populations of a fixed size, they neglect the potential demographic consequences of the evolution of the rate of self-fertilisation. In this current work we propose an individual-based stochastic model in which population size is a result of the interaction between demography and selection. We have modelled the transition from an initially outcrossing reproductive system to a self-fertilising one due to the introduction of recurrent mutations at a modifier locus and followed the demographic evolution of populations in order to determine whether the change in the reproductive strategy can lead to population extinction.

Hypotheses
If self-fertilisation at a mean rate π_0 can and does evolve in a population (meaning that the level of inbreeding depression is sufficiently small), then there are three possible trajectories a population can follow. If the transition is successful and the rate of self-fertilisation is at equilibrium, either the population is viable (scenario 1), or due to the accumulation of deleterious mutations, the population goes extinct (scenario 2). Another possibility is that during the transition, before the stabilisation of π_0, population size becomes so small that it goes extinct due to demographic stochasticity.

Results
Stochastic simulation results for a single simulation run. Of the parameters run, when mutations were completely recessive ($h = 0$), self-fertilisation remained close to 0 as the levels of inbreeding depression were very high (over 0.75). When the coefficient of selection s is 0.2 and the dominance h is 0.2, we only observed the first scenario (see Hypotheses), i.e., all populations evolved very high rates of self-fertilisation ($\pi_0 \approx 1$) and were viable. Scenarios 2 and 3 were observed exclusively for very mildly deleterious mutations $s = 0.02$ and $h = 0.2$.

After the successful transition to self-fertilisation (see figure on the left), although we observe viable populations (blue line), there are some cases of evolutionary suicide (purple line). In these simulations, there is the fixation of modifier alleles favouring very high and even strict self-fertilisation. The short term advantage of self-fertilisation (Fisher’s automatic advantage, Fisher 1941) leads to extinction in spite of the presence of mutations capable of decreasing the self-fertilisation rate.

The evolution of the rate of self-fertilisation:
Mutations at the modifier locus (occurring at a rate 10^{-5}) lead to new alleles at this locus which can modify the availability of self-pollen α_i for individual i. The alleles at this locus are co-dominant. The new value of α_i is sampled from a uniform distribution $(-d, d)$ around the old value, hence either decreasing or increasing it.

References