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Abstract

The principal possibility of nonspecific energy expenditure at all stages of the transformation of nutrients in the 
body is demonstrated. These stages include the processing of food in the mouth, digestion, absorption, interaction 
with the intestinal micro biome, and interstitial metabolic processes. Particular attention is paid to the role of 
nonspecific energy expenditure of the body in the regulation of body mass. The data on the pivotal role of reducing 
nonspecific energy expenditure in the development of obesity and associated pathological conditions are presented. 
The prospects for using uncouples of oxidative phosphorylation, fatty acids, carnitine, bile acids, sarcolipin and a 
number of other substances as regulators of the nonspecific energy expenditure and potential means of preventing 
and treating obesity are analyzed.
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Introduction

Body mass and health obesity as a risk factor of 
cardiovascular and endocrine disorders

Objective of the article: Despite the undoubted 
progress in modern medicine, cardiovascular diseases 
continue to be the leading causes of death worldwide. 
To a large extent, this pattern is a consequence of the 
increasing prevalence of obesity in all civilized countries. 
Overweight is well-known to be directly related to the 
pathogenesis of a number of endocrine and metabolic 
disorders, not to mention the essential limitations of 
the social functions of obese people and the occurrence 

of enormous psychological and personality problems. 
Consequently, the fight against obesity and prevention 
of obesity should be considered to be priority strategic 
goals of the XXI century medicine [1]. At the same time, 
as the results of the latest scientific research show, the 
mechanism of the development of obesity is extremely 
complicated and can include the violation of many 
regulatory factors that control body mass. Today it is 
almost impossible to answer the question why the same 
diet in two people of the same sex, age, and having 
practically the same muscular energy expenditure, often 
leads to highly significant differences in their body mass. 
One person, even getting excess calories, preserves the 
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normal body weight without any problems, while the 
other, consuming a hygienically normalized amount of 
calories, has a clear propensity for obesity. In part, this 
probably depends on the different ability of people to 
absorb nutrients. To create the same diet does not present 
any difficulties, but it is probably impossible to simulate 
the same degree of assimilation of nutrients, because 
each person has an absolutely individual, genetically 
determined system of digestive enzymes. Moreover, 
each person forms a unique intestinal microbiota during 
ontogeny, and this, undoubtedly, influences nutrient 
assimilation. In addition, until now, many people and 
even some doctors have a very simplistic idea of the 
applicability of the law of conservation of energy to living 
systems. For example, they believe obesity to be solely 
the result of consuming excess calories compared to the 
necessary costs for physical activity [2]. In fact, the body 
can distribute excess calories from food at least in three 
ways:

1. Conversion of part of the energy of nutrients into 
reserve substances (fat and glycogen);

2. “Burning” of a certain proportion of metabolic fuel 
in tissues to carry out various types of work:

• Mechanical work (muscle contraction, the work 
of molecular machines, the creation of electric 
gradients of ions Na +, K +, Ca2 +, H + and their 
use for generation of a nervous impulse, cellular 
signaling, synthesis of ATP, etc.)

• Osmotic work (providing energy of various types of 
active transport of substances through biological 
membranes),

• Anabolic work (energy supply for the synthesis 
of proteins, lipids, carbohydrates, nucleic acids, 
various regulatory molecules, etc.)

• Activation work (energy-dependent activation of 
various organic molecules before their including 
into metabolism),

• Detoxification (energy-dependent reactions of 
neutralizing endogenous toxins and xenobiotics),

• Thermal work (generation of heat necessary to 
maintain a constant body temperature);

3. Nonspecific (“useless”, futile) energy losses of 
nutrients and endogenous metabolic fuel. This 
kind of energy expenditure is almost imperceptible 
to man. The participation of the first and the 
second ways in the regulation of body weight has 
been studied quite well, but the role of the third 
is not so clear. The practical recommendations 
that should be the result of understanding this 
role are also unclear. The terms “useless” or 
“futile”, in our opinion, are not correct, since 

this energy dissipation protects the body from 
obesity and, therefore, are very useful. The 
purpose of this review is to analyse in detail this 
energy expenditure of the body and to assess the 
possibilities and prospects for using fundamental 
scientific achievements in this area to prevent and 
treat obesity.

The main stages associated with nonspecific 
energy expenditure and changes in body mass

 Nonspecific energy expenditure is possible at all 
stages of assimilation of nutrients such as (Figure 1):

• Primary processing of food in the oral cavity,
• Food digestion in the stomach, small intestine,
• Diet-induced thermogenesis,
• Interacting with small and large intestine 

microbiota,
• Intracellular transformations of metabolites,
• Final metabolic reactions associated with the 

transport of protons and electrons in the 
• Mitochondrial electron transfer chain and the 

oxidative synthesis of ATP.

Figure 1: Levels of nutrient energy transformations 
associated with nonspecific energy expenditure.

 
The stage of primary food processing, chewing, 

digestion, absorption of basic nutrient digestion 
products: The regulating role of the quality of primary 
processing of food in the oral cavity, associated with 
its mechanical grinding, wetting, impregnation with 
enzymes and viscous components of saliva, having the 
properties of natural lubricants, seems quite obvious. It is 
at this stage these conditions are created for the further 
digestion of complex nutrients in more distal regions 
of the gastrointestinal tract. The effectiveness of the 
primary processing of food depends on the condition of 
teeth, gums, the functioning of large and small salivary 
glands, as well as the nature of masticatory organs. It 
would seem that in people prone to obesity, food in the 
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cavity should be processed most efficiently, ensuring the 
use of the maximum potential energy of nutrients. In fact, 
in such individuals, tooth loss [3-5], dental caries [6] and 
periodontal disease [7] are more often observed than in 
people with normal body mass. Such people, as a rule, 
eat hurriedly, badly chewing food, trying to satisfy hunger 
more quickly. The causal relationship here is not entirely 
clear, but the fact itself is unquestionable. As a result, in 
obese people, food is poorly chewed and insufficiently 
processed by oral fluid components. However, it should 
be borne in mind that ineffective primary processing 
of food in obese people is more than compensated by 
increased food intake due to a violation of the secretion 
of hormones that limit appetite and the amount of food 
consumed. In healthy people, effective fragmentation, 
softening and wetting of food as a result of a more 
complete chewing act leads to more complete satiety as a 
result of the consistent action of hormones (orexins and 
anorexins) responsible for the formation and successive 
change in hunger and satiety feeling. In people prone to 
obesity, this sequence is usually disordered [8,9]. In this 
connection, the truly plausible foresight is the slogan of I. 
lf and E. Petrov from the “The Twelve Chairs”: “Carefully 
chewing food, you help society” (now this slogan can be 
interpreted not only in a sense that by this you save food, 
so necessary for a society, but also reduce the likelihood 
of developing obesity in yourself, and therefore, in a 
society as a whole).  Nonspecific energy expenditure 
at this stage is also associated with the increase in heat 
generation during food intake or in the postprandial 
period. The effect is called “diet-induced thermogenesis”. 
It appears as a result of energy use for production and 
secretion of enzymes, absorption of digestion products, 
resynthesis of lipids and proteins, gut motility, production 
of gastrointestinal hormones etc. This thermogenesis 
makes up 5-15% of daily energy expenditure [10]. Food 
components have a different effect on the size of the 
energy expenditure. The highest thermogenesis is 
induced by dietary proteins, but it is also dependent on 
the type of proteins [11]. Diet-induced thermogenesis 
may be a target for controlling body energy consumption 
in obesity [12].

The stage of digestion and assimilation of 
nutrient digestion products, intestinal microbiome 
as one of the regulators of nonspecific energy 
expenditure of the body: The same food is digested 
quite differently in different subjects who do not have 
an identical activity of digestive enzymes. Differences, in 
this case, can be explained by well-defined genetic causes 
(congenital enzymopathies of digestive enzymes that 

lead to the development of malabsorption phenomena) 
and acquired defects of digestive enzyme systems 
caused by the inhibitory effect of various internal and 
external factors. Undigested nutrients inevitably appear 
in the feces, representing nonspecific energy losses in 
the form of energy losses of the initial energy of nutrients 
(a typical example is steatorrhea). Inhibitors of digestive 
enzymes have been used for a long time as medicines 
in the treatment of severe forms of obesity to create 
artificial malabsorption of nutrients. This approach to the 
treatment of obesity continues to develop actively [13-17]. 
Disclosure of the detailed mechanism of the development 
of obesity, associated with energy metabolism disorders 
at this stage, requires the description of the role of various 
hormones, not only those produced by the “classical” 
endocrine glands, but also by cells of the gastrointestinal 
tract, liver, adipose tissue, various parts of the brain, 
muscles and other tissues. Many of these hormones 
affect directly or indirectly the food behavior, as well as 
the efficiency of the enzymatic systems of the digestive 
tract, the activity of which the body weight depends 
on. Another part of hormones affects adiposeness and 
metabolism in adipose tissue. In this paper? We will not 
analyze the contribution of each of these hormones to 
the regulation of body weight, nor the characteristics of 
the mechanism of their regulatory effect, since a large 
number of review articles are devoted to these questions, 
including our previously published review [18]. On the 
other hand, it is at the stage of digestion and absorption 
of food components that the human and animal body is 
forced to “share” a part of the potential nutrient energy 
with an intestinal microbiome, an evolutionary symbiont 
living in mutually beneficial coexistence with the host 
organism, and this is also part of the nonspecific energy 
expenditure. The degree and nature of these energy 
inputs depend, first of all, on a set of microorganisms 
in the microbiota. In recent time, the effect of the 
intestinal microbiota composition as a potential factor 
influencing the energy balance and fat accumulation 
has been particularly intensively studied. Nonspecific 
energy expenditure at the stage of the interaction of 
the organism with the microbiome largely depends on 
the intake of prebiotic food fibers- polysaccharides, 
not digested by host enzymes, but contributing to the 
development of normal intestinal microflora [19-22]. The 
intestinal microbiome can affect the intestinal motility, 
the ingestion of the products of its metabolism into the 
blood, and the regulatory functions of the brain that 
control the energy balance. The latter manifests itself 
both at the level of nutritional sensitivity mechanisms 
and potentially at integration sites in the central nervous 
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system (reaction to increasing fermentation of indigestible 
polysaccharides and obtaining additional energy from a 
part of the food, reducing the expression of a number of 
gut hormones and increased release of the YY peptide, 
which slows the mobility of the intestine, etc). Therefore, 
changes in the microbiome species composition can lead 
to both a decrease in body mass due to the loss of part of 
the nutrients as a result of the development of diarrhea, 
and to the development of obesity because of the slowing 
of peristalsis. Disturbances in the microbiome (e.g. under 
antibiotics) can affect body mass along several routes, 
including differences in energy exchange between 
the intestinal microbiota and the host’s organism, the 
formation of new metabolites that are not typical for the 
host organism, as well as changes in immunity and the 
development of inflammation in adipose tissue [22-24]. 

 Some authors attach particular importance to 
microbiome disorders in the pathogenesis of obesity, 
considering this condition to be a special form of intestinal 
infection, in particular caused by Clostridium Difficile and 
this infection is believed to be transmitted by the fecal-
oral route. This form of obesity can be transmitted, for 
example, from one member of a family to another and 
can simulate the “hereditary” nature of the disease. 
According to some authors, the most radical way to 
prevent and treat such forms of obesity is to transplant 
the microbiome from a healthy donor [25-28].

Intracellular metabolic processes and energy 
dissipation, futile cycles

Energy dissipates inevitably in many anabolic and 
catabolic processes taking place in the cells, since 
common intermediates appear to take part in reversible 
chemical transformations. These transformations are 
not isoenergetic and catalyzed by different enzymes 
[29]. Typically, such transformations form the so-called 
futile (useless) cycles, the functioning of which leads 
to the dissipation of energy. Examples of such cycles 
are fructose-6-phosphate / fructose-1,6 bisphosphate 
cycle; glycerol / glycerol-3-phosphate cycle; pyruvate / 
phosphoenolpyruvate cycle, creatine / creatine phosphate 
cycle; futile cycle of calcium in the mitochondria, and 
many others [30-33]. The constant “rotation” of such 
cycles leads to the occurrence of self-oscillation of the 
substrate concentrations involved in the cycle. The works 
of Russian biophysics E.E. Selkov and his followers proved 
for the first time the association of oscillations of futile 
cycles with circadian rhythms that allows considering 
these cycles as part of the mechanism of “biological 
clocks” [34].

 The speed of functioning of the futile cycles can vary 
significantly under the changing functional states of 
the organism and, consequently, the amount of energy 
dissipated can vary. Thus, these “useless” cycles can 
perform a very useful function of maintaining the energy 
homeostasis of the body [35]. A significant slowdown 
of some futile cycles during the development of obesity 
has been demonstrated. [36]. Most futile cycles have 
many different hormonal and allosteric regulators, 
which are likely to become targets for the creation of 
pharmacological agents aimed at the prevention and 
treatment of obesity [37].

Dissipation of energy as a result of oxidative 
phosphorylation uncoupling

The main way to convert the energy of nutrients in the 
body is the synthesis of ATP as a universal high energy 
substance that can participate as an energy donor in 
performing various types of ATP-dependent endergonic 
functions. In eukaryotes, ATP is mainly synthesized in 
mitochondria by oxidative phosphorylation, a process 
discovered in 1930 by a Russian biochemist and molecular 
biologist V.A. Engelhardt. The rate of mitochondrial 
respiration depends on many factors, including the ratio 
of [ADP] / [ATP]. Mitochondrial oxygen consumption rises 
sharply with an increase in the concentration of ADP 
(respiratory control) and spontaneously decreases when 
all ADP is converted to ATP. Transport of electrons using 
oxygen as the final electron acceptor (mitochondrial 
respiration) and the synthesis of ATP catalyzed by proton 
ATP synthetase are coupled processes, and the degree 
of coupling can be quantified by calculating the P: O or 
ADP: O ratios that express the number of ATP molecules, 
formed upon the uptake of 1 oxygen atom. Even if the 
coupling is maximally complete, not all of the energy 
released in the transfer of electrons towards oxygen is 
used for ATP synthesis. A certain share of the energy 
turns inevitably into heat, necessary to maintain body 
temperature. Moreover, the ideal complete coupling of 
respiration and oxidative synthesis of ATP is apparently 
impossible and dangerous because of the increased 
formation of reactive oxygen species and free radicals. 
Endogenous uncouplers of oxidative phosphorylation, 
such as fatty acids, calcium ions, uncoupling proteins, 
etc., protect mitochondria and cells from excessive 
accumulation of active forms of oxygen (ROS), chemical 
modification of proteins and the cell death program 
initiation [38-41].

Regulators of oxidative phosphorylation: There 
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are many regulatory factors that control the rate and 
effectiveness of oxidative phosphorylation. These 
factors include a number of mineral and organic 
substances of endogenous and exogenous genesis that 
change the activity of transport systems delivering the 
necessary substrates and removing products of their 
transformations through the mitochondrial membranes, 
as well as the activity of the enzyme systems of electron 
transport and oxidative synthesis of ATP. At present, it is 
firmly established that all these factors are directly related 
to the regulation of body weight and are potential targets 
for the development of new methods for the prevention 
and treatment of pathological conditions associated with 
obesity [42].

Uncouplers as inducers of nonspecific energy 
expenditure of the organism: Uncouplers of 
oxidative phosphorylation are the substances that 
reduce the proton membrane potential of the inner 
mitochondrial membrane (ΔμH+). They activate 
mitochondrial oxygen consumption and turn off the ATP 
synthesis reaction catalyzed by proton ATP-synthetase 
(H+ -ATPase). Under the influence of uncouplers, the 
energy of electron transport from the initial substrates 
to oxygen is dissipated as heat. That part of the heat 
energy, which exceeds its required level to maintain 
constant body temperature, should be attributed to 
the nonspecific energy expenditure of the body. The 
action of the uncouplers is directed not at the enzymatic 
systems of the mitochondria, but onto the lipid bilayer of 
the inner membrane. Depending on the mechanism of 
the uncoupling effect, all these substances can be divided 
into 3 main classes:

Protonophores: Substances that induce the proton 
conductivity of the inner mitochondrial membrane and 
reduce or completely remove both components of the 
proton membrane potential (Δψ and ΔpH) are called 
protonophores. Most of these substances are weak 
hydrophobic acids that induce transport of H + ions 
through the impermeable inner mitochondrial membrane 
and release these ions within the mitochondrial matrix by 
the dissociation of the acid molecules. According to the 
Mitchell chemiosmotic theory, the oxidation-reduction 
reactions occurring in the respiratory chain are the direct 
energy generator in the form of the chemical potential 
ΔμH+ (proton-moving force). The action of protonophores 
is based on the decrease of ΔμH+ as the most important 
link in the coupling phenomenon. As a result, the ΔμH+ 
energy are dissipated as heat. Protopophores are the 
potential candidates for the role of anti-obesity drugs, 

especially through their ability to prevent excessive 
accumulation of ROS in mitochondria [33]. By now, a large 
number of substances possessing precisely such type of 
the uncoupling action have been isolated or synthesized. 
The structural classification of protonophor uncouplers 
was developed by T. Hiroshi in 1990 [43]. In accordance 
with this classification, substances of this class are as 
follows: 

Phenols

A classic example of the uncouplers of this class is 
2,4-dinitrophenol (DNP).

 In the early 30s of the last century it was found that 
the 2,4-dinitrophenol substance, which was widely used 
in industry, reduced the body mass of workers who were 
in contact with this substance. Maurice Teiner, a clinical 
pharmacologist of Stanford University, studied the 
substance as a pharmaceutical for treating obesity, and as 
a result, for two decades, DNP was used for this purpose 
in the US and several European countries. But soon the 
drug DNP was found to have a very narrow therapeutic 
range and a wide range of toxic effects, so now its clinical 
use is legally banned in most countries [44]. However, 
curently it’s enough to go on some Internet sites to find 
criminal attempts to advertise DNP as a regulator of body 
weight. 

A number of human and animal hormones are iodine-
containing phenol derivatives (di- and triiodothyronines). 
As has been shown by many studies, these hormones 
have a distinct caloric effect at the level of the whole 
organism, and therefore it seemed logical to assume 
their direct protonophoric dissociative effect. However, 
as it turned out later, the uncoupling effect was actually 
observed in vitro, but at concentrations significantly 
higher than physiological and pharmacological. It has 
now been proved that the action of these hormones 
in vivo is not direct, but mediated by their activating 
influence on the hormone-sensitive triglyceride lipase of 
adipocytes, the uncoupling action of free fatty acids and 
the activation of transcription of the genes of uncoupling 
proteins (UCP) [45,46]. The latter effects will be discussed 
below in the corresponding section of this paper.
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Benzimidazoles

 These uncouplers are typical weak aromatic acids 
whose kinetics of penetration through lipid bilayers has 
been studied both on isolated mitochondria and on 
artificial membranes. There have been a few attempts 
to use this class of uncouplers to correct experimental 
obesity and diabetes [47,48], but these studies have not 
been further undertaken, possibly because of the same 
reasons that restrict the use of DNP for these purposes.

N-phenylanthranilates

We could not find direct evidence of the possibility 
of using this class of uncouplers as a means to combat 
obesity, but given the fact that these substances have anti-
inflammatory effect, and that the development of severe 
obesity is necessarily accompanied by inflammation of 
adipose tissue, it can be assumed that these substances 
might be tested on their ability to reduce body mass [49].

Salicylic acid and its derivatives

 In recent years salicylic acid derivatives (aspirin, 
salsalate, sodium salicylate) have attracted increasing 
attention of researchers as relatively low-toxic agents 
for the prevention and treatment of obesity, metabolic 
syndrome and diabetes mellitus. The effect of aspirin 
is largely potentiated by some other substances used 
to reduce body mass (ephedrine, xanthines). However, 
the decrease in body mass under the influence of 
salicylic acid derivatives is probably due not so much 
to their uncoupling effect but to the anti-inflammatory 
and anticoagulant effect, as well as to the inhibition 
of cytokines responsible for the proliferation and 
differentiation of white adipocytes [50-52].

e) Salicylicanilides

 This group of substances has a powerful uncoupling 
effect. However, the uncouplers of this group are most 

likely not used for regulation of body mass because they 
have various inhibitory properties in addition to the 
uncoupling action [53-55], and they are therefore very 
toxic even at minimal concentrations. The derivatives 
of salicylanilides are used in experimental and clinical 
medicine, mainly as antibacterial and cytotoxic agents. 
They suppress the growth of mycobacteria tuberculosis, 
gram-positive microflora, and a number of fungi, some 
mollusks, helminths and tumors [56-60]. Despite this, 
attempts have recently been made to incorporate 
salicylanilide into drug compositions for treatment of 
metabolic syndrome [61].

Phenylhydrazones

Phenylhydrazones are products of the interaction of 
phenylhydrazine with aldehydes or ketones. A number 
of phenylhydrazones have a powerful uncoupling action. 
Carbonyl cyanide p- (trifluoromethoxy) phenylhydrazone 
(FCCP) is most often used in experiments on the study of 
respiration of mitochondria:

Recently, new phenylhydrazone derivatives have been 
synthesized which, in the opinion of the authors, can be 
used to treat and prevent obesity, type II diabetes, insulin 
resistance, impaired glucose tolerance, or cardiovascular 
diseases [62].

Acyl dithiocarbazates

R

We did not find any information about the influence of 
this type of uncouplers on free energy expenditure at the 
level of the whole organism, as well as their influence on 
the body weight of animals and humans. This is probably 
due to the high toxicity of dithiocarbazates, many of which 
possess the properties of metal chelators with variable 
valency [63], and exhibit the properties of cytotoxic and 
antimicrobial agents [64,65].

Coumarins
 
Dicumarol is the most known of the coumarin 
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uncouplers.

As early as the 1920s, its anticoagulant effect, due to 
his anti-vitamin K activity, was discovered, and in the 
1940s this substance was isolated from the clover and 
its uncoupling effect was shown. It is unlikely that this 
uncoupler, actively acting as a protonophore in vitro, 
could be used to regulate body mass precisely because 
of its strong anticoagulant and antivitamin effect.

Aromatic amines

 Epinephrine and other catecholamines are the 
uncouplers of this type, the thermogenic effect of 
which is undoubted in vivo, but their direct uncoupling 
effect on isolated mitochondria is not so obvious and 
is only observed if catecholamines are introduced into 
the incubation medium at concentrations many times 
higher than physiological ones. A detailed retrospective 
analysis of the works devoted to this problem is given in 
the A.M. Babsky thesis [66]. In all likelihood, the effect of 
adrenaline on the level of free energy expenditure and 
thermogenesis is not a direct uncoupling, but is mediated 
either by fatty acids released from adipose tissue by 
activation of the hormone-sensitive triacylglycerol lipase 
of adipocytes, or by UCP [67], whose role in body weight 
control will be discussed below.

Ionophores: These substances induce cationic 
or anionic conductivity of the inner mitochondrial 
membrane and reduce or completely remove only the 
electrical (Δψ), but not the acid-base component (ΔpH) 
of the proton membrane potential. This class includes 
potassium ionophores valinomycin and monaktin, 
sodium ionophores nigericin and gramicidin, calcium ions, 
magnesium, a carrier of bivalent ions A23187, a carrier of 
ammonium ion, nonactin, etc. [68]. All these substances 
are commonly used as tools for artificially reducing Δψ 
for in vitro experiments on isolated mitochondria. For 
other purposes, as well as for in vivo introduction, they 
are usually not used. The only exception is calcium, the 
introduction of which is widely used in experimental and 
clinical practice for many purposes. In particular, the effect 
of calcium ions, especially in combination with vitamin D3 
on body mass and prevention of obesity, is well known, 

but this effect can hardly be explained as a direct effect 
of Ca ++ ions acting on mitochondria of adipocytes as 
ionophores. It is assumed that the body mass loss can 
be associated with activation of β-oxidation of fatty acids 
and induction of UCP(s) [69].

In recent time V.P. Skulachev et al. have used synthetic 
ionophores, particular phosphonium fatty acids. Thus, a 
dodecyltiphenylphosphonium (C12TPP) cation capable 
of penetrating the membranes at a dose of 500 μM/
kg significantly reduced the body mass and fat mass of 
mice for 7 days of oral use. C12TPP also increased the 
level of oligomycin-sensitive consumption of oxygen by 
mitochondria of brown adipose tissue [70]. There is the 
reason to suppose that other compounds of this type, 
referred to as Skulachev ions (SkQ), will be very promising 
in terms of further clinical studies because they are 
used in catalytically low concentrations without any side 
effects.

Detergents: This type of uncouplers disrupts the 
structural integrity of the lipid bilayer of mitochondrial 
membranes and completely removes the proton 
membrane potential due to equalization of proton 
concentrations on both sides of the inner membrane. 
Among this group of uncouplers it is impossible to single 
out any substances that can cause the effect of “soft” 
uncoupling, even partial destruction of the membrane 
is a very crude effect of an irreversible nature. It is for 
these reasons that we do not see the possibility of using 
uncouplers of this type as regulators of body mass. 
Therefore, we omit a detailed analysis of these substances 
in this paper.

The role of fatty acids and substances involved 
in their metabolism in the regulation of body 
mass: There is no doubt that the likelihood of developing 
obesity, insulin resistance, and type II diabetes, is to some 
extent related to an increase in the content of free and 
bound fatty acids in a human diet. Excessive fatty acids of 
food are directed to adipose tissue, which plays the role 
of the main energy reservoir in the body. Fat deposition 
and the associated increase in the number of white 
adipocytes in adipose tissue, caused by a chronic positive 
energy balance, resulting in the development of obesity. 
A high level of fat consumption and low physical activity 
characterize the current lifestyle of people in developed 
countries. Excessive fat accumulates in the white 
fatty tissue, liver, heart and muscles. In these organs, 
intracellular lipids serve as an easily accessible source of 
energy during, for example, physical activity or fasting. 
However, in conditions of an elevated level of fatty acids 
in plasma and an increased intake of fats with food, such 
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forms of pathology as obesity and type 2 diabetes with 
insulin resistance are increasingly developing. Recent 
evidence suggests that intramuscular lipids peripherally 
surrounded by the protein perilypin are especially 
harmful in combination with impaired mitochondrial 
function, which is very typical for obesity and diabetes 
mellitus 2 [71]. On the other hand, it has been proven 
that the addition of certain fatty acids (eg omega-3 
polyunsaturated fatty acids) to the diet of animals with 
experimental obesity caused by the high-fat diet (HFD) 
leads to a decrease in the body mass of these animals 
and a decrease in the probability of insulin resistance 
development [72]. Such regulating effect of fatty acids 
on body mass has been studied since the middle of the 
last century, and this effect was initially postulated as a 
classic example of protonophor uncoupling of oxidative 
phosphorylation, accompanied by the dissipation of free 
energy as heat (thermogenesis) and reduction in body 
mass. However, later the mechanism of this action of 
fatty acids turned out to be not so simple as it seemed 
at first. First of all, the effect of fatty acids on body 
mass was found to largely depend on their structure, in 
particular on the length of their carbon chains (radicals), 
as well as on the presence and a number of double 
bonds in radicals (ie., on the degree of unsaturation). 
In addition, it turned out that the mechanism of the 
action of fatty acids on nonspecific energy expenditure 
of the body is not so unambiguous and is mediated by 
a number of other substances, such as UCP(s), adenine 
nucleotide translocase (ANT), substrate translocases in 
mitochondria, receptors, hormones, and messengers 
that are involved in the body mass control [73-75]. 
Consequently, not only fatty acids, but also antiporter 
enzyme systems that mediate their uncoupling action, 
are of undoubted interest as potential targets for the 
development and testing of pharmacological drugs that 
regulate nonspecific energy expenditure of the body.

Short chain fatty acids, such as acetate, propionate, 
butyrate, etc, enter the body mainly as exogenously 
introduced food substances and nonspecific metabolites 
of the intestinal microbiome metabolism [76,77]. 
Recently, a number of authors have studied the effect of 
short chain fatty acids on energy expenditure in tissue 
mitochondria. Thus, it has been established that acetic 
acid enhances the expression of the enzymes of fatty 
acid oxidation in the liver, activating catabolism of lipids 
and thus suppressing the accumulation of fat [78]. In 
addition, acetate reduces appetite, acting through central 
homeostatic mechanisms [79].

In other studies, it has been found that the addition of 
butyrate to food can prevent obesity caused by a high-
calorie diet and partially eliminate insulin resistance in 
mice by activating an adiponectin mediated mechanism 
for stimulating mitochondrial function in skeletal muscle 
[80].

Fatty acids with short and medium chain (SCFA and 
MCFA), regardless of their role in cellular signaling, are 
important substrates for energy metabolism and anabolic 
processes in mammals. SCFAs are mainly generated by 
colon bacteria and are predominantly metabolized by 
enterocytes and the liver, whereas MCFA are most often 
derived from food triglycerides, including milk and dairy 
products. A common feature of SCFA and MCFA is their 
independence on carnitine-associated mitochondrial 
transport and intramitochondrial activation with the 
formation of acyl-CoA thioesters. These fatty acids 
modulate the tissue metabolism of carbohydrates 
and lipids. It is manifested through their inhibitory 
effect on glycolysis and stimulation of lipogenesis or 
gluconeogenesis. They have no or generally have only 
weak protonophor activity in the mitochondria and 
do not significantly affect the transfer of electrons in 
the respiratory chain. SCFA and MCFA modulate the 
production of mitochondrial energy by two mechanisms: 
first, they produce NADH and FADH2 for the respiratory 
chain, secondly, reduce partially the efficiency of the 
oxidative synthesis of ATP, that is, they have the properties 
of “mild” uncouplers of oxidative phosphorylation [81].

At the same time, the physiological effects of SCFA 
cannot be interpreted as being exclusively positive for the 
host organism. In particular, the direct connection of short 
chain fatty acids with the development of inflammation 
in the wall of the intestine and adipose tissue in obesity 
has been proved. [82]. It is possible that the positive and 
negative effects of SCFAs depend on their concentration.

The regulatory effects of long-chain fatty acids (LCFA) 
depend on the presence and number of double bonds 
in the structure of their radical. Saturated long chain 
fatty acids are involved in the development of adipose 
tissue inflammation in obesity, activating caspase 4/5 in 
monocytes, and also including the release of interleukins 
IL-1β and IL-18 from these cells [83].

In contrast to saturated fatty acids, monounsaturated 
LCFA, additionally introduced into the diet, reduce central 
obesity in volunteers tested, followed by a decrease in 
the risk factors for the development of the metabolic 
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syndrome. Such a diet, according to the authors, could 
be useful for treatment and, perhaps, to prevent the 
development of the metabolic syndrome [84,85].

Additional introduction of polyunsaturated LCFA 
(docosahexaenoic and eicosapentaenoic acids) to humans 
and animals has many positive effects for maintaining 
energy homeostasis, including differentiation of 
adipocytes, activation of lipolysis, inhibition of lipogenesis, 
an increase in energy expenditure in the oxidation of 
fatty acids in mitochondria and peroxisomes, etc., that 
can help reduce the likelihood of developing obesity and 
concomitant diseases [86-89].

Cellular fatty acid receptors, fatty acid binding 
proteins (FABPs) as potential targets for body 
mass control: Fatty acid binding proteins, FABP(s), were 
discovered at the beginning of 70s of the last century. 
Initially, it was assumed that this is the only protein with a 
molecular mass of about 12 kDa, capable of binding long-
chain fatty acids and some other lipids, localized in the 
cytosol of intestinal cells, the liver, myocardium, adipose 
tissue and kidneys. Later it was revealed that there were 
a few different proteins with similar structural domains. 
These proteins were detected in macrophages, the brain, 
testes and other cell types. Their molecular weight (14-
15 kDa) was defined and the primary structure was 
determined. At present, 9 main genetic variants of these 
proteins are identified, designated by the first letter of 
the name of the tissue in which the expression of this 
protein is most pronounced. For example, A-FABP, also 
known as aP2 or FABP4, is the most important cytosolic 
protein of adipocytes and macrophages responsible for 
the accumulation of neutral fat and the development of 
inflammation in adipose tissue [90,91]. An increased level 
of FABP4 expression is observed with the development 
of obesity and insulin resistance [92]. Mice deficient in 
FABP4 and FABP5 had normal fat mass and were less 
likely to develop hepato-steatosis, insulin resistance, and 
inflammation in adipose tissue induced by obesity. The 
improving effects of FABP deficiency are mediated by 
the powerful anti-expression effect of palmitoleic acid in 
adipocytes and macrophages. Palmitoleate also enhances 
muscle insulin action and inhibits de novo lipogenesis in 
the liver. FABP4 is the main adipokine whose production 
is strictly controlled by the fatty acids released during 
lipolysis. This protein is supposed to function as a lipid 
sensor in adipocytes, capable of transferring fatty acids 
into blood plasma to meet the needs of certain organs 
and cells in this type of metabolic fuel [93].

In general, it can be stated that in physiologically optimal 
concentrations, proteins that bind fatty acids, promote the 
transfer of fatty acids and their utilization. When they are 
over expressed, especially the adipocyte forms of FABP4 
and FABP5, inflammation, metabolic syndrome, breast 
cancer, and insulin resistance are developed. Therefore, 
the control over the expression level of the genes of these 
proteins is one of the promising fields for the prevention 
and treatment of obesity and its associated syndromes 
[94]. The determination of various types of FABP in 
serum can serve as a predictor and objective measure of 
the severity of obesity, cardiovascular disease, diabetes 
mellitus 2, pre-eclampsia of pregnant women and a 
number of other pathological conditions [95].

Carnitine and its role in body mass control: In 
recent time, researchers in the field of body mass control 
pay great attention to a highly effective regulator - 
L-carnitine, a low molecular weight amphiphilic substance 
involved in the transport of fatty acids from the cytoplasm 
to the mitochondrial matrix, where their β-oxidation 
proceeds. Carnitine was discovered by the Moscow 
biochemist V. S. Gulevich together with his Kharkov 
colleague R. P. Crinberg in 1905. Later, this substance 
was given the name vitamin Bt (B11) and became widely 
used in medicine for various purposes. In this case, the 
biological activity was proved to be inherent only in the 
L-stereoisomer of this substance. The logic in carnitine 
using for prevention and treatment of obesity was based 
on the following well-known assumptions:

a) Carnitine deficiency and impaired carnitine 
acyltransferase activity may contribute to the 
development of mitochondrial dysfunction in obesity,

 b) Carnitine is able to increase the body’s non-specific 
energy inputs in metabolic syndrome and obesity.

c) The additional introduction of carnitine into the body 
reduces the body weight in animals with experimental 
obesity, reduces the fat content in the blood and 
liver, restores the activity of carnitine acyltransferase, 
impaired by the development of obesity, prevents the 
development of negative effects associated with the 
activation of transcription of fatty acid synthase genes 
3-hydroxy-3-methyl-glutaryl-CoA reductase, cholesterol-7 
α-hydroxylase and some other enzymes involved in the 
pathogenesis of obesity, atherosclerosis, and metabolic 
syndrome [95-98]. 

Obesity changes the ratio of contractile elements in 
muscle tissue in the direction of increasing the proportion 
of type II fibers (white fibers, poor in mitochondria and 
myoglobin, characterized by the prevalence of anaerobic 
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metabolism). Carnitine, administered to animals with 
experimental obesity caused by excessive fat diet, 
reduces the proportion of type II fibers, but increases the 
proportion of type I fibers (red fibers rich in mitochondria 
and myoglobin, characterized by a high level of oxidative 
phosphorylation), respectively [99].

Carnitine deficiency in obesity develops due to the 
replacement of a part of muscle tissue with adipose tissue 
(the sarcopenia phenomenon), and due to the splitting of 
part of dietary carnitine to form trim ethylamine N-oxide 
under the influence of altered intestinal microflora [100-
102].

In recent years, there has emerged the evidence 
about the participation of carnitine in increasing the 
share of nonspecific energy expenditure by inducing 
a mild uncoupling effect. This mild uncoupling is partly 
due to the fact that catabolism of fatty acids to acetyl 
coenzyme A produces FADH2 as an electron donor 
for the mitochondrial respiratory chain, which has a 
lower P: O ratio than NADH. This is in good agreement 
with the phenomenon of mild uncoupling effect of 
excess fatty acids. In addition, an increased level of fat 
oxidation during physical exercises is associated with 
lower respiration efficiency in state 3 [103]. However, it 
is not entirely clear whether the latter effect belongs to 
carnitine itself or is mediated by any other endogenous 
uncouplers of oxidative phosphorylation.

Uncoupling proteins, prospects for controlling 
their regulation and induction to combat obesity:

Nonspecific energy expenditure of the body inevitably 
arises in the implementation of interstitial metabolic 
transformations of various substances. In this case, a 
special role belongs to UCP(s) [104]. These proteins are 
directly involved in thermogenesis and the dissipation 
of a certain part of the energy of metabolic fuels [105]. 
The first of these proteins was a thermogenin (UCP-1) 
isolated more than 40 years ago - a protein of brown 
adipocytes with a molecular mass of 32 kDa [106]. For a 
long time this protein was believed to be produced only 
in brown adipocytes and only in young children, and in 
adults, it allegedly disappears due to the involution of 
brown adipose tissue. At present, it has been proven 
that the expression of the thermogenic gene takes place 
not only in adipose tissue, but also in different tissues 
(liver, kidneys) of an adult organism [107]. Moreover, the 
activity of UCP1 in adults is positively correlated with an 
increase in energy consumption during cold exposure 
and negatively with age, body mass index and fasting 

glycemia, which indicates regulatory links between brown 
adipocytes, cold thermogenesis and energy metabolism 
[108].

There are two alternative models of the mechanism of 
the uncoupling action of the UCP(s), and both postulate 
the participation of fatty acids. The difference between 
these models is how which ions are transferred. In the 
Klingenberg model, UCP(s) are proton-pores, i.e. they 
transfer hydrogen ions back to the mitochondrial matrix. 
In the Garlid model, UCP(s) conduct anions, namely they 
transfer the anionic head group of fatty acids from one 
side of the membrane to the other. The cycle ends with 
a quick flip-flop movement of protonated fatty acids 
through the lipid bilayer, which leads to a decrease in 
ΔμH + [109].

For today, four more genetic variants of uncoupling 
proteins (UCP2, UCP3, UCP4, and UCP5) have been 
described. These proteins are produced in different 
tissues of the body. They carry out the functions of 
regulation of bioenergy and metabolism [95]. Thus, the 
UCP2 and UCP3 genes are expressed in the heart tissue 
and protect it from cell death and development of heart 
failure in obesity [110]. UCP2 is also formed in the brain, 
lungs, spleen and liver, where it participates in antioxidant 
defense reactions [111-115]. UCP3 is actively involved in 
the regulation of proton leakage in the inner membrane 
of mitochondria, oxidative status and thermogenesis 
in muscle tissue, and, therefore, in the regulation of 
nonspecific energy expenditure of the body [116].

UCP4 is present in the brain already from 12-14 
days of the embryonic period, which coincides with the 
onset of neuronal differentiation. The content of UCP4 
in mitochondria decreases with increasing age. The 
preferential expression of UCP4 and UCP 5 in neurons 
and the dynamics of expression under physiological 
conditions may indicate the involvement of these proteins 
in the differentiation of neuronal cells, as well as in the 
antioxidant protection of the brain [117].

Thus, the presence of uncoupling proteins in tissues 
is closely related to the numerous physiological and 
pathological processes occurring in these tissues, as 
evidenced by the simple enumeration of the functions of 
these proteins described today:

•	  Adaptive thermogenesis [118],
•	  Participation in the oxidation of fatty acids and 

the regulation of energy efficiency mitochondrial 
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β-oxidation of fatty acids [119,120],
•	 Reduced ROS [121],
•	 Regulation of the ATP / ADP ratio in cells by 

changing the activity ANT [122],
•	 Prevention of the development of atherosclerosis, 

diabetes, obesity [123],
•	 Participation in the realization of the effects of 

thyroid hormones and leptin [124,125],
•	 Participation in the development of inflammation 

in adipose tissue [126].

Expression of uncoupling proteins is regulated by 
physical activity, starvation and saturation, exposure to 
low ambient temperature, a number of hormones, some 
nutrients and metabolites, such as nitrous oxide, lipids, 
conjugated linolenic acid, reactive oxygen species, etc. 
[127-129].

It is easy to see that almost all functions of uncoupling 
proteins are violated with the development of obesity. 
Therefore, the task of using these proteins as targets 
for developing methods of nutritional prevention and 
pharmacological correction of impaired nonspecific 
energy expenditure, and, consequently, of body weight 
correction seems so urgent.

Bile acids and thermogenesis

Bile acids are the final products of cholesterol 
metabolism in the liver. In recent years, in addition to 
the role of bile acids in emulsification, digestion and 
absorption of food lipids, their regulatory or hormone-
like function is increasingly being studied [130-132]. So 
in 2014, experiments on mice chenodeoxycholic acid 
(CDCA) was shown to reduce obesity in HFD mice. The 
authors attributed this effect not so much to the influence 
of CDCA administered on the amount of food consumed 
as to the ability of CDCA to induce the synthesis of the 
uncoupling protein UCP 1 and to increase thermogenesis 
in brown adipocytes [133]. The following year, similar 
results were obtained in experiments with volunteers. The 
administration of CDCA to 12 healthy women increased 
the activity of brown adipose tissue and heat production. 
In experiments in vitro the uncoupling effect of CDCA in 
the mitochondria of brown adipocytes mediated by the 
activating action of CDCA on iodothyronine deiodinase 
type 2 (D2) was demonstrated. This enzyme is involved in 
the synthesis of the most active hormone of the thyroid 
gland - triiodothyronine (T3). These data, according to the 
authors, allow the bile acids to be considered a target 
for the activation of brown adipose tissue in humans 
[134,135].

 
Microorganisms of the gastrointestinal tract play 

a central role in the metabolism of host bile acids by 
deconjugation and dehydroxylation reactions that 
generate unconjugated free bile acids and secondary 
bile acids, respectively. These converted bile acids are 
in part potential signal molecules that interact with 
the host bile acid receptors (including the farnesoid X 
receptor, the vitamin D receptor and the TGR5 receptor) 
to induce cellular responses that play a key role in lipid 
metabolism of the host, transport of electrolytes and 
immune regulation. Disorders of microbial intestinal 
populations can, therefore, significantly alter the bile acid 
profiles of the host. A number of recent scientific studies 
have demonstrated that the occurrence of microbial 
perturbations can lead to changes in the bile acid profiles 
of the host, which leads to complications in the course 
of diseases. Intestinal pathology, in particular irritable 
bowel disease, the syndrome after the resection of a part 
of the intestine and the infection caused by Clostridium 
Difficile, are all accompanied by competitive changes in 
microbiome composition and changes in bile acid profiles 
of the host [136,137].

Two amino acids are actively involved in the 
metabolism of bile acids: glycine and taurine. The role of 
the latter is not limited to its use in the formation of paired 
(conjugated) bile acids. Taurine is a sulfur-containing 
amino acid that is found in the tissues of mammals in 
fairly significant (millimolar) concentrations. It takes 
part in various ways associated with the physiological 
functions of the body, including conjugation of bile acids, 
osmoregulation, and stabilization of membranes, calcium 
modulation, antioxidant action and immunomodulation. 
Studies have shown that the 24-hour excretion of 
taurine as a marker of its consumption with food was 
inversely associated with BMI, blood pressure and 
plasma cholesterol concentration in humans. In addition, 
taurine-chloramine, an endogenous product produced by 
activated neutrophils, inhibits obesity-induced oxidative 
stress and inflammation in adipocytes. Synthetic activity 
and the concentration of taurine in adipose tissue and 
plasma are reduced in humans and animals during the 
development of obesity, and this leads to the conclusion 
that there is a correlation between insufficiency of taurine 
and obesity [138].

To better understand the relationship between 
microbial dysbiosis and bile acid metabolism disorders, 
large-scale metagenomic, metatranscriptomic and 
metaproteomic studies are needed to create a catalog of 
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the functional diversity of healthy and sick populations 
of microorganisms. It is necessary to further search 
for active probiotics capable of restoring the normal 
metabolic level of the microbiome and use them for 
therapeutic purposes [139].

Sarcolipin: A new target for nonspecific energy 
expenditure control

In the last two decades, the close attention of 
researchers of nonspecific energy expenditure of 
the body was given to brown adipose tissue. It was 
traditionally assumed that the tissue was responsible 
for the function of thermogenesis performed with the 
participation of uncoupling proteins (UCP). At the same 
time, thermogenesis is directly related to the functioning 
of not only fat, but also muscle tissue. The participation 
of skeletal muscles in thermogenesis is known to any 
person, for everyone experienced the influence of 
cold, manifested in a form of involuntary trembling. 
However, the role of skeletal muscles in nonshivering 
thermogenesis, and consequently, in the regulation of 
nonspecific energy losses of the organism, until recently 
was not completely understood [140]. Much has been 
clarified in this issue in 2012 after the discovery of the 
function of the protein sarcolipine [141]. Sarcolipin (Sln), 
a small protein containing 31 amino acid residues, was 
identified as a regulator of the Ca2+ -ATPase of the sarco-
endoplasmic reticulum (SERCA) [142]. It turned out that 
this protein is absolutely necessary for nonshivering 
thermogenesis [143]. It plays a key role in the formation 
of the level of basal metabolism, and its over expression 
increases the total energy expenditure of the body and 
leads to the development of resistance to obesity [144].

The regulating effect of Sln in obesity can be considered 
as an alternative possibility of increasing nonspecific 
energy expenditure with some neuroendocrine 
mechanisms realized through β-adrenoreceptors and 
UCP proteins [145]. The mechanism of the thermogenic 
action of Sln can be characterized as the separation of two 
conjugated events: the transport of calcium by means of 
SERCA and the hydrolysis of ATP, which provides energy 
for this type of active transport. The uncoupling action 
of Sln is functionally linked to its N-terminal amino acid 
residue. Removal of this residue from the structure of Sln 
deprives it of uncoupling and thermogenic action [146].

 Can brown fat defeat white in the fight against 
obesity?

This very intriguing title of the section almost entirely 
repeats the title of one of the recently published articles 

on the problem of the plasticity of adipose tissue and 
its ability to transform white and brown adipocytes into 
each other [147-149].

The interest in the development of this direction 
originates from the time when the Virtanen group 
obtained new results on the distribution of brown 
adipose tissue cells in adults using the positron emission 
tomography method [150]. In the work of these authors, 
not only the fact of the existence of metabolically active 
brown fat in adults was demonstrated, but it was also 
proved that the mass and activity of this tissue decreases 
in the aging and development of obesity. These results 
aroused great interest in studying the mechanisms of 
the development and differentiation of adipose tissue, 
as well as natural and artificial regulators of these 
processes. It was found that an increase in the number 
of brown or beige adipocytes (browning, beigeing), and, 
consequently, nonspecific energy expenditure can be 
achieved by the following factors:

•	 Exposure to cold [151];
•	 The introduction of phytopreparations, such as 

resveratrol, curcumin, genistein, xanthohumol, 
quercetin, capsaicin, cinnamon, extractives rose 
hips, etc. [152-155,], as well as inorganic nitrates 
[156], and polyunsaturated fatty acids [157];

•	 Changes in neuroendocrine regulation of 
preadipocyte differentiation [158];

•	 Physical exercise [159].

In January 2012, Boström and his colleagues identified 
a new secreted protein of muscle tissue, which they 
called irisin. It is secreted by the muscles as a product of 
an alternative splicing of the FNDC5 gene, which encodes 
a larger fibronectin III protein [160]. It turned out that 
the secreted protein has a molecular weight of about 12 
kDa and contains 112 amino acids. It was called “irisin” in 
honor of the goddess Irida, the messenger of the gods. 
The authors showed that the increased expression of 
the gene of this protein is observed under the influence 
of physical exercises. Irizin affects white fat cells in vitro 
and in vivo, stimulating the synthesis of thermogenin and 
other proteins typical for brown adipocytes in adipocytes 
of white adipose tissue. Such adipocytes are called 
“brite adipocytes” (brown-in-white.) Irisin is induced with 
exercises in mice and humans, and moderately increased 
levels of irisin in the blood cause an increase in energy 
expenditure in mice without changes in movement or 
consumption of food. Reducing obesity and improving 
the homeostasis of glucose. Irizine, according to the 
authors, could be a therapeutic agent for the treatment 
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of metabolic disorders and other diseases that can be 
controlled with exercise [161].

This discovery caused a stormy but very contradictory 
reaction in the scientific and medical community: from 
total enthusiasm in connection with the emergence 
of another “panacea” for the treatment of obesity to 
declaring all the beneficial effects of irisin described 
above as a myth [162-165].

In recent years, researchers in different countries have 
paid special attention to the study of genes involved in 
browning adipocytes in order to develop new methods of 
gene therapy for obesity [166-171].

Conclusion 

The main targets of nonspecific energy 
expenditure control and the prospects of their 
use for prevention and treatment of obesity

As shown by the analysis of scientific papers presented 
in this review, nonspecific energy expenditure of the 
organism makes a very significant contribution to the 
regulation of body mass. The main objects of the energy 
expenditure are the digestive tract, intestinal microbiota, 
hormonal control systems for appetite and satiety, 
mitochondrial oxidative phosphorylation, expression of 
UCP, Ca++-ATPase/sarcolipin system, fatty acids, bile acids 
and regulatory systems controlling the differentiation of 
preadipocytes into white or brown adipocytes. Each of 
these objects is a potential target for the development 
of new methods of influencing the regulatory systems 
of body weight control, and consequently, for the 
prevention and treatment of obesity. From the presented 
review materials, it is possible to draw quite definite 
practical conclusions and new recommendations for 
dieticians, physiotherapy specialists, sports physicians 
and physicians of different specialties dealing with 
patients suffering from obesity or having a high risk of 
developing this most common pathology. The essence of 
these recommendations is as follows:

1. It is necessary to carefully monitor the condition 
of the teeth, gums, salivary glands and other 
structures of the oral cavity because there is a 
positive correlation between the presence of 
caries, periodontal disease, anodontia, the speed 
of moisturizing and chewing food, on the one 
hand, and the likelihood of developing obesity, on 
the other.

2. The level of secretion of orexigenic and 
anorexigenic hormones, directly or indirectly 

affecting the nonspecific energy expenditure of 
the body (ghrelin, leptin, proopiomelanocortins, 
amylin, galanin, visfatin, omentin, adipolin, etc.), 
should be controlled. To determine the majority 
of these hormones there are no methodological 
limitations, since modern methods of analysis have 
been developed, and ready-made sets of reagents 
(kits) are on sale.

3. Special attention is required by intestinal 
microbiota, changes in which can cause 
inflammation in adipose tissue, increased 
proliferation of white adipocytes, slowing intestinal 
peristalsis and, ultimately, the development of 
obesity. Probably, the most dangerous type of 
microbiome infringement is the replacement of 
beneficial microflora by anaerobic bacteria such as 
Clostridium difficile, which should be eliminated by 
all means, up to the transplantation of the donor 
microbiota.

4. In patients with obesity, especially those suffering 
from severe forms, substances stimulating the 
oxidation of fatty acids with dissipation of free 
energy-carnitine (vitamin B or B11), soft uncouplers 
of oxidative phosphorylation, polyunsaturated 
fatty acids (linoleic, linolenic, arachidonic, 
docospentenoic ), which are also regulators 
of lipolysis, lipogenesis and differentiation of 
adipocytes, should be used. There is a large 
amount of evidence about the effectiveness of 
such therapy, which are given in Section 4.1.

5. Great hopes for the rapid development of new 
management tools for nonspecific energy losses of 
the body are associated with clinical studies of bile 
acids, taurine, sarcolipin, substances that regulate 
the expression of UCP proteins, and Skulachev 
ions. There is every reason to believe that these 
substances will soon be tested as very effective 
pharmaceutical preparations for obesity therapy.

6. To stimulate the differentiation of preadipocytes 
in the direction of brown cells, the tactics of 
increasing tolerance to cold and physical stresses. 
Winter sports and diet containing optimal 
level of polyunsaturated fatty acids, should be 
recommended to activate the production of irisin 
and other regulators of such differentiation that 
increase the nonspecific energy expenditure of the 
body.
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