

Introduction to Medical Image Analysis

Rasmus R. Paulsen DTU Compute

<u>rapa@dtu.dk</u>

http://www.compute.dtu.dk/courses/02511 http://www.compute.dtu.dk/courses/02512

Rasmus R. Paulsen

- Master of Science (Eng). DTU 1998
- Industrial PhD with Oticon A/S
- Research and development at Oticon A/S
- Associate Professor DTU Compute

4/2/2015

Teaching Assistants

 Gudmundur Einarsson Ph.D. student at DTU Compute
 Sigbjørn Hokland Medicine and Technology

-34

A statement from me and the TA's

- The lectures and exercises are offers
 - We do not notice if you are here or not
- We want to lift you as far as possible
 - Make you understand our topic and the learning objectives
- We are grateful for critical and constructive feedback
- We do expect that you are here to learn
- We do expect that you are responsible for your own learning
- The TA WILL help the ones that have a hard time understanding a problem
- The TA WILL NOT help the ones that do not even try to understand the problem

Practical matters

- 13 days over the DTU 13 week semester
- Full day with lectures and exercises
- Lectures in auditorium 045 in building 303A
- Exercises in group rooms south 001 in building 308

Week 1 - today

9.00	Introduction and practical matters		
	Lecture – Digital Images		
	Exercises		
12.00 - 13.00	Lunch break		
13.00 - 17.00	Exercises		

Materials

Book:

- Rasmus R. Paulsen and Thomas B. Moeslund: *Introduction to Medical Imaging.* (MIA). 4th print. 2015
- ~250 kr
- Polyteknisk boghandel
- <u>http://people.compute.dtu.dk/rapa/MedIABook/</u>
- Errata for earlier versions here
- Notes
 - A few other hand outs
- At the end of the course a complete reading list will be published

CampusNet and homepage

Get used to use CampusNet

- Course messages will be given through CampusNet
- Exercises delivered using CampusNet

Homepage

- http://www.compute.dtu.dk/courses/02511
- Date / Exercises / Schedule
- Updates happen!

#	Dato	Emne	Materiale	Øvelse
1	4/2	Introduction and digital images	MIA kap. 1 og 2, app. A	1
2	11/2	Image acquisition, and digital images, and file formats	MIA Kap. 2 og 3	2
3	18/2	Pixelwise operations	MIA kap. 4	3
4	25/2	Neighborhood Processing (Filtering)	MIA kap. 5	4
5	4/3	Morphology Eksternt foredrag: Projektleder Oline V. Olesen: Tracoline, fra ide til klinisk virkelighed.	MIA kap. 6	5
6	11/3	Blob analysis	MIA kap. 7	6
7	18/3	Pixel classification	MIA kap. 8 og 9	7
8	25/3	X-Ray imaging and CT scanning	Noter	8
9	8/4	Geometric Transformations Eksternt foredrag: Sales Manager Michel Strauss, Siemens Healthcare	MIA kap. 10	9
10	15/4	Image Registration	MIA kap. 11	10
11	22/4	Boundary Tracing (Hough Transformation and Dynamic Programming) Eksternt foredrag: CEO Michael Grunkin, Visiopharm	MIA kap. 12	11
12	29/4	Segmentation and Clustering	noter	12
13	6/5	3D medical image analysis	noter	Tidligere eksamensopgaver

Nearly a chapter per lessonFew notes

DTU Compute, Technical University of Denmark

9

Invited Speakers

- Relevant invited speakers from the industry/research sectors
 - CEO Michael Grunkin, Visiopharm
 - Sales Manager Michel Strauss, Siemens Healthcare
 - Projektleder Oline V. Olesen, Tracoline
 - DTU Compute PhD Students

Learning Objectives (Læringsmål)

- A list of learning of objectives shown before each lecture
- A learning objective describes what you can do after the lecture
- If you fulfil all learning objectives you get 12
- Low-level learning objective
 - Apply the Prewitt edge filter to an image
- High-Level learning objective
 - Evaluate and compare the performance of a selection of image analysis algorithms

•

Exam

- 4 hour written exam
- Multiple choice
 - 25 questions
 - For each question there are 5 answers and a "I do not know"
 - Correct answer 5
 - Wrong answer -1
 - No answer 0
- Throughout the course example exam questions will be given
- Previous exams can be found on the homepage at the end of the course

Exercises

- 12 exercises in total
- You should deliver three exercise reports
 - Only for course 02511
- Count approximately 30% of the final grade
- Exercise 4 should be delivered at latest March 11!
- Can be delivered by 1 or 2 persons
 - You are responsible for forming the groups
 - Not allowed to deliver "duplicated reports"
- Other deadlines at the homepage

- 64

Borrowing stuff or cheating

- Cheating is generally punished hard at the university
- Reports are checked automatically when delivered
 - Offenders are reported to the study service
- It is ok to:
 - Use small pieces of text from other works if it is clearly written (cited) where it comes from
 - Discuss the problems with other people
- It is **NOT** ok to:
 - Copying parts of other peoples reports
 - Deliver text that you have not written
 - Directly translate text from for example Wikipedia

Matlab and computers

- No databar
- We assume that you can use your own portable computer with Matlab
- Try to arrange yourself into groups with at least one working Matlab installation

Exercise report

When doing the exercises:

- Create a Matlab file and keep all your Matlab code for the exercise in this one
- Create a text document (word, Latex, OpenOffice etc) and paste the results here

Writing the report

- Evaluate the results
 - What do you see?
 - Why does the results look like they do?
 - Can it be improved? How?

Bachelor and master thesis

Many of you should soon choose a bachelor project

- Some even a master project
- Difficult to choose topic and supervisor
- Later in this course we will give you some tips and ideas

Questions!

- How many of you:
 - use image manipulation software
 - Photoshop
 - Paintshop
 - GIMP
 - Something else (what?)
 - Adjust images before putting them on Facebook or somewhere else?

-34

Image Manipulation

What operations do you do

- Crop?
- Resize?
- Contrast?
- Rotate?
- Colors?

÷2.

19

Camera

Bring your own camera/smartphone to the exercises
Learn to transfer photos from your camera/phone so you can use them on your computer

What is image analysis?

- Extraction of information from digital images
- Reproduce expert diagnostics
 - More accurate
 - Variation between doctors opinions removed
- Computer aided diagnostics the doctor has the last word
- Can enhance the signs of diseases
 - Tumours
 - Bleedings

Automatically detected haemorrhages and micro aneurysms in digitized fundus images

- 64

Examples

-3-

Relevance

1980 2012 Magnetic resonance (MR) machine

- A lot of the data on hospitals are images
- Images are an important tool in
 - Diagnosis
 - Treatment
 - Follow-up
 - Very high-tech!
 - New imaging technologies are developed all the time.
- Connection between patient journals and images

-2-

Relevance

- Siemens PET/MR machine
- Installed at Rigshospitalet december 2011
- Extremely advanced
- New types of images and information

- 6-

Relevance

7 tesla MR scanner installed at Hvidovre hospital

- New anatomical details visible
- More information in brain images

Fast and accurate 3D face scanner installed at the Bloodbank at Glostrup Hospital

- Creating a database of normal human faces
- Can be used to identify facial features connected to nonnormal growth

Digital Images – Learning Objectives

- Describe the fundamental properties of a digital image
- Read and show an image in Matlab
- Describe the commonly used image coordinate systems
- Describe the binary, the label, the multispectral, and the 16-bit image
- Show and manipulate your own images in Matlab

A digital image

23	216	120	55
4	89	158	130
65	76	189	34
19	234	7	45

- Consists of pixels (picture elements)
- Each pixel has a value between 0 and 255? Why?

Bits and Bytes!

A bit is a tiny tiny little switch that can be either 0 or 1 - the "memory of a computer" consists of insanely many bits
One byte is 8 bits together. It is the "basic" unit in a computer.
With 8 bits how many possible values can be made?
- (2^8 = 256)

```
0000001 = 1
```

```
00000010 = 2
```

00000100 = 4

00001010 = 10

00001111 = 15

128	64	32	16	8	4	2	1

Bit the Byte!

MSB				LSB

LSB = Least significant bit MSB = Most significant bit

Binary numbers

Decimal 225

- 1110 0001

 $\cdot \geq \cdot$

A digital image

23	216	120	55
4	89	158	130
65	76	189	34
19	234	7	45

- between 0 and 255.
- How many bytes do our image take up in the computer memory?
 16
- How many different images can be made?

$$- 256^{16} = (3.4 \cdot 10^{38})$$

۰ŷe

Grayscale digital images

23	216	120	55
4	89	158	130
65	76	189	34
19	234	7	45

0 is black and 255 is white!
The values in between are shown as shades of gray

	50 C	a.	1		1
		- in the second s			1
0	50	100	150	200	250

Typical Grayscale image

- Traditional film X-ray
- Scanned on a flatbed scanner
- Do you know what an X-ray is?
- Bone is white and air is black
 - The more radiation the darker
- What are they used for?
 - Fractures
 - Arthrisis
 - Osteoporosis

-2-

Image Resolution

- Determines how much the image fills in the memory and on the hard disk
- Spatial resolution
- Gray level resolution

Spatial?

Spatial

- relating to the position, area and size of things
- Example:
 - This task is designed to test the child's *spatial* awareness

Danish

– Rumlig – barnet har en god rumlig forståelse

Spatial resolution

The number of pixels used to represent the image
256 x 256
128 x 128
64 x 64
32 x 32
16 x 16
8 x 8

How many pixels do you have in your camera?

-3-

36

How many pixels?

Width	Height	Pixels	Mega-pixels	Camera
320	240	10.000	0.01	Prototype 1975
640	480	307.200	0.03	Apple Quicktake 100
1600	1200	1.920.000	2	Nikon Coolpix 950
3520	2344	8.250.880	8.25	Canon 20D
8984	6732	60.480.288	60.5	Phase One P65+

Gray level resolution

- The number of gray levels in the image
- 256
- 64
- 16

4

2

8

DTU Compute, Technical University of Denmark

38

-91

Image as a matrix

	1	2	3	4	► C
1	23	216	120	55	
2	4	89	158	130	
3	65	76	189	34	
4	19	234	7	45	
	<u>ر</u>				-

- An image is stored in the computer memory as a 2 dimensional matrix
- 4 rows and 4 columns
- Matlab image I what is I(2,3) ?
- Can also be seen as a discrete function f(r, c)
- In Matlab a pixel is stored as an UINT8!
- UINT8 = Unsigned 8-bit integer = 1 byte

-34

Pixel coordinates – Matlab matrix

	1	2	3	4	≻ C
1	23	216	120	55	
2	4	89	158	130	
3	65	76	189	34	
4	19	234	7	45	
v v		•	•	•	•

- Used in Matlab
- Origin is in upper left corner
- 1-based
- (row, column) system
- M rows and N columns
- What is the coordinates of the pixel with value 34?

L

Pixel coordinates – Photoshop etc.

	0	1	2	3	►X
0	23	216	120	55	
1	4	89	158	130	
2	65	76	189	34	
3	19	234	7	45	
y y				·	•

- Used in many graphics programs
- Origin in upper left corner
- 0-based
 - (X,Y) system
- What is the coordinates of the pixel with value 34?

Pixel coordinates – Matlab plots

- Used when plotting known from mathematics
- Origin in lower left corner
- 0-based
 - (X,Y) system
- What is the coordinates of the pixel with value 34?

Why should I care?

2 4 89 158 130 1 65 76 189 34	•		10	100		
	2 1	4	89 76	158 189	130 34	

- You have a Matlab image in the matrix system
- Found the pixel with the maximum value
- Want to plot a red circle on top of it
- Plotting is done in the Matlab plot system
- How is this done in this image?
 - Max = 234 at (r,c) = (4,2)
 - Plot circle at (x,y) = (1,0)
- General conversion
 - x = c 1
 - y = M-r

- ĝe

÷

The Image Histogram

- A histogram normally contains the same number of "bins" as the possible pixel values
- A bin stores the number of pixel with that value

A real grayscale image histogram

- 256 gray levels in the image
 256 bins in the histogram
- The shape of the histogram tells us something about the image
- Can you "recognise" the flower in the histogram?
- What "colors" are missing?

The histogram function

0	2	6	6	3	3
1	4	3	4	4	4
3	2	5	1	5	2
1	4	2	1	3	1
2	5	3	0	2	0
4	2	5	6	3	1

- Can be seen as a function h(v)
- v is the pixel value

$$h(5) = 4$$

Total number of pixels is the sum of all h

Pixel value statistics

0	2	6	6	3	3
1	4	3	4	4	4
3	2	5	1	5	2
1	4	2	1	3	1
2	5	3	0	2	0
4	2	5	6	3	1

- Pick a random pixel in the image
- What is the probability of it having value 3? P(v=3)

$$h(3) = 7$$

$$P(v=3) = 7/36 * 100\%$$

-Qu

$$h(3) = 7$$

DTU Compute, Technical University of Denmark

47

4/2/2015

Opgave t09.5

Der vælges en tilfældig pixel i billedet vist i Figur 4. Hvad er sandsynligheden for at pixelen har værdi 3?

2	5	4	0	6	3
3	3	1	2	3	5
0	ο	1	3	2	3
2	3	2	5	5	3
0	0	3	2	5	2
3	2	4	5	1	1

Figure 4: Et billede

÷2.

48 DTU Compute, Technical University of Denmark

Normalised histogram

- A normalised histogram is made by dividing each bin count with the total number of pixels
- H(v) is the normalised histogram function
- H(v) is the probability that a random pixel has value v
- Equal to a probability density function

Other Image Types

- Colour images
- Binary Images
- Label Images
- 16-bit images

Short intro Will be covered in detail later in the course.

٠ŷe

Colour images

- Anyone heard of RGB?
- RGB = Red, Green, and Blue
- Television, computers, digital cameras use the "RGB color space"
- Additive colours: Final colour is made by mixing red, green, and blue
- Typically the values of R, G, and B lie between 0 and 255 (total 3 bytes)!

RGB Colours

Processing RGB images

- Each pixel in a colour image contains 3 values
- Equal to a "vector function" in mathematics
- Much more complicated to analyse
- Medical images are typically grayscale
- Therefore we convert from colours to grayscale before the analysis

Converting colour to grayscale

v = 0.2989 * R + 0.5870 * G + 0.1140 * B

Is it possible to convert a grayscale image back to a color image?

Opgave t09.24

Et farvebillede konverteres til et gråtone billede. En farvepixel med RGB værdien (240, 120, 200) vil have have hvilken gråtone værdi efter konvertering?

Binary images

- Binary means on or off
- Binary image only two colors
- Background (0 = black)
- Foreground (1 = white)

Simple representation of CT scanning of the head

-2-

Gray scale to Binary Image

"Bone Image"

CT Scanning

 \cdot

57 DTU Compute, Technical University of Denmark

Binary image – why?

- Separating objects from background
- Count the number of the objects
- Measure the size and shape of objects

Advanced 3D visualisations

Image from 3D laboratory

Label Image

- The pixel value tells the type of the pixel
 - (0) Gray background
 - (1) Blue soft tissue
 - (2) Green hard bone
 - (3) Red spongy bone
- Only 4 different pixel values
- Colours made using a look-up-table

• 8

Label Image –why?

- How big is a tumour? (volume / percent)
 - Bone density
- General anatomy recognition
 - Blood vessels
 - Calcifications

-2-

Label Image – how?

4/2/2015

÷2.

Multispectral images

Infrared

- There are more visual information than what can be seen with the human eye
- Standard cameras captures the red, green, blue colours
- Capture systems that capture more bands and other frequencies exist
- Creates multispectral images
 - Each pixel contains perhaps 20 values from different spectral bands

- 64

Multispectral System - VideometerLab

Color

- Integrating sphere
 - Light emitting diodes with different wavelengths
 - From near infrared to ultraviolet
- High resolution B/W camera
 - Water in bread
- Classification of fungi
- Skin diseases

16-bit images

- 256 values fine for the human eye
- Pixel values not only for display
 - Physical meaning
- Computed Tomography
 - X-ray attenuation
- Hounsfield unit
 - 0 water
 - -1000 air
 - -120 fat
 - 400+ bone

4/2/2015

-2-

Exercises

