
Convergence
of AFEM

K.G. Siebert

Outline

Motivation
& Problem

Adaptive
Finite
Elements

Convergence
Analysis

A Convergence Proof for Adaptive Finite Elements
without Lower Bound

Kunibert G. Siebert

Institut für Mathematik
Universität Augsburg

Germany

partly joint with Pedro Morin (Santa Fe) and Andreas Veeser (Milan)

Adaptive Numerical Methods for PDE’s, WPI, Wien 2008

Convergence
of AFEM

K.G. Siebert

Outline

Motivation
& Problem

Adaptive
Finite
Elements

Convergence
Analysis

Outline

1 Motivation and Continuous Problem
Motivation
Problem
Examples

2 Adaptive Finite Elements
Adaptive Loop and Basic Assumptions
Convergence of Mesh Size Functions
Convergence of Galerkin Solutions
Density

3 Convergence Analysis
Prior Results
Error Estimation and Marking
Convergence of the Error
Convergence of the Estimator
Remarks

Convergence
of AFEM

K.G. Siebert

Outline

Motivation
& Problem

Motivation

Problem

Examples

Adaptive
Finite
Elements

Convergence
Analysis

Motivation

Most convergence results for adaptive finite elements rely on

Energy minimization
symmetric elliptic operators
p-Laplacian
obstacle problems
convex minimization

Can be relaxed to disturbed Galerkin Orthogonality.

Special properties of the estimators

Discrete local lower bound

Dörfler marking: Given θ ∈ (0, 1]

Select M⊂ T : θET (T ) ≤ ET (M)

Special refinement of selected elements.

Optimality up to now only for symmetric elliptic operators.
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Convergence and optimality of adaptive finite elements is observed for

A larger class of problems

convection-diffusion,
saddle point problems,
. . .

Efficient estimators, where only a continuous lower bound is available.

Other marking strategies
Maximum strategy
Equidistribution Strategy
. . .

Minimal refinement.

Convergence in a rather general setting by Morin, S., Veeser ’08.

Optimality in this general setting completely open.
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Setting of the Basic Convergence Result

Formulation of only few and basic assumptions that lead to convergence.
These assumptions should be “necessary” – at least reasonable – and “easy to
verify” for many problems.

Main Focus in this Talk: Discrete Lower Bound

Previous convergence proofs rely on a discrete local lower bound:

1 Discrete lower bounds may be more difficult to obtain than continuous
ones;

2 For more complex problems estimators may not be efficient, but still we
may want to prove convergence.

Reliability of an estimator should be the key property for convergence.
Overestimation should not forestall convergence:

1 Overestimation is a problem for efficiently stopping;

2 Overestimation is a problem for optimal complexity.
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Problem

Variational formulation of a linear, elliptic PDE in a domain Ω ⊂ Rd:

u ∈ V : B[u, v] = 〈f, v〉 ∀v ∈ V, (P)

where

V is a real Hilbert space with inner product 〈·, ·〉V, induced norm ‖ · ‖V;

B : V× V→ R is a continuous bilinear form;

f ∈ V∗.

Theorem (Niremberg, Nečas, Babuška, Brezzi)

Problem (P) admits for any f ∈ V∗ a unique solution, if and only if
B fulfills an inf-sup condition.

Coercive forms B satisfy the inf-sup condition:

B[v, v] ≥ cB‖v‖2V ∀v ∈ V.
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Example (Poisson Problem in Rd)

−∆u = f in Ω, u = 0 on∂Ω.

Variational formulation in V = H1
0 (Ω):

B[u, v] =

Z
Ω

∇u · ∇v dx =

Z
Ω

f v dx.

B is continuous and coercive.

Discretization with continuous Lagrange elements of order p ≥ 1.

Global upper bound for the residual estimator build from

E2
T (T ) := h2

T ‖ −∆UT − f‖22;T + hT ‖ [[UT ]] ‖22;∂T∩Ω.

Continuous and discrete local lower bounds.
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Continous Local Lower Bound

ET (T ) . ‖UT − u‖V(ω(T )) + oscT (ω(T ))

with oscT (T ) = hT ‖f − fT ‖2;T .

Principal idea by Verfürth: Construct φT ∈ V with ‖φT ‖V = 1,
suppφT ⊂ ω(T ) such that

ET (T ) . 〈R(UT ), φT 〉 := B[UT − u, φT ] ≤ ‖B‖‖UT − u‖V(ω(T ))

Construction of φT

1 Changing to a computable error indicator leads to potential
overestimation.

Projection to a finite dimensional space; leads to oscillation.

2 Localization by a suitable continuous cut-off function λT .
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Discrete Local Lower Bound

Let T ′ be a refinement of T with sufficient refinement around T ∈ T

ET (T ) . ‖UT − UT ′‖V(ω(T )) + oscT (ω(T ))

with oscT (T ) = hT ‖f − fT ‖2;T .

Principal idea by Dörfler and Morin, Nochetto, S.: Construct ΦT ∈ V(T ′)
with ‖ΦT ‖V = 1, supp ΦT ⊂ ω(T ) such that

ET (T ) . 〈R(UT ), ΦT 〉 = B[UT − UT ′ , ΦT ] ≤ ‖B‖‖UT − UT ′‖V(ω(T ))

Construction of ΦT

1 Projection to a finite dimensional space; leads to oscillation.

2 Localization by a suitable discrete cut-off function ΛT .

Projection is limited by the degree of the FE space and the discrete
cut-off function.

Utilizing a discrete cut-off function is not always possible: A localized
function has to be contructed explicetely.
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Example (H(div; Ω) Elliptic Operator in Rd, d = 2, 3)

−∇div u + u = f in Ω, u · n = 0 on ∂Ω.

Variational formulation in V = H0(div; Ω):

B[u, v] :=

Z
Ω

div u div v + u · v dx = 〈f , v〉 ∀v ∈ V.

B is continuous and coercive;

Discretization by Raviart-Thomas or Brezzi-Douglas-Marini Elements of
any order p;

Global upper bound for any order;

Continuous and discrete local lower bound for any order:

the projection in the discrete lower bound for Raviart-Thomas
Elements of order p ≥ 2 is sub-optimal.
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Example (Eddy Current Equations in R3)

curl curl u + u = f in Ω, u ∧ n = 0 on ∂Ω.

Variational formulation in V = H0(curl; Ω):

B[u, v] :=

Z
Ω

curl u curl v + u · v dx = 〈f , v〉 ∀v ∈ V.

B is continuous and coercive;

Discretization by Nedelec Elements of any order p;

Global upper bound for any order;

Continuous local lower bound for any order:

Discrete local lower bound available only for lowest order, i. e., for the
Whitney Elements.
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Example (The Stokes Problem)

Variational formulation in V = H1
0 (Ω; Rd)× L2

0(Ω):

B[(u, p), (v, q)] :=

Z
Ω

∇u :∇v dx−
Z

Ω

p∇ · v dx−
Z

Ω

∇ · u q dx = 〈f , v〉

for all (v, q) ∈ V.

B is continuous and fulfills the inf-sup condition.

Discretization by the Taylor-Hood Elements of order p ≥ 2.

Global upper bound for

E2
T (T ) := h2

T ‖−∆UT +∇PT −f‖22;T +hT ‖ [[UT ]] ‖22;∂T∩Ω+‖ div UT ‖22;T

and

E2
T (T ) := h2

T ‖ −∆UT +∇PT − f‖22;T + hT ‖ [[UT ]] ‖22;∂T∩Ω.

Continuous local lower bound for both variants.

Discrete local lower bound available only for the second variant.
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Example (The Biharmonic Equation in R2)

∆2u in Ω, u = ∇u · n = 0 on ∂Ω.

Variational formulation in V = H2
0 (Ω):

B[u, v] :=

Z
Ω

∆u∆v dx = 〈f, v〉 ∀v ∈ V.

B is continuous and coercive.

Discretization by the Argyris Triangle: piecewise P5 and H2 conforming.

Global upper bound.

Continuous local lower bound.

No discrete local lower bound available, seems to be tough.
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Adaptive Loop and Basic Assumptions

Starting with an initial, conforming triangulation T0 of Ω, the standard
adaptive loop SEMR

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

produces a sequence˘
Tk, Vk, Uk, {Ek(T )}T∈Tk , Mk

¯
k
,

where

Tk is a conforming triangulation produced by refinement of Tk−1, . . . , T0;

Vk = V(Tk) is a finite element space over Tk;

Uk ∈ Vk is the unique Ritz-Galerkin solution:

Uk ∈ Vk : B[Uk, V ] = 〈f, V 〉 ∀V ∈ Vk, (Pk)

which requires a discrete inf-sup conditon;

Ek(T ) is an error indicator assosiated with an element T ∈ Tk;

Mk ⊂ Tk is the set of selected elements for refinement.
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Adaptive Loop and Basic Assumptions

Assumptions on Refinement

Use bisectional refinement and denote by T the set of all possible, conforming
refinements of T0.

Refinement can be generalized to more general grids and quasi-regular
element subdivisions that generate locally quasi-uniform grids.

Assumptions on Finite Element Spaces

The finite element spaces have the following properties:

1 for any T ∈ T, V(T ) ⊂ V is a conforming finite dimensional space;

2 the spaces are nested: if T ′ is a refinement of T then V(T ) ⊂ V(T ′);

3 the spaces satisfy a uniform discrete inf-sup condition.

Nesting of spaces follows from properties of refinement in combination
with appropriate local function spaces.

Coercivity of B implies the uniform inf-sup condition.
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Convergence of Mesh Size Functions

Define the local mesh size function hk ∈ L∞(Ω) by

hk|T := |T |1/d ≈ diam(T ) ∀T ∈ Tk.

Lemma (Morin, S. Veeser ’08)

For any realization of SEMR there exists a unique h∞ ∈ L∞(Ω) such that

lim
k→∞

‖hk − h∞‖∞;Ω = 0.

Idea of the Proof.

For any x ∈ Ω the sequence {hk(x)}k is monotone and bounded from below:

h∞(x) := lim
k→∞

hk(x) ≥ 0 exists for all x ∈ Ω.

Convergence in L∞ the follows from

T is refined into T1, T2 =⇒ |T1| = |T2| =
1

2
|T | .
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Convergence of Mesh Size Functions

In general, h∞ 6≡ 0 in Ω. If h∞(x) > 0, then there is an element T 3 x and
K = K(x) such that

T ∈ Tk ∀k > K.

Splitting of Tk

1 Set of elements that are not refined anymore

T +
k := {T ∈ Tk | T ∈ T` ∀` ≥ k};

2 Set of elements that are refined at least once

T 0
k := Tk \ T +

k .

Corollary (Morin, S. Veeser ’08)

The mesh size functions vanish uniformly in Ω0
k = Ω(T 0

k ) :=
S
{T : T ∈ T 0

k }:

lim
k→∞

‖hk‖∞;Ω0
k

= 0.
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Convergence of Galerkin Solutions

Lemma (Morin, S. Veeser ’08)

For any realization of SEMR there exists a unique u∞ ∈ V such that

lim
k→∞

‖Uk − u∞‖V = 0.

Proof for coercive B.

The space

V∞ =
[

k
Vk

‖·‖V

is a closed subspace of V. The Lax-Milgram theorem then implies the
existence of a unique solution u∞ to

u∞ ∈ V∞ : B[u∞, v] = 〈f, v〉 ∀v ∈ V∞.

Convergence follows from the quasi-best approximation property

‖Uk − u∞‖V ≤ c−1
B ‖B‖ min

V ∈Vk

‖V − u∞‖V → 0 as k →∞

by construction of V∞.
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Convergence of Galerkin Solutions

Consequences for a Convergence Proof

It suffices to show u∞ = u since convergence

lim
k→∞

Uk → u∞ in V

is established for any adaptive iteration SEMR.

The residual R(u∞) and u∞ = u

Using the residual R(w) ∈ V∗ defined by

R(w) := B[w − u, v] = B[w, v]− 〈f, v〉 ∀v, w ∈ V.

we reformulate

u∞ = u ⇐⇒ R(u∞) = 0 in V∗

1 In case V∞ = V definition of u∞ implies R(u∞) = 0.

2 In case V∞ 6= V properties of ESTIMATE and MARK have to yield
R(u∞) = 0.
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Local Approximation Property of the Finite Element Spaces

Let W ⊂ V be dense, q > 0. Assume that for any T ∈ T there exists an
interpolation operator IT : W→ V(T ) such that for all w ∈W

‖w − IT w‖V(T ) . ‖hq
T ‖∞;T ‖w‖W(T ) ∀T ∈ T .

Claim

V∞ = V ⇐⇒ h∞ ≡ 0 in Ω

1 h∞ 6= 0: Then T +
k 6= for k ≥ K which implies V 6⊂ V∞.

2 h∞ ≡ 0: Use density of finite element spaces: for v ∈ V and w ∈W
estimate

‖v − Ikw‖V(Ω) ≤ ‖v − w‖V(Ω) + ‖w − Ikw‖V(Ω)

. ‖v − w‖V(Ω) + ‖hk‖∞;Ω‖w‖W(Ω)

!

≤ ε

by first choosing w close to v and then k large.
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For h∞ 6≡ 0 we still obtain for any v ∈ V and w ∈W

‖v − Ikw‖V(Ω0
k

) ≤ ‖v − w‖V(Ω0
k

) + ‖w − Ikw‖V(Ω0
k

)

. ‖v − w‖V(Ω) + ‖hk‖∞;Ω0
k
‖w‖W(Ω)

!

≤ ε

by first choosing w close to v and then k large, thanks to

‖hk‖∞;Ω0
k
→ 0 as k →∞.

Remarks

1 This local density property we are going to use explicitely in the
convergence proof. It replaces a (discrete) local lower bound.

Needs a way to build in local features via the upper bound!

2 The local density property is already implicitely used in all other
convergence proofs.
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Prior Results

Directly Related Convergence Results

Babuška, Vogelius ’86: u′′ = f in 1d, convergence

Dörfler ’96: Poisson problem in 2d, convergence into tolerance

Morin, Nochetto, S. ’00, ’02: constant coefficient matrix, convergence

Veeser ’02: p-Laplacian

S. Veeser ’06: obstacle problem

S. Veeser ’06: convergence for the equidistribution strategy

Morin, S. Veeser ’08: general convergence with discrete lower bound

Convergence and Optimality Results

Binev, Dahmen, DeVore ’02: MNS with coarsening

Stevenson ’06: Modification of Dörfler

Cascon, Kreuzer, Nochetto, S. ’08: Plain SEMR

Chen, Holst, Xu ’08: Mixed formulation of Poisson problem
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Convergence proof without lower bound for symmetric elliptic problems:

B[v, w] :=

Z
Ω

∇vT A∇w + c v w dx v,w ∈ V := H1
0 (Ω)

with the residual estimator

E2
T (T ) := ‖hT (− div(A∇UT + cUT − f)‖22;T + ‖h1/2

T [[A∇UT ]] ‖22;∂T

and Dörfler marking with 0 < θ ≤ 1

Choose M⊂ T : θET (T ) ≤ ET (M).

Theorem (Cascon, Kreuzer, Nochetto, S. ’08)

SEMR is a contraction, i. e., there exists 0 < α < 1 and β > 0 such that

|||Uk − u|||2Ω + βEk(Tk) ≤ α
`
|||Uk−1 − u|||2Ω + βEk−1(Tk−1)

´
.

If, in addition, θ is sufficiently small and Mk minimal, then SEMR is
quasi-optimal in terms of DOFs.

Optimality proof utilizes the global continuous lower bound.
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Error Estimation and Marking

Assumptions on the Estimator

1 We assume an upper bound with the following build-in localization: For
any subset S ⊂ T holds:

|〈R(UT ), v〉| . ET (S)‖v‖Ω(S) + ET (T \ S)‖v‖Ω(T \S) ∀v ∈ V.

2 We assume stability of the indicators: there exists D ∈ L2(Ω) such that

ET (T ) . ‖UT ‖V(T ) + ‖D‖2;T ∀T ∈ T

Remarks

1 The continuous inf-sup condition and the upper bound for S = T imply

‖UT − u‖V . ‖R(UT )‖V∗ = sup
‖v‖V=1

|〈R(UT ), v〉| . ET (T ).

2 Boundedness of {Uk}k and stability of the indicators yield

supk Ek(Tk) . 1.
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Error Estimation and Marking

Assumption on Marking

We assume the existence of g ∈ C0(R+
0 ; R+

0 ) with g(0) = 0 such that the set
of marked elements M satisfies

ET (T ) ≤ g
`

max{ET (T ) | T ∈M}
´

∀T ∈ T \M.

Additional Assumption on Refinement

All marked elements are refined at least once.

Remarks

1 The assumption on marking includes standard marking strategies like
Maximum, Equidistribution and Minimal Dörfler marking with g(s) = s.

2 Assumption on refinement implies Mk ⊂ T 0
k .

3 Convergence of the Galerkin Solutions, stability of the indicators, and
assumption on marking and refinement yield

max{Ek(T ) | T ∈ Tk} → 0 as k →∞.
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Theorem (S. ’08)

Assume that the above assumptions on refinement, finite element spaces,
estimator, and marking are satisfied. Then SEMR convergece, i. e.,

lim
k→∞

‖Uk − u‖V = 0.

Proof

Since Uk → u∞ in V, it remains to show

〈R(u∞), v〉 = 0 ∀v ∈ V ⇐⇒ 〈R(u∞), w〉 = 0 ∀w ∈W,

by density of W in V. Using continuity of R : V→ V∗ this reduces to

lim
k→∞

〈R(Uk), w〉 = 0 ∀w ∈W, ‖w‖W = 1.

The sets T +
k are nested, which grants for k ≥ `

T +
` ⊂ T

+
k ⊂ Tk and Ω0

` = Ω(T 0
` ) = Ω(Tk \ T +

` ).
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Proof (continued)

Use the upper bound with S = Tk \ T +
` for w ∈W, ‖w‖W = 1

|〈R(Uk), w〉| = |〈R(Uk), w − Ikw〉|

. Ek(Tk \ T +
` )‖w − Ikw‖V(Ω0

`
) + Ek(T +

` )‖w − Ikw‖V(Ω+
`

)

. ‖hk‖∞;Ω0
`

+ Ek(T +
` )

!

≤ ε

1 Choose ` sufficiently large such that

‖hk‖∞;Ω0
`
≤ ‖h`‖∞;Ω0

`
≤ ε

2
.

2 Then choose k ≥ ` such that

Ek(T ) ≤ ε

2
(#T +

` )−1/2 ∀T ∈ T +
` ,

which implies
Ek(T +

` ) ≤ ε

2
.
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Convergence of the Estimator

Remark

The theorem does not imply convergence of the estimator, since it includes
non-efficient estimators and allows for strong overestimation!

Continuous Lower Bound

Let the indicators satisfy

ET (T ) . ‖UT − u‖V(ω(T )) + oscT (ω(T )),

where oscillation can be estimated by

oscT (T ) . ‖hr
T ‖∞;T

`
‖UT ‖V(ω(T )) + ‖D‖2;ω(T )

´
for some r > 0 and D ∈ L2(Ω).

Corollary (S. ’08)

If, in addition, the estimator satisfies the continuous local lower bound, then
SEMR yields

lim
k→∞

Ek(Tk) = 0.
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Convergence of the Estimator

Proof

As in the previous proof we split for k ≥ `

Ek(Tk) . Ek(Tk \ T 0
` ) + Ek(T +

` ) . ‖Uk−u‖V(Ω0
`
) + osck(Ω0

`) + Ek(T +
` ). (*)

1 The error is controlled by the previous theorem:

‖Uk − u‖V(Ω0
`
) ≤ ‖Uk − u‖V → 0 as k →∞.

2 Oscillation can be estimated in Ω0
` by assumption in an a priori way:

osck(Ω0
`) . ‖hr

`‖∞;Ω0
`

`
‖Uk‖V + ‖D‖L2(Ω)

´
. ‖hr

`‖∞;Ω0
`
→ 0 as `→∞.

3 The remaining part of the estimator can be handeled as before:

Ek(T +
` )→ 0 for ` fixed and k →∞.

Summarizing: The right hand side of (*) can be made arbitrarily small by first
choosing ` large and then k ≥ ` even larger.
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Remarks

1 General convergence proof for adaptive finite elements with mild
assumptions on the ingredients, most easy to verify.

2 Convergence does not need the lower bound, “practical” convergence
and convergence into tolerance need efficient estimators:

Includes strategies, where the given tolerance enters the selection,
like the equidistribution strategy:

M =
˘
T ∈ T | ET (T ) ≥ θTOL (#T )−1/2¯,

3 For efficient estimators, the assumption on marking can be generalized
such that it is essentially necessary:

if lim
k→∞

max{Ek(T ) |T ∈Mk} = 0

then ∀T ∈ T + : lim
k→∞

Ek(T ) = 0,

where
T + =

[
k≥0

\
`≥k

T`

is the set of elements that are not refined.
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