
LANGUAGE AND AUTOMATA
THEORY AND APPLICATIONS

Carlos Martín-Vide

Characterization

•  It deals with the description of properties
of sequences of symbols

•  Such an abstract characterization explains
the interdisciplinary flavour of the field

•  The theory grew with the need of
formalizing and describing the processes
linked with the use of computers and
communication devices, but its origins are
within mathematical logic and linguistics

A bit of history
•  Early roots in the work of logicians at the beginning of the XXth century:

Emil Post, Alonzo Church, Alan Turing
  Developments motivated by the search for the foundations of the notion of proof

in mathematics (Hilbert)

•  After the II World War: Claude Shannon, Stephen Kleene, John von
Neumann
  Development of computers and telecommunications
  Interest in exploring the functions of the human brain

•  Late 50s XXth century: Noam Chomsky
  Formal methods to describe natural languages

•  Last decades
  Molecular biology considers the sequences of molecules formed by genomes as

sequences of symbols on the alphabet of basic elements
  Interest in describing properties like repetitions of occurrences or similarity

between sequences

Chomsky hierarchy of languages

•  Finite-state or regular
•  Context-free
•  Context-sensitive
•  Recursively enumerable

REG ⊂ CF ⊂ CS ⊂ RE

Finite automata: origins

•  Warren McCulloch & Walter Pitts. A logical
calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics,
5:115-133, 1943

•  Stephen C. Kleene. Representation of events in
nerve nets and finite automata. In C.E. Shannon
& J. McCarthy, eds., Automata Studies: 3-42.
Princeton University Press, 1956

Kleene’s theorem
•  The simplest model of computation: a discrete control +

a finite memory
•  Equivalence between the model of finite automata and

the description of sequences of symbols using the three
logical primitives
  set union
  set product
  iteration

•  The expressions constructed this way are called rational
expressions and a language described by a rational
expression is called a rational language

•  Kleene's theorem: A language is rational iff it can be
recognized by a finite automaton

Circuits
•  The early papers on finite automata also have a link with

the theory of circuits
•  A sequential circuit, in which the output depends on an

input signal, is appropriately modeled by a finite
automaton

•  Example: Figure represents a finite automaton. It has
two states called 1 and 2. State 1 is initial and both
states 1 and 2 are final. Its edges are labeled by the
symbols a and b.

•  According to Kleene's theorem, this set can also be
described by the rational expression (ab + b)*(λ + a),
where λ denotes the empty word, + the union and * the
iteration

Star-height
•  The star-height of a rational language X is the minimal number

(over all possible regular expressions describing X) of nested stars
in the expression

•  Example: The star-height is 0 if and only if the language is finite (i.e.
there is no star at all in the expression)

•  Example: The expressions (a*b)*a* and (a+b)* both describe the set
of all words on a,b. The first one has star-height 2 but the second
one only 1. Therefore, the star-height of the language is 1

•  The problem of computing the star-height of a given rational
language was raised since the beginnings of automata theory and
was solved by Kosaburo Hashiguchi. Algorithms for determining
relative star heigth and star height. Information and Computation,
78:124-169, 1987. The star-height is recursively computable

•  Open problem: What is the minimal value of the star-height of
extended rational expressions, namely those allowing the additional
use of the complementation?

Krohn-Rhodes theorem
•  Two finite automata may be composed to form a single one
•  Kenneth Krohn & John L. Rhodes. Algebraic theory of machines, I:

Prime decomposition theorem for finite semigroups and machines.
Transactions of the American Mathematical Society, 116:450-464,
1965

•  Any finite automaton can be obtained by a composition of automata
of two sorts:
  group automata, in which the actions of the symbols on the states are

one-to-one
  reset automata, in which the automaton just keeps the memory of the

last symbol read
•  The result applies also to finite semigroups and gives an algebraic

decomposition theorem for semigroups
•  Open problem: The computation of the complexity of a finite

semigroup as the minimal number of groups appearing in a
decomposition

Syntactic semigroup
•  It was soon recognized that finite automata are

closely linked with finite semigroups, thus giving
an algebraic counterpart of the definition of
recognizability by finite automata

•  One may characterize the rational languages as
those which are recognized by a morphism on a
finite semigroup, i.e. of the form X = φ-1(Y) for
some morphism φ : A* → S on a finite
semigroup S and Y ⊂ S

•  There is also a minimal possible semigroup S for
each X, called the syntactic semigroup of X

Schützenberger theorem
•  A star-free language is one that can be obtained with a

restricted use of the rational operations, namely without
the star but allowing all Boolean operations including
complement

•  Example: The set of all strings with alternating 0’s and
1's is a star-free language since it can be written as the
complement of the set of strings with some block 00 or
11

•  A finite semigroup S is called aperiodic if there is an
integer n ≥ 1 such that for any x ∈ S, one has xn+1 = xn

•  Theorem: A rational language is star-free iff it can be
recognized by an aperiodic semigroup

Varieties of rational languages
•  Samuel Eilenberg. Automata, Languages and Machines,

vols. A-B. Academic Press, 1974-1976
•  A variety of semigroups is a family of finite semigroups

closed by morphism, direct product of two elements and
by taking subsemigroups

•  A main example is the variety of aperiodic semigroups
•  Theorem: There is a correspondence between varieties

of semigroups and families of rational languages, also
called varieties of languages: the semigroups are the
syntactic semigroups of the corresponding languages

•  Example: The variety of aperiodic semigroups
corresponds to the variety of star-free languages

Locally testable languages

•  A language X is locally testable if there is an
integer k such that the property w ∈ X only
depends on the set of blocks of length k in w

•  A semigroup is idempotent and commutative if
x = x2 and xy = yx, respectively

•  McNaughton & Brzozowski theorem: A language
is locally testable iff its syntactic monoid is locally
idempotent and commutative

Finite automata and logic
•  To use finite automata in the context of mathematical

logic was the idea of Richard Büchi
•  It was known since the work of Gödel in the 1930s that

the logical theory of integers with the operations + and ×
is undecidable

•  This opened the search for decidable subtheories
•  Mojzesz Presburger proved that the theory of integers

with + as the unique operation is decidable
•  Büchi proved in the 1960s that the monadic second

order theory of the integers with the successor is
decidable: reduction to finite automata through
considering a set of integers as a binary infinite
sequence (example: the set of even integers
corresponds to the sequence 1010101...)

Büchi’s work
•  Extension of the theory of finite automata to infinite

words
•  Interconnections between automata theory and

mathematical logic
•  Examples:

 Rational languages are exactly those which can be defined in a
logical language allowing to compare positions of letters in words
and use quantifiers over sets of positions (monadic second order
theory of the integers with <)

 One of the original motivations to study star-free languages was
the fact observed by McNaughton that they correspond to the
first-order part (i.e. without set variables) of the above theory

Infinite words
•  The work of Büchi has produced a theory of languages,

called ω-languages, where the elements are infinite
words instead of finite ones

•  All notions in the finite case translate to the case of
infinite words, where the proofs are substantially more
difficult

•  Examples:
  The basic facts concerning rational languages like their closure

under all Boolean operations become, in the infinite case,
delicate results (Büchi)

  The basic determinization algorithm of finite automata becomes,
in the infinite case, a difficult theorem (McNaughton)

Automata on trees
•  Automata on trees and possibly infinite

trees can also be defined
•  Main idea: processing a tree top-down

consists in duplicating copies of the
automaton at each son of the current
vertex

•  The state reached at the leaves (or the
infinitely repeated states if the tree is
infinite) determines whether or not the
automaton accepts

Other theoretical connections of
finite automata

•  With symbolic dynamical systems
•  With code theory
•  With computational group theory
•  With the theory of automatic groups
•  With hyperbolic geometry
•  ...

Origins of context-free grammars
•  Main references:

 Emil L. Post. Finite combinatory processes-Formulation 1.
Journal of Symbolic Logic, 1:103-105, 1936

 Alan Turing. On computable numbers with an application to the
Entscheidungsproblem. Proceedings of the London
Mathematical Society, 42:230-265, 1936-1937

  Zellig Harris. From morpheme to utterance. Language,
22:161-183, 1946

 Noam Chomsky. Three models for the description of language.
IRE Trans.Inf.Th., IT-2, 1956

•  They are founded on the concept of formal system
(Thue, Post)

•  A similar concept was developed by the early inventors
of programming languages (for example, Backus for
ALGOL)

Context-free languages
•  A context-free grammar is a set of rewriting rules of the

form x → w where x is a non-terminal symbol (or
variable) and w is a word on the joint alphabet of
terminal and non-terminal symbols

•  A derivation consists in substituting a number of times a
variable by application of a rule

•  The language generated by the grammar is the set of
words on the terminal alphabet which can be derived
from an initial symbol called the axiom

•  A language is context-free iff it can be generated by
some context-free grammar

•  Context-free languages are closed by a number of
operations (including intersection with a rational
language) but not under complement

Pushdown automata
•  A pushdown automaton is a non-deterministic

machine with a memory which may be of
unbounded size but accessible only through a
restricted mode called a stack

•  It consists in giving access only to the last
element in a first-in/last-out mode

•  A word is accepted by a pushdown automaton if
there is a computation which leads to empty the
stack after reading the input.

•  A language is context-free iff it can be accepted
by some pushdown automaton

Equivalence of pushdown automata

•  The equivalence of general (non deterministic)
pushdown automata is an undecidable problem

•  The equivalence of deterministic pushdown
automata is decidable: Géraud Sénizergues.
The equivalence problem for deterministic
pushdown automata is decidable. In Automata,
languages and programming (ICALP’1997), vol.
1256 of Lecture Notes in Computer Science:
671-681. Springer, 1997

Dyck language

•  It is the language of well-formed
expressions using n types of parenthesis

•  It is generated by the grammar with rules
S → anSān for n = 1,..., n and S → λ

•  A more symmetric version also uses all
rules S → ānSan

•  It is actually the set of words on the
alphabet An U Ān equivalent to the neutral
element in the free group on the set An

Context-free groups
•  A group is context-free if it admits a presentation

as G = < A|R > such that the set L(G) of words
on A U Ā which cancel modulo the relations from
R is a context-free language

•  Free groups are context-free since the Dyck
language is context-free

•  Finite groups are context-free since, for any
presentation, the language L(G) is rational

•  A group is context-free iff it is an extension of a
free group by a finite group

Language equations
•  It is possible to give a completely algebraic definition of

context-free languages based upon the idea that
grammars can be seen as systems of equations

•  The characterization uses the left quotient of a
language X by a word u defined as u-1X = {v | uv ∈ X}

•  A language is rational iff the set of its left quotients is
finite

•  A family F of subsets of A is called stable if u-1X ∈ F for
any u ∈ A* and X ∈ F

•  Context-free languages on A are the elements of some
finitely generated stable subalgebra of the algebra of
subsets of A*

Computability
•  The larger class containing all languages recognizable

by some machine can be approached by
  Turing machines
 Recursive functions

•  Recursive functions and Turing machines (and several
other formalisms) define the same class of computable
objects

•  Church thesis: Everything computable is computable by
a Turing machine

•  This notion of computability does not take into account
the time or space needed by a computation

Turing machines

•  A Turing machine works with an infinite memory
(a word on a fixed alphabet, called the tape) in
which it can both read and write

•  It has a finite set of states and it is said to
recognize the input word w if, after starting with
w on its tape, it stops in some final state

•  It might never stop (like a program entering an
infinite loop)

Recursively enumerable and
computable

•  A language L is said to be recursively
enumerable if it can be recognized by some
Turing machine M

•  It is called recursively computable (or simply
computable, or decidable) if it is recursively
enumerable the same as its complement

•  L is computable if it can be recognized by a
Turing machine which always halts

•  A typical undecidable language is the set
(˂M˃,x) of pairs of a Turing machine (suitably
coded by a word) and a word x such that M halts
on x

Complexity classes
•  Inside the class of recursive languages, natural

subclasses appear which depend on the amount
of resources needed for the recognition of a
word of size n

•  The limitation can be either on the time or on the
space used by the Turing machine

•  Important classes:
 Class P of polynomial languages (or algorithms):

limits the computation time of a deterministic Turing
machine by a polynomial function

 Class NP: same as P by allowing only non-
deterministic Turing machines

Class NP
•  A language is in NP if there is a search in a binary tree of

polynomial height producing the solution
•  A typical problem in NP is the satisfiability of Boolean

formulas: (x ˅ ¬y) ˄ (¬x ˅ z) ˄...
•  For each choice of values {true, false} of the variables, it

is easy to check whether the formula is true or false:
therefore, the problem of finding a set of values for which
the formula is valid is in NP

•  It can even be shown to be NP-complete, in the sense
that any problem in NP can be reduced to this one in
polynomial time

P vs NP problem

•  Suppose that solutions to a problem can
be verified quickly. Then, can the solutions
themselves also be computed quickly?

Classes defined by restrictions on
the space used

•  PSPACE is defined as the class of languages
which can be recognized by a Turing machine
working in space of size bounded by a
polynomial in the length of the input

•  NP ⊂ PSPACE
•  A typical problem in PSPACE is the satisfiability

of quantified Boolean formulas: ∀x∀y(x ˄ ¬y ˅
∃z((x ˄ z) ˅ (y ˄ z)))

Quantum computing

•  Richard Feynman. Simulating physics with
computers. International Journal of
Theoretical Physics, 21:467-488, 1982

•  David Deutsch. Quantum theory, the
Church-Turing principle and the universal
quantum computer. Proc. R. Soc. London
A, 400:97-117, 1985

Formal series

•  Instead of considering sets of words, it is
mathematically natural to consider functions
from a set of words into a set of numerical
values: such functions are called formal series

•  This approach can capture several important
notions such as multiplicities (when the values
are integers) or probabilities (when the values
are real numbers)

Rational series

•  A formal series on the alphabet A is said to be
rational if there is a morphism µ from A* in the
monoid of n × n matrices such that (S,w) = δµ(w)
γ for some vectors δ,γ

•  Rational languages correspond to solutions of
systems of linear equations

•  Example: The rational language X = (ab + b)* is
the solution of the equation X = (ab + b)X+1

Algebraic series

•  Context-free languages correspond to
solutions of algebraic equations

•  Example: The Dyck language generated
by the grammar D → aDbDλ is just the
solution of the equation D = aDbD + 1

Combinatorics on words

•  Axel Thue. Über unendliche Zeichenreihen.
Norske Vid. Selsk. Skr. I Math-Nat. Kl., 7:1-22,
1906

•  Axel Thue. Über die gegenseitige Loge gleicher
Teile gewisser Zeichenreihen. Norske Vid.
Selsk. Skr. I Math-Nat. Kl. Chris., 1:1-67, 1912

•  The most classical result is the existence of
infinite square-free words, originally due to Thue

Square-free words
•  A square in a word is a factor of the form ww
•  The simplest way to obtain a square-free word is the

following:
 Start with the Thue-Morse word t = abbabaab... defined as

follows:
 Let β(n) denote the number of 1 in the binary expansion of n. Then tn = a if β

(n) is even and tn = b if it is odd
  Form the word m = abcacbabcbac..., which is the inverse image

of t under the substitution a → abb, b → ab, c → a
•  It can be shown that m is square-free
•  The Thue-Morse word is not square-free, since it is on a

binary alphabet and every long enough binary word has
a square. However, it it is cube-free and even more: it
does not contain an overlap, i.e. a factor of the form
uvuvu with u non-empty

Sturmian words
•  A Sturmian word is an infinite word x such that

for each n, the number p(n) of distinct factors of
length n appearing in x is n + 1 (it can be shown
that if p(n) ≤ n, then it is actually constant and
the word x is ultimately periodic)

•  The simplest example of a Sturmian word is the
Fibonacci word f = 01001010

•  Let x0 be 0 and x1 be 01. Now xn = xn−1xn−2 (the
concatenation of the previous sequence and the
one before)

•  The rules for construction are: a → ab, b → a

Domains of application I: Compilers
•  The lexical part of a compiler dealing with low-level

notions such as format of the input is described by finite
automata. Several software tools exist to facilitate the
implementation of this part, known as lexical analysis

•  The syntax of a programming language is often
described using a context-free grammar (or an
equivalent formalism). The process of checking the
syntactic correctness (and computing the syntactic
structure) is known as syntax analysis. It is performed
by methods which implement a form of pushdown
automaton

•  The translation from the source language to the object
language (a kind of low-level machine language) is a
third part of the process implementing a tree traversal
which can be described by attribute grammars

Domains of application II:
Pattern matching

•  The problems involved with text processing are relatively
low-level but of everyday importance

•  A domain of active research has been the study of
pattern matching algorithms

•  One of the most famous of these algorithms is Donald E.
Knuth, James H. Morris, Jr. & Vaughan R. Pratt. Fast
pattern matching in strings. SIAM Journal of Computing,
6(2):323-350, 1977

•  It allows to locate a word w in a text t in time proportional
to the sum of the lengths of w and t (and not their
product as in the naive algorithm looking for all possible
positions of w in t at every index)

•  This algorithm is actually closely linked with the
computation of the minimal automaton recognizing the
set of words ending with w

Domains of application III:
Text compression

•  A great number of algorithms have been devised
to perform the compression of texts

•  This is important to speed-up the transmission
as well as to reduce the size of the files

•  One of the most famous is the Ziv-Lempel
method which builds a factorization of the input
in blocks x1x2...xn, where xn is the shortest word
which is not in the list (x1,x2,...,xn-1)

Domains of application IV:
Genomes

•  The progress of molecular biology, and in particular the
discovery of the genetic code, has opened a field called
computational biology dealing with biological
sequences as computational objects

•  Many algorithms have been applied to the analysis of
biological sequences and some of them have been
specifically designed for such a purpose

•  One of the most famous of these algorithms is the
sequence comparison based on the search of a longest
common subsequence: a technique called dynamic
programming allows to find the longest common
subsequence of two sequences in time proportional to
the product of the lengths of the sequences

The broad relevance of language
and automata I: Mathematics

•  theoretical computer science
•  algebraic methods in computer science
•  combinatorics on words
•  computational logic
•  codes
•  probabilistic machines
•  computability and complexity
•  circuit theory
•  text and image compression
•  cryptography

The broad relevance of language and
automata II: Language technologies

•  mathematical linguistics
•  parsing
•  finite-state techniques
•  mildly context-sensitive grammatical formalisms
•  unification
•  categorial logic
•  mathematical foundations of natural language

processing

The broad relevance of language and
automata III: Artificial intelligence

•  processing architectures
•  parallelism
•  grammar systems
•  concurrency
•  networks of evolutionary processors
•  models of artificial life
•  pattern recognition
•  grammatical inference
•  machine learning
•  programme verification

The broad relevance of language and
automata IV: Bioinformatics

•  computational biology
•  sequential methods in theoretical biology
•  linguistics of DNA
•  combinatorial algorithms for genome

analysis
•  mathematical evolutionary genomics
•  text retrieval and pattern matching

The broad relevance of language and
automata V: Nature-inspired computing
•  biomolecular computing
•  DNA computing
•  splicing systems
•  genetic algorithms
•  evolutionary computing
•  cellular automata
•  symbolic neural networks
•  quantum computing
•  biomolecular nanotechnology
•  unconventional computing

Anyway…

Science is like sex: it may well have
practical outcomes, but this is not why we
do it.

(popular wisdom)

Thank you !

