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Characterization 

•  It deals with the description of properties 
of sequences of symbols 

•  Such an abstract characterization explains 
the interdisciplinary flavour of the field 

•  The theory grew with the need of 
formalizing and describing the processes 
linked with the use of computers and 
communication devices, but its origins are 
within mathematical logic and linguistics 



A bit of history 
•  Early roots in the work of logicians at the beginning of the XXth century: 

Emil Post, Alonzo Church, Alan Turing 
  Developments motivated by the search for the foundations of the notion of proof 

in mathematics (Hilbert)  

•  After the II World War: Claude Shannon, Stephen Kleene, John von 
Neumann 
  Development of computers and telecommunications 
  Interest in exploring the functions of the human brain 

•  Late 50s XXth century: Noam Chomsky 
  Formal methods to describe natural languages 

•  Last decades 
  Molecular biology considers the sequences of molecules formed by genomes as 

sequences of symbols on the alphabet of basic elements 
  Interest in describing properties like repetitions of occurrences or similarity 

between sequences 



Chomsky hierarchy of languages 

•  Finite-state or regular 
•  Context-free 
•  Context-sensitive 
•  Recursively enumerable 

REG ⊂ CF ⊂ CS ⊂ RE 



Finite automata: origins 

•  Warren McCulloch & Walter Pitts. A logical 
calculus of the ideas immanent in nervous 
activity. Bulletin of Mathematical Biophysics, 
5:115-133, 1943 

•  Stephen C. Kleene. Representation of events in 
nerve nets and finite automata. In C.E. Shannon 
& J. McCarthy, eds., Automata Studies: 3-42. 
Princeton University Press, 1956 



Kleene’s theorem 
•  The simplest model of computation: a discrete control + 

a finite memory 
•  Equivalence between the model of finite automata and 

the description of sequences of symbols using the three 
logical primitives 
  set union 
  set product 
  iteration 

•  The expressions constructed this way are called rational 
expressions and a language described by a rational 
expression is called a rational language 

•  Kleene's theorem: A language is rational iff it can be 
recognized by a finite automaton 



Circuits 
•  The early papers on finite automata also have a link with 

the theory of circuits 
•  A sequential circuit, in which the output depends on an 

input signal, is appropriately modeled by a finite 
automaton 

•  Example: Figure represents a finite automaton. It has 
two states called 1 and 2. State 1 is initial and both 
states 1 and 2 are final. Its edges are labeled by the 
symbols a and b. 

•  According to Kleene's theorem, this set can also be 
described by the rational expression (ab + b)*(λ + a), 
where λ denotes the empty word, + the union and * the 
iteration 



Star-height 
•  The star-height of a rational language X is the minimal number 

(over all possible regular expressions describing X) of nested stars 
in the expression 

•  Example: The star-height is 0 if and only if the language is finite (i.e. 
there is no star at all in the expression) 

•  Example: The expressions (a*b)*a* and (a+b)* both describe the set 
of all words on a,b. The first one has star-height 2 but the second 
one only 1. Therefore, the star-height of the language is 1 

•  The problem of computing the star-height of a given rational 
language was raised since the beginnings of automata theory and 
was solved by Kosaburo Hashiguchi. Algorithms for determining 
relative star heigth and star height. Information and Computation, 
78:124-169, 1987. The star-height is recursively computable 

•  Open problem: What is the minimal value of the star-height of 
extended rational expressions, namely those allowing the additional 
use of the complementation? 



Krohn-Rhodes theorem 
•  Two finite automata may be composed to form a single one 
•  Kenneth Krohn & John L. Rhodes. Algebraic theory of machines, I: 

Prime decomposition theorem for finite semigroups and machines. 
Transactions of the American Mathematical Society, 116:450-464, 
1965 

•  Any finite automaton can be obtained by a composition of automata 
of two sorts: 
  group automata, in which the actions of the symbols on the states are 

one-to-one 
  reset automata, in which the automaton just keeps the memory of the 

last symbol read 
•  The result applies also to finite semigroups and gives an algebraic 

decomposition theorem for semigroups 
•  Open problem: The computation of the complexity of a finite 

semigroup as the minimal number of groups appearing in a 
decomposition 



Syntactic semigroup 
•  It was soon recognized that finite automata are 

closely linked with finite semigroups, thus giving 
an algebraic counterpart of the definition of 
recognizability by finite automata 

•  One may characterize the rational languages as 
those which are recognized by a morphism on a 
finite semigroup, i.e. of the form X = φ-1(Y) for 
some morphism φ : A* → S on a finite 
semigroup S and Y ⊂ S 

•  There is also a minimal possible semigroup S for 
each X, called the syntactic semigroup of X 



Schützenberger theorem 
•  A star-free language is one that can be obtained with a 

restricted use of the rational operations, namely without 
the star but allowing all Boolean operations including 
complement 

•  Example: The set of all strings with alternating 0’s and 
1's is a star-free language since it can be written as the 
complement of the set of strings with some block 00 or 
11 

•  A finite semigroup S is called aperiodic if there is an 
integer n ≥ 1 such that for any x ∈ S, one has xn+1 = xn 

•  Theorem: A rational language is star-free iff it can be 
recognized by an aperiodic semigroup 



Varieties of rational languages 
•  Samuel Eilenberg. Automata, Languages and Machines, 

vols. A-B. Academic Press, 1974-1976 
•  A variety of semigroups is a family of finite semigroups 

closed by morphism, direct product of two elements and 
by taking subsemigroups 

•  A main example is the variety of aperiodic semigroups 
•  Theorem: There is a correspondence between varieties 

of semigroups and families of rational languages, also 
called varieties of languages: the semigroups are the 
syntactic semigroups of the corresponding languages 

•  Example: The variety of aperiodic semigroups 
corresponds to the variety of star-free languages 



Locally testable languages 

•  A language X is locally testable if there is an 
integer k such that the property w ∈ X only 
depends on the set of blocks of length k in w 

•  A semigroup is idempotent and commutative if 
x = x2 and xy = yx, respectively 

•  McNaughton & Brzozowski theorem: A language 
is locally testable iff its syntactic monoid is locally 
idempotent and commutative 



Finite automata and logic 
•  To use finite automata in the context of mathematical 

logic was the idea of Richard Büchi 
•  It was known since the work of Gödel in the 1930s that 

the logical theory of integers with the operations + and × 
is undecidable 

•  This opened the search for decidable subtheories 
•  Mojzesz Presburger proved that the theory of integers 

with + as the unique operation is decidable 
•  Büchi proved in the 1960s that the monadic second 

order theory of the integers with the successor is 
decidable: reduction to finite automata through 
considering a set of integers as a binary infinite 
sequence (example: the set of even integers 
corresponds to the sequence 1010101...) 



Büchi’s work 
•  Extension of the theory of finite automata to infinite 

words 
•  Interconnections between automata theory and 

mathematical logic 
•  Examples: 

 Rational languages are exactly those which can be defined in a 
logical language allowing to compare positions of letters in words 
and use quantifiers over sets of positions (monadic second order 
theory of the integers with <) 

 One of the original motivations to study star-free languages was 
the fact observed by McNaughton that they correspond to the 
first-order part (i.e. without set variables) of the above theory 



Infinite words 
•  The work of Büchi has produced a theory of languages, 

called ω-languages, where the elements are infinite 
words instead of finite ones 

•  All notions in the finite case translate to the case of 
infinite words, where the proofs are substantially more 
difficult 

•  Examples: 
  The basic facts concerning rational languages like their closure 

under all Boolean operations become, in the infinite case, 
delicate results (Büchi) 

  The basic determinization algorithm of finite automata becomes, 
in the infinite case, a difficult theorem (McNaughton) 



Automata on trees 
•  Automata on trees and possibly infinite 

trees can also be defined 
•  Main idea: processing a tree top-down 

consists in duplicating copies of the 
automaton at each son of the current 
vertex 

•  The state reached at the leaves (or the 
infinitely repeated states if the tree is 
infinite) determines whether or not the 
automaton accepts 



Other theoretical connections of 
finite automata 

•  With symbolic dynamical systems 
•  With code theory 
•  With computational group theory 
•  With the theory of automatic groups 
•  With hyperbolic geometry 
•  ... 



Origins of context-free grammars 
•  Main references: 

 Emil L. Post. Finite combinatory processes-Formulation 1. 
Journal of Symbolic Logic, 1:103-105, 1936 

 Alan Turing. On computable numbers with an application to the 
Entscheidungsproblem. Proceedings of the London 
Mathematical Society, 42:230-265, 1936-1937 

  Zellig Harris. From morpheme to utterance. Language, 
22:161-183, 1946 

 Noam Chomsky. Three models for the description of language. 
IRE Trans.Inf.Th., IT-2, 1956 

•  They are founded on the concept of formal system 
(Thue, Post) 

•  A similar concept was developed by the early inventors 
of programming languages (for example, Backus for 
ALGOL) 



Context-free languages 
•  A context-free grammar is a set of rewriting rules of the 

form x → w where x is a non-terminal symbol (or 
variable) and w is a word on the joint alphabet of 
terminal and non-terminal symbols 

•  A derivation consists in substituting a number of times a 
variable by application of a rule 

•  The language generated by the grammar is the set of 
words on the terminal alphabet which can be derived 
from an initial symbol called the axiom 

•  A language is context-free iff it can be generated by 
some context-free grammar 

•  Context-free languages are closed by a number of 
operations (including intersection with a rational 
language) but not under complement 



Pushdown automata 
•  A pushdown automaton is a non-deterministic 

machine with a memory which may be of 
unbounded size but accessible only through a 
restricted mode called a stack 

•  It consists in giving access only to the last 
element in a first-in/last-out mode 

•  A word is accepted by a pushdown automaton if 
there is a computation which leads to empty the 
stack after reading the input. 

•  A language is context-free iff it can be accepted 
by some pushdown automaton 



Equivalence of pushdown automata 

•  The equivalence of general (non deterministic) 
pushdown automata is an undecidable problem 

•  The equivalence of deterministic pushdown 
automata is decidable: Géraud Sénizergues. 
The equivalence problem for deterministic 
pushdown automata is decidable. In Automata, 
languages and programming (ICALP’1997), vol. 
1256 of Lecture Notes in Computer Science: 
671-681. Springer, 1997 



Dyck language 

•  It is the language of well-formed 
expressions using n types of parenthesis 

•  It is generated by the grammar with rules 
S → anSān for n = 1,..., n and S → λ 

•  A more symmetric version also uses all 
rules S → ānSan 

•  It is actually the set of words on the 
alphabet An U Ān equivalent to the neutral 
element in the free group on the set An 



Context-free groups 
•  A group is context-free if it admits a presentation 

as G = < A|R > such that the set L(G) of words 
on A U Ā which cancel modulo the relations from 
R is a context-free language 

•  Free groups are context-free since the Dyck 
language is context-free 

•  Finite groups are context-free since, for any 
presentation, the language L(G) is rational 

•  A group is context-free iff it is an extension of a 
free group by a finite group 



Language equations 
•  It is possible to give a completely algebraic definition of 

context-free languages based upon the idea that 
grammars can be seen as systems of equations 

•  The characterization uses the left quotient of a 
language X by a word u defined as u-1X = {v | uv ∈ X} 

•  A language is rational iff the set of its left quotients is 
finite 

•  A family F of subsets of A is called stable if u-1X ∈ F for 
any u ∈ A* and X ∈ F 

•  Context-free languages on A are the elements of some 
finitely generated stable subalgebra of the algebra of 
subsets of A* 



Computability 
•  The larger class containing all languages recognizable 

by some machine can be approached by 
  Turing machines 
 Recursive functions 

•  Recursive functions and Turing machines (and several 
other formalisms) define the same class of computable 
objects 

•  Church thesis: Everything computable is computable by 
a Turing machine 

•  This notion of computability does not take into account 
the time or space needed by a computation 



Turing machines 

•  A Turing machine works with an infinite memory 
(a word on a fixed alphabet, called the tape) in 
which it can both read and write 

•  It has a finite set of states and it is said to 
recognize the input word w if, after starting with 
w on its tape, it stops in some final state 

•  It might never stop (like a program entering an 
infinite loop) 



Recursively enumerable and 
computable 

•  A language L is said to be recursively 
enumerable if it can be recognized by some 
Turing machine M 

•  It is called recursively computable (or simply 
computable, or decidable) if it is recursively 
enumerable the same as its complement 

•  L is computable if it can be recognized by a 
Turing machine which always halts 

•  A typical undecidable language is the set 
(˂M˃,x) of pairs of a Turing machine (suitably 
coded by a word) and a word x such that M halts 
on x 



Complexity classes 
•  Inside the class of recursive languages, natural 

subclasses appear which depend on the amount 
of resources needed for the recognition of a 
word of size n 

•  The limitation can be either on the time or on the 
space used by the Turing machine 

•  Important classes: 
 Class P of polynomial languages (or algorithms): 

limits the computation time of a deterministic Turing 
machine by a polynomial function 

 Class NP: same as P by allowing only non-
deterministic Turing machines 



Class NP 
•  A language is in NP if there is a search in a binary tree of 

polynomial height producing the solution 
•  A typical problem in NP is the satisfiability of Boolean 

formulas: (x ˅ ¬y) ˄ (¬x ˅ z) ˄... 
•  For each choice of values {true, false} of the variables, it 

is easy to check whether the formula is true or false: 
therefore, the problem of finding a set of values for which 
the formula is valid is in NP 

•  It can even be shown to be NP-complete, in the sense 
that any problem in NP can be reduced to this one in 
polynomial time 



P vs NP problem 

•  Suppose that solutions to a problem can 
be verified quickly. Then, can the solutions 
themselves also be computed quickly? 



Classes defined by restrictions on 
the space used 

•  PSPACE is defined as the class of languages 
which can be recognized by a Turing machine 
working in space of size bounded by a 
polynomial in the length of the input 

•  NP ⊂ PSPACE 
•  A typical problem in PSPACE is the satisfiability 

of quantified Boolean formulas: ∀x∀y(x ˄ ¬y ˅ 
∃z((x ˄ z) ˅ (y ˄ z))) 



Quantum computing 

•  Richard Feynman. Simulating physics with 
computers. International Journal of 
Theoretical Physics, 21:467-488, 1982 

•  David Deutsch. Quantum theory, the 
Church-Turing principle and the universal 
quantum computer. Proc. R. Soc. London 
A, 400:97-117, 1985 



Formal series 

•  Instead of considering sets of words, it is 
mathematically natural to consider functions 
from a set of words into a set of numerical 
values: such functions are called formal series 

•  This approach can capture several important 
notions such as multiplicities (when the values 
are integers) or probabilities (when the values 
are real numbers) 



Rational series 

•  A formal series on the alphabet A is said to be 
rational if there is a morphism µ from A* in the 
monoid of n × n matrices such that (S,w) = δµ(w)
γ for some vectors δ,γ 

•  Rational languages correspond to solutions of 
systems of linear equations 

•  Example: The rational language X = (ab + b)* is 
the solution of the equation X = (ab + b)X+1 



Algebraic series 

•  Context-free languages correspond to 
solutions of algebraic equations 

•  Example: The Dyck language generated 
by the grammar D → aDbDλ is just the 
solution of the equation D = aDbD + 1 



Combinatorics on words 

•  Axel Thue. Über unendliche Zeichenreihen. 
Norske Vid. Selsk. Skr. I Math-Nat. Kl., 7:1-22, 
1906 

•  Axel Thue. Über die gegenseitige Loge gleicher 
Teile gewisser Zeichenreihen. Norske Vid. 
Selsk. Skr. I Math-Nat. Kl. Chris., 1:1-67, 1912 

•  The most classical result is the existence of 
infinite square-free words, originally due to Thue 



Square-free words 
•  A square in a word is a factor of the form ww 
•  The simplest way to obtain a square-free word is the 

following: 
 Start with the Thue-Morse word t = abbabaab... defined as 

follows: 
 Let β(n) denote the number of 1 in the binary expansion of n. Then tn = a if β

(n) is even and tn = b if it is odd 
  Form the word m = abcacbabcbac..., which is the inverse image 

of t under the substitution a → abb, b → ab, c → a 
•  It can be shown that m is square-free 
•  The Thue-Morse word is not square-free, since it is on a 

binary alphabet and every long enough binary word has 
a square. However, it it is cube-free and even more: it 
does not contain an overlap, i.e. a factor of the form 
uvuvu with u non-empty 



Sturmian words 
•  A Sturmian word is an infinite word x such that 

for each n, the number p(n) of distinct factors of 
length n appearing in x is n + 1 (it can be shown 
that if p(n) ≤ n, then it is actually constant and 
the word x is ultimately periodic) 

•  The simplest example of a Sturmian word is the 
Fibonacci word f = 01001010 

•  Let x0 be 0 and x1 be 01. Now xn = xn−1xn−2 (the 
concatenation of the previous sequence and the 
one before) 

•  The rules for construction are: a → ab, b → a 



Domains of application I: Compilers 
•  The lexical part of a compiler dealing with low-level 

notions such as format of the input is described by finite 
automata. Several software tools exist to facilitate the 
implementation of this part, known as lexical analysis 

•  The syntax of a programming language is often 
described using a context-free grammar (or an 
equivalent formalism). The process of checking the 
syntactic correctness (and computing the syntactic 
structure) is known as syntax analysis. It is performed 
by methods which implement a form of pushdown 
automaton 

•  The translation from the source language to the object 
language (a kind of low-level machine language) is a 
third part of the process implementing a tree traversal 
which can be described by attribute grammars 



Domains of application II: 
Pattern matching 

•  The problems involved with text processing are relatively 
low-level but of everyday importance 

•  A domain of active research has been the study of 
pattern matching algorithms 

•  One of the most famous of these algorithms is Donald E. 
Knuth, James H. Morris, Jr. & Vaughan R. Pratt. Fast 
pattern matching in strings. SIAM Journal of Computing, 
6(2):323-350, 1977 

•  It allows to locate a word w in a text t in time proportional 
to the sum of the lengths of w and t (and not their 
product as in the naive algorithm looking for all possible 
positions of w in t at every index) 

•  This algorithm is actually closely linked with the 
computation of the minimal automaton recognizing the 
set of words ending with w 



Domains of application III: 
Text compression 

•  A great number of algorithms have been devised 
to perform the compression of texts 

•  This is important to speed-up the transmission 
as well as to reduce the size of the files 

•  One of the most famous is the Ziv-Lempel 
method which builds a factorization of the input 
in blocks x1x2...xn, where xn is the shortest word 
which is not in the list (x1,x2,...,xn-1) 



Domains of application IV: 
Genomes 

•  The progress of molecular biology, and in particular the 
discovery of the genetic code, has opened a field called 
computational biology dealing with biological 
sequences as computational objects 

•  Many algorithms have been applied to the analysis of 
biological sequences and some of them have been 
specifically designed for such a purpose 

•  One of the most famous of these algorithms is the 
sequence comparison based on the search of a longest 
common subsequence: a technique called dynamic 
programming allows to find the longest common 
subsequence of two sequences in time proportional to 
the product of the lengths of the sequences 



The broad relevance of language 
and automata I: Mathematics 

•  theoretical computer science 
•  algebraic methods in computer science 
•  combinatorics on words 
•  computational logic 
•  codes 
•  probabilistic machines 
•  computability and complexity 
•  circuit theory 
•  text and image compression 
•  cryptography 



The broad relevance of language and 
automata II: Language technologies 

•  mathematical linguistics 
•  parsing 
•  finite-state techniques 
•  mildly context-sensitive grammatical formalisms 
•  unification 
•  categorial logic 
•  mathematical foundations of natural language 

processing 



The broad relevance of language and 
automata III: Artificial intelligence 

•  processing architectures 
•  parallelism 
•  grammar systems 
•  concurrency 
•  networks of evolutionary processors 
•  models of artificial life 
•  pattern recognition 
•  grammatical inference 
•  machine learning 
•  programme verification 



The broad relevance of language and 
automata IV: Bioinformatics 

•  computational biology 
•  sequential methods in theoretical biology 
•  linguistics of DNA 
•  combinatorial algorithms for genome 

analysis 
•  mathematical evolutionary genomics 
•  text retrieval and pattern matching 



The broad relevance of language and 
automata V: Nature-inspired computing 
•  biomolecular computing 
•  DNA computing 
•  splicing systems 
•  genetic algorithms 
•  evolutionary computing 
•  cellular automata 
•  symbolic neural networks 
•  quantum computing 
•  biomolecular nanotechnology 
•  unconventional computing 



Anyway… 

Science is like sex: it may well have 
practical outcomes, but this is not why we 
do it. 

(popular wisdom) 



Thank you ! 


