CFPP: Collision-free Path Planning for Wireless Mobile Sensors Deployment†

Ting-Yu Lin†, Hendro Agus Santoso, Chung-An Lin, and Gui-Liu Wang
Department of Electrical and Computer Engineering
National Chiao Tung University

Abstract—With the growing popularity of wireless mobile sensors, automated sensors deployment in a smart sensing environment has become practical and feasible. Once the deployment algorithm determines moving destinations (goals) for all sensors, however, the problem of how to schedule collision-free moving paths to reach the goals safely remains largely unaddressed in the wireless sensor networking (WSN) literature. In this paper, we propose a collision-free path planning (CFPP) mechanism, based on geometric formulations and batched movements, to address the sensors deployment problem. Our proposed CFPP mechanism ensures 100% sensors goal reachability, which is critical for most WSN monitoring applications that require sufficient sensing coverage to operate correctly. Performance results show that our CFPP outperforms other existing path-planning mechanisms in terms of computation latency, energy consumption, and sensors reachability (goals reaching success probability).

Index Terms—Mobile sensors deployment, path planning.

I. BACKGROUND

Wireless sensor networks (WSNs) have been thriving and attracting significant attention thanks to the advances of micro-electromechanical system (MEMS), sensing technology, and wireless communication. A WSN is widely used for habitat and environmental surveillance, medical application, agricultural assistance, and as solutions to military problems [6], [10], [14]. For surveillance applications, sufficient sensing coverage is essential for a WSN to operate successfully. With the growing prevalence of wireless mobile sensors, automated sensors deployment has become practical and feasible. Once the deployment algorithm produces moving destinations (goals) for all sensors, however, the problem of how to schedule moving paths to reach the goals without collisions remains largely neglected in the sensor networking field.

Traditional path-planning methods in the area of multi-robot systems can be generally classified into three categories: roadmap-based, performing cell decomposition, and applying the concept of artificial potential field, according to the authors in [5], [13]. The roadmap-based methods construct visibility graphs to assist in the path-planning process [15]–[17], in which the resultant moving paths may touch (fixed) obstacles at the vertices or even edges that are considered unsafe. To address this drawback, approaches based on cell decomposition by computing Voronoi diagrams have been introduced to perform path scheduling in a more precise way at the cost of increased computation latency [5]. The third category of path-planning approaches models the obstacles and targets as electrostatic charges interacting with each other, creating a potential field [18]–[20]. The obstacle exerts a repulsive force while the target location has an attractive effect on the robot position. This method enables path planning to be completed in real time. However, as only local properties are considered, the robots may get trapped at local minima or aimless oscillation without reaching their goals. The aforementioned approaches assume one or more fixed obstacles in a multi-robot system, which differs from our mobile sensor networking scene. In this paper, we investigate a sensing system where all sensors are mobile and considered as dynamic objects (rather than fixed obstacles).

Two more closely related path-planning methods to our envisioned scenario that also deal with dynamic objects include ADO [7] and Super A* [12]. In ADO, all robots are prioritized and equipped with omnidirectional cameras (visual sensors) to perform real-time path-planning computations. ADO suffers from the deadlock problem in which some robots are unable to reach their destinations (goal positions). In addition, extra (non-negligible) energy consumption is required due to the constant usage of visual sensors for path calculations in ADO. On the other hand, Super A* modifies the classical A* search algorithm [9] by taking environmental changes into account while robots move. Super A* successfully resolves some deadlock cases that ADO fails to handle. However, the triangular deadlock problem in ADO remains unsolved in Super A*. Moreover, extensive computation latency is required in Super A* due to the high time-complexity nature of the A* search algorithm.

In this paper, we regard all sensors as dynamic objects and propose a collision-free path planning (CFPP) mechanism, based on geometric formulations and batched movements, to address the sensors deployment problem. Our proposed CFPP method incurs little computation latency, moderate energy consumption, and ensures 100% goal reachability. The remainder of this paper is organized as follows. Section II prepares the readers with geometric preliminaries. We present the CFPP protocol details in Section III. Section IV provides performance comparisons in terms of computation latency, energy consumption, and goals reaching success probability. Finally, we conclude the paper in Section V.

†This research was co-sponsored in part by the Ministry of Science and Technology (MOST) of Taiwan under grant number 103-2221-E-009-016 and in part by the Delta-NCTU Cooperation Project.

⋆Corresponding author (E-mail: ting@cm.nctu.edu.tw).
A. Path Planning Strategy

Given the five potential collision (intersection) cases caused by any two moving paths, we establish a colliding set \(C_i \), which includes all sensors whose moving paths intersect with that of \(s_i \), for each sensor. Instead of performing one-time physical movements, we propose to use batched movements such that the scheduling complexity can be reduced at the expenses of increased moving latency. Define \(order_i \) as the cardinality of set \(C_i \) \((order_i = |C_i|) \) for sensor \(s_i \), indicating its moving order. We start from performing movements for sensors with the least \(order \) value. All sensors with the currently least (smallest) \(order \) value are contained in set \(M_{\min\text{-order}} \). Intuitively, sensors with \(order \) value of zero can move simultaneously since no other sensors pose potential colliding sources to them. For any sensor \(s_i \) with non-zero \(order_i \) value, potential colliding conditions (on per node-pair basis) caused by all members in its \(C_i \) set should be analyzed and handled case by case. Specifically, all sensors are divided into moving groups (batches) based on their \(order \) values and processed round by round (batch by batch). Sensors in set \(M_{\min\text{-order}} \) are evaluated in the same round. The evaluation and processing details will be provided later in this section. After the evaluations, a subset of \(M_{\min\text{-order}} \) (or probably the whole \(M_{\min\text{-order}} \) set) is determined and all sensors included in the subset are allowed to move simultaneously in the current round. For sensor \(s_i \) that has been evaluated and permitted to move, the \(t\text{flag}_i \) is set \(\text{true} \), indicating its moving intention. Once the physical movement has been successfully performed by sensor \(s_i \), moving flag \(m\text{flag}_i \) is set \(\text{true} \) and \(s_i \) is removed from the consideration list. All \(order \) values for the remaining sensors (physical movements not performed yet) should be refreshed, and the batched scheduling procedure starts over accordingly.

Now, we elaborate on the evaluation procedures for determining a set of movable sensors in a single round (batch). Based on the idea of batched movements, we regard all sensors with the currently minimum \(order \) value as a potential moving batch and include them in set \(M_{\min\text{-order}} \). We then analyze all members in set \(M_{\min\text{-order}} \) one by one to determine their moving possibilities. In our design, we start the evaluation from sensor with the smallest ID, say \(s_1 \), and identify all possible collision cases caused by members in its colliding set \(C_1 \). For any two sensors \(s_i \) and \(s_j \) with moving orders \(order_i \) and \(order_j \), the previously five collision cases can be further classified into ten cases according to the relationship of \(order_i \) and \(order_j \). Suppose \(s_i \in M_{\min\text{-order}} \), \(s_j \in C_i \), and \(order_i = order_j \), we term the five collision cases as Case S-I, Case S-II, Case S-III, Case S-IV, and Case S-V, where 'S' indicates that sensors \(s_i \) and \(s_j \) are potentially scheduled to move in the "same" round due to equal \(order \) value. On the other hand, if \(order_i < order_j \) (note that \(order_i > order_j \) is not possible since \(s_i \in M_{\min\text{-order}} \), we define another five collision cases as Case D-I, Case D-II, Case D-III, Case D-IV, and Case D-V, where 'D' means \(s_i \) and \(s_j \) are potentially scheduled to move in "different" rounds due to

II. PRELIMINARIES

In this paper, we assume the sensor volume is neglected and regarded as a moving point on a 2D plane, while every moving path (performed by a sensor) regarded as a line. Suppose no two moving paths share the same line (i.e., no path lies in the sub-path of another). We identify the collision cases based on the following geometric theorem.

Theorem 1. With respect to the line \(ax + by + c = 0 \) on a 2D plane, points \(Q_1(x_1, y_1) \) and \(Q_2(x_2, y_2) \) fall in the same side if \((ax_1 + by_1 + c)(ax_2 + by_2 + c) > 0\), in different sides if \((ax_1 + by_1 + c)(ax_2 + by_2 + c) < 0\), while one or both reside(s) exactly on the line if \((ax_1 + by_1 + c)(ax_2 + by_2 + c) = 0\).

For an arbitrary sensor \(s_i \) departing from point \(p_i \) (with coordinate \((x_i, y_i)\)) to point \(p_j \) (with coordinate \((x_j, y_j)\)), the moving path can be formulated as a line, denoted as \(L_{ij} \). Similarly, the moving path of another sensor \(s_j \) is given as \(L_{ji} \). Define \(p_{ij} \) as the intersection point of lines \(L_i \) and \(L_j \), which can be easily obtained by solving the two line equations. According to Theorem 1, we can now classify five possible intersection (collision) cases for any two sensors \(s_i \) and \(s_j \), as illustrated in Fig. 1, where \(d(p_{i}, p_{ij}) \) and \(d(p_{j}, p_{ij}) \) represent the Euclidean distances from \(p_i \) to \(p_{ij} \) and from \(p_j \) to \(p_{ij} \). **Case I** shows the case in which points \(p_i \) and \(p_j \) fall in different sides of line \(L_{ij} \), whereas points \(p_j \) and \(p_j \) fall in different sides of line \(L_{ij} \) as well. In **Case II**, the departure point \(p_j \) of sensor \(s_j \) gets in the way of the moving path of \(s_i \), while in **Case IV**, on the contrary, the departure point \(p_i \) of sensor \(s_i \) blocks the moving path of \(s_j \). **Case III** draws the condition in which the destination point \(p_{ij} \) of sensor \(s_j \) lies on the moving path of \(s_i \), whereas **Case V**, on the opposite side, displays the condition that destination point \(p_{ij} \) of sensor \(s_i \) falls on the moving path of \(s_j \).

III. COLLISION-FREE PATH PLANNING (CFPP)

In practical sensors deployment, a collision-free moving path scheduling is essential, so that mobile sensors can reach their destinations without colliding with each other. However, the scheduling strategy is non-trivial since various collision cases need to be systematically classified and handled/resolved in different ways.
their unequal order values. In each potential collision case, on detecting a colliding possibility, \(s_i \) tries to resolve the collision by adjusting/prolonging the waiting time \(T_j \) or increasing the moving speed \(V_j \) of sensor \(s_j \). Originally all waiting times are set to zero, and moving speeds all set at a constant velocity \(V \). If the adjustment (on either waiting time or moving speed) is successful, the colliding possibility is eliminated and \(s_i \) moves on to evaluate collision cases with other members in \(C_i \). To avoid repeated adjustments on a single sensor, in our design, each sensor is allowed to be adjusted (either on waiting time or moving velocity) once. In addition, \(s_i \) itself cannot be adjusted by other sensors in set \(M_{\text{min-order}} \) that are evaluated after it, if \(s_i \) is indeed scheduled to move in the current round. We keep track of the adjustment possibility for sensor \(s_i \) by the dirty bit, implying adjustable if set \textit{false} and not adjustable if set \textit{true}. When \(s_i \) intends to resolve a collision by adjusting another sensor with dirty bit set \textit{true}, the adjustment is prohibited and \(s_i \) is not allowed to move in the current round \((t_{\text{flag}} \text{ set to false})\), since the collision remains. Only when all members in \(C_i \) with various colliding possibilities are all resolved can sensor \(s_i \) be included into the movable set and perform physical movement. Upon receiving the moving instruction from the clusterhead, \(s_i \) waits for \(T_i \) (possibly adjusted) and then moves with speed \(V_i \) (possibly adjusted). In our route scheduling strategy, we try to include as many sensors as possible to move simultaneously in the same round (batch).

For each of the ten collision cases identified, we define corresponding actions (\textbf{Action D-I}, \textbf{Action D-II}, \ldots, \textbf{Action S-I}, \textbf{Action S-II}, \ldots) to evaluate respective case and perform necessary adjustments. If colliding possibility remains due to unsuccessful adjustment, physical movement by sensor \(s_i \) is not allowed and should be deferred. Thus we additionally define \textbf{Action Deferred} to perform corresponding operations. Note that in \textbf{Case D-I}, \textbf{Case D-III}, and \textbf{Case D-IV}, no action is needed since \(s_i \) and \(s_j \) are scheduled in different rounds (no collision is likely to happen in the three cases despite intersection exists between the two moving paths). For the rest of seven cases, we describe the evaluation principles exercised by respective action as follows (detailed operations are available in Algorithm 1, Section III-B).

\textbf{Action D-II} In this case, since \(s_j \) gets in the way of \(s_i \)'s moving path, the clusterhead instructs \(s_j \) to slightly adjust its location along line \(p_i \cdot p_j \) to avoid collision. Assume the location adjustment is small enough to have no effect on other moving paths.

\textbf{Action D-V} Sensor \(s_i \) is not allowed to move, for its destination point \(p_i \) will block the moving path of \(s_j \) in a later round. In this case, the moving order of \(s_i \) should be set to be larger than that of \(s_j \) \((\text{order}_{i} = \text{order}_{j} + 1)\) to postpone \(s_i \)'s physical movement after \(s_j \). In addition, a fix\textit{order} flag should be set \textit{true}, indicating no updates on \textit{order} will be performed in later rounds to ensure the delayed movement after \(s_j \). And then \textbf{Action Deferred} is invoked for \(s_i \).

\textbf{Action S-I} Define the traveling time from \(p_i \) to the intersection point \(p_{ij} \) as \(t_{p_i \rightarrow p_{ij}} \) (obtained from available \(d(p_i, p_{ij}) \) and \(V_j \)), the clusterhead evaluates if \(T_i + t_{p_i \rightarrow p_{ij}} = T_j + t_{p_j \rightarrow p_{ij}} \), where \(T_i \) and \(T_j \) are the waiting times of \(s_i \) and \(s_j \) as defined earlier. If equality holds, a collision at the intersection is expected, and the waiting time \(T_j \) of \(s_j \) should be increased by a small amount of \(\Delta t \) to avoid the collision. However, in case \(s_j \) has already been processed with \textit{dirty} set \textit{true}, the adjustment is prohibited and \(s_i \) is not allowed to move in the current round. Consequently, moving order of \(s_i \) is increased \((\text{order}_{i} = \text{order}_{i} + 1)\) and \textbf{Action Deferred} is invoked for \(s_i \).

\textbf{Action S-II} If \(s_i \) reaches the intersection point \(p_{ij} \) no later than \(s_j \)'s departure time, the clusterhead should instruct \(s_j \) to slightly adjust its location along line \(p_i \cdot p_j \) to avoid collision.

\textbf{Action S-III} If \(s_j \) reaches the intersection point \(p_{ij} \) no later than \(s_i \), the destination point \(p_j' \) of \(s_j \) will block the moving path of \(s_i \). In this case, the clusterhead should instruct \(s_j \) to increase its waiting time \(T_j \) by setting \(T_j = T_i + (t_{p_i \rightarrow p_{ij}} - t_{p_i \rightarrow p_{ij}}) + \Delta t \) to ensure the delayed arrival of \(s_j \) at \(p_{ij} \) \((p_j') \). If the adjustment of \(T_j \) is not successful due to a \textit{true} flag of \textit{dirty} \(s_j \), then \(s_j \) is not allowed to move in the current round. Consequently, moving order of \(s_j \) is increased \((\text{order}_{j} = \text{order}_{j} + 1)\) and \textbf{Action Deferred} is invoked for \(s_j \).

\textbf{Action S-IV} If \(s_j \) reaches the intersection point \(p_{ij} \) no later than \(s_i \)'s departure time, the clusterhead should increase the waiting time of \(s_j \) by setting \(T_j = T_i - t_{p_i \rightarrow p_{ij}} + \Delta t \). In case the adjustment is not allowed due to a \textit{true} value of \textit{dirty} \(s_j \), the clusterhead instructs \(s_j \) to slightly adjust its location along line \(p_i \cdot p_j \) to avoid collision.

\textbf{Action S-V} If \(s_i \) reaches the intersection point \(p_{ij} \) no later than \(s_j \), the destination point \(p_i' \) of \(s_i \) will block the moving path of \(s_j \). In this case, the clusterhead should instruct \(s_j \) to increase its moving speed \(V_j \) by setting \(V_j = \frac{d(p_i \cdot p_{ij})}{V_i(T_i - T_j)} + \Delta v \), where \(\Delta v \) is a small amount of speed increment to ensure \(s_j \)'s earlier arrival at \(p_{ij} \) \((p_i') \) than \(s_i \). However, if the adjusted \(V_j \) is larger than the maximum possible moving speed \(V_{\text{max}} \) or the adjustment of \(V_j \) is prohibited due to a \textit{true} value of \textit{dirty} \(s_j \), then \(s_i \) is not allowed to move in the current round. Moving order of \(s_i \) is increased \((\text{order}_{i} = \text{order}_{i} + 1)\) and \textbf{Action Deferred} is invoked for \(s_i \).

\textbf{Action Deferred} Since \(s_i \) \((s_j) \) is not allowed to move in the current round, \textit{tflag} \((\text{tflag}_j) \) is set \textit{false}. In addition, the clusterhead should confirm if this not-moving decision leads to moving path blocking of any sensor in \(M_{\text{min-order}} \) that is already allowed to move in the current round (with \textit{tflag} set \textit{true}), and do necessary slight location adjustment to resolve the blocking.

Fig. 2 illustrates a snapshot of the CFPP operations. Note that \(s_4 \) has more intersections with other sensors, which are not shown in the figure (omitted for brevity). In the current round, potential moving set \(M_{\text{min-order}} \) includes \(s_1 \), \(s_2 \), and \(s_3 \), all having the currently smallest order value of 3. For \(s_1 \), colliding conditions caused by all members in \(C_1 \) are analyzed and handled case by case. In this example, since \(s_1 \) and \(s_2 \) are evaluated to reach intersection \(p_{12} \) simultaneously,
Fig. 2. Every sensor s_i in the potential moving set M_{min,order} should be analyzed by identifying its intersection (collision) relationship with each member in C_i, in which intersection cases D-II, D-IV, S-I, S-II, S-III, S-IV, and S-V require further consideration/processing, before including s_i into the moving set (allowed to move in the current round).

the clusterhead adjusts the waiting time of s_2 by setting T_2 \rightarrow T_2 + \Delta t to resolve the collision. Next, since s_3 is found to reach intersection p_{13} earlier than s_1, blocking s_1’s moving path, the clusterhead instructs s_3 to increase its waiting time by setting T_3 = T_1 + (t_{p_1 \rightarrow p_{13}} - t_{p_3 \rightarrow p_{13}}) + \Delta t. As to s_4 (scheduled to move in a later round), no action is required since no collision is likely to happen between s_1 and s_4. Consequently, the clusterhead includes s_4 into the moving set. Similar operations apply to s_2. In our example, s_2 has no colliding possibilities with s_1 and s_3. However, since the departure location p_4 of s_4 blocks s_2’s moving path, the clusterhead instructs s_4 to slightly move from p_4 (adjusted), as shown in Fig. 2 (b). As a result, s_2 is also included into the moving set. For s_3, in our example, both s_1 and s_2 do not pose colliding sources to s_3. Unfortunately, since the destination point p_3 of s_3 will block the moving path of s_4 in a future round, s_4 is not allowed to move before s_4 (not included into the moving set), and order_3 should be updated to 6 (order_4 + 1) with fix_order_3 set true. After the evaluations, sensors included in the moving set (i.e., s_1 and s_2) perform physical movements simultaneously, and order_4 and set C_4 are updated accordingly.

B. CFPP Algorithm Summary

TABLE I

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>Set of potential colliding sensors against s_i</td>
</tr>
<tr>
<td>order_i</td>
<td>Moving order of s_i, where order_i \in [C_i]</td>
</tr>
<tr>
<td>fix_order_i</td>
<td>Indicates the order value of s_i is finalized</td>
</tr>
<tr>
<td>dirty_i</td>
<td>Indicates whether s_i has been processed in the current round</td>
</tr>
<tr>
<td>mflag_i</td>
<td>Indicates whether s_i has moved in the current round</td>
</tr>
<tr>
<td>M_{min,order}</td>
<td>Set of sensors with minimum order value in current round</td>
</tr>
</tbody>
</table>

IV. PERFORMANCE EVALUATION

In this section, we validate our CFPP mechanism by comparing the performance with two other path-planning approaches: ADO (introduced in [7]) and Super A* (introduced in [12]). Fig. 3 illustrates a monitored 200 \times 200 area with

Algorithm 1 Collision-free Path Planning (CFPP)

include all sensors in set S;

evaluate order_i for \forall s_i \in S;

while (S’ empty) do

re-establish set C_i for \forall s_i \in S;

if \exists s_i \in S with fix_order_i == false;

reset T_i = 0, \forall i, \forall s_i, \forall \text{dirty}_i = \forall s_i, \forall \text{dirty}_i = false, \forall \text{mflag}_i = \forall s_i, \forall \text{mflag}_i = false for \forall s_i, \forall \text{dirty}_i;

if \exists s_i with the minimum order_i value into the M_{min,order} set;

for (each s_i \in M_{min,order}) do

set tflag_i = true;

for (each s_j \in C_i) do

classify the intersection (collision) case for s_i and s_j;

switch (case)

<table>
<thead>
<tr>
<th>Case</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case D-II</td>
<td>do Action D-II;</td>
</tr>
<tr>
<td>Case D-IV</td>
<td>do Action D-IV;</td>
</tr>
<tr>
<td>Case S-I</td>
<td>do Action S-I;</td>
</tr>
<tr>
<td>Case S-II</td>
<td>do Action S-II;</td>
</tr>
<tr>
<td>Case S-III</td>
<td>do Action S-III;</td>
</tr>
<tr>
<td>Case S-IV</td>
<td>do Action S-IV;</td>
</tr>
<tr>
<td>Case S-V</td>
<td>do Action S-V;</td>
</tr>
</tbody>
</table>

end for

for end for

perform simultaneous physical movements for \forall s_i, with tflag_i: \forall s_i \rightarrow \forall s_i (adjusted);

set mflag_i: \forall s_i \rightarrow \forall s_i (adjusted);

invoke Action Deferred (s_i);

procedure Action S-I if T_i + t_{p_i \rightarrow p_{i3}} = T_j + t_{p_j \rightarrow p_{j1}} then

if dirty_i == false then set T_i = T_i + \Delta t; dirty_i = true; else set order_i = order_i + 1; invoke Action Deferred (s_i);

procedure Action S-II if T_i + t_{p_i \rightarrow p_{i3}} \leq T_j then

slightly adjust location of s_i from p_i (original) to p_j (adjusted);

procedure Action S-III if T_i + t_{p_i \rightarrow p_{i3}} \geq T_j + t_{p_j \rightarrow p_{j1}} then

if dirty_i == false then set T_i = T_i + \Delta t; dirty_i = true; else set order_i = order_i + 1; invoke Action Deferred (s_i);

procedure Action S-IV if T_i \geq T_j + t_{p_j \rightarrow p_{j1}} then

if dirty_i == false then set T_i = T_i + \Delta t; dirty_i = true; else slightly adjust location of s_i from p_i (original) to p_i (adjusted);

procedure Action S-V if T_i + t_{p_i \rightarrow p_{i3}} \leq T_j + t_{p_j \rightarrow p_{j1}} then

if dirty_i == false then set T_i = T_i + \Delta t; dirty_i = true; else set order_i = order_i + 1; invoke Action Deferred (s_i);

procedure Action Deferred (s_i) set tflag_i = false;

do necessary slight adjustment of s_i’s departure location to resolve moving path blocking possibly caused by this not-moving decision;
up to 20 randomly configured moving paths. We observe the computation latency and energy consumption incurred by the three approaches. As shown in Fig. 4, both CFPP and ADO manifest little computation latency, while Super A* requires significantly longer time to compute path-planning solutions. Moreover, computation latency with Super A* increases drastically as number of mobile sensors (moving paths) grows.

To model the moving energy, we estimate the energy consumed by the motion device moving for one grid unit by performing real measurements on the sensor robot used in our implementation testbed with grid size equal to 1 cm. The robot assembles six 1.2 V 2000 mAh rechargeable NiMH batteries with measured 200 ∼ 290 mA moving current and average moving speed at 0.06 m/sec. Consequently, the average moving energy consumption per grid (unit distance) can be obtained by 0.29 × 7.2 × (0.01 0.06) = 0.348 Joule. We then compute the total moving energy consumption based on the traveling distance accordingly [11]. To model the energy consumed by visual sensors (cameras) in ADO (recall that ADO algorithm depends on the presence of omnidirectional cameras for calculating moving paths, as described in Section I), we perform measurements on a commercial video camera M30 Series [1]. An estimated 3.4 Watt at average (ranging from 2.2 to 4.6 Watt) facilitates our calculation of the total camera energy required by an individual sensor in ADO, which can be obtained by 3.4 × moving time (sec) Joule. Fig. 4 displays the aggregate energy consumption for CFPP, ADO, and Super A* respectively. Our CFPP mechanism consumes the least aggregate energy among three, whereas ADO produces the most power cost due to extra energy consumed by visual sensors (omnidirectional cameras). Meanwhile, since the generated Super A* paths are not always in straight lines (shortest paths), Super A* consumes more moving energy as compared to our CFPP.

In order to observe the capability of path-planning algorithms on resolving deadlocks, we add potential deadlock situations as mentioned in [8]1. Fig. 5 depicts a new configuration consisting of 20 random moving paths with three deadlock situations. Potential deadlocks #1 and #2 simulate the situation when a goal position blocks another sensor’s moving path, whereas potential deadlock #3 demonstrates a triangular deadlock situation, in which all involved sensors are prevented from moving.

Fig. 4 shows the sensors goal reachability accomplished by CFPP, ADO, and Super A* as time advances. We observe that ADO suffers from deadlocks #1 and #3 at time 20, which stop sensors $s_{11}, s_{16}, s_{17}, s_{18}$ from moving to their destinations (goals). At time 40, ADO encounters deadlock #2, which prevents sensor s_{14} from reaching its goal position. After time 40, ADO is unable to make any further progress with eventually 75% final goal reachability. Super A* is capable of resolving deadlocks #1 and #2, but unable to handle the triangular deadlock #3, which occurs at time 20 and traps sensors s_{16}, s_{17}, s_{18} from departing toward their destinations. Super A* stops making progress after time 40, leading to 85% final goal reachability. In contrast, our CFPP is capable of resolving all deadlock situations. For deadlocks #1 and #2 (classified as Case D-V in our CFPP algorithm), sensors s_{4} and s_{10} execute Action D-V by deferring their movements (scheduled in a later batch after s_{11} and s_{14} reach their goal positions). For deadlock #3 (a triangular deadlock), since sensors s_{16}, s_{17}, s_{18} will be scheduled in the same moving order, CFPP naturally resolves this deadlock situation by allowing three sensors to move simultaneously without blocking each other. Interestingly, CFPP reachability grows slowly (due to the batched movements applied by CFPP) and outperforms the other two approaches after time passes 80, yet leads to the highest 100% goal reachability. From the performance results, we validate our CFPP mechanism’s capability of successfully guiding 100% of the sensors to their goal positions without collisions, while incurring little computation latency and moderate energy consumption.

1Here we define that deadlocks among two or more robots (mobile sensors) occur if these robots block each other in a way such that any or all of them is/are unable to continue along its/their trajectory (traveling path) without causing a collision.
deploy, the CFPP algorithm comes into play by systematically scheduling moving paths for mobile sensors. When sensors move around to self-deploy, the CFPP algorithm comes into play by systematically classifying colliding cases and employing batched movements. Our proposed CFPP guarantees sensors goal reachability and successfully guides all sensors to their destinations without causing collisions.

V. CONCLUSION

In this paper, we devise a collision-free path planning (CFPP) mechanism to schedule moving paths for mobile sensors deployment problem. When sensors move around to self-deploy, the CFPP algorithm comes into play by systematically classifying colliding cases and employing batched movements. Our proposed CFPP guarantees sensors goal reachability and successfully guides all sensors to their destinations without causing collisions.

REFERENCES

