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Abstract
Central nervous system (CNS) tumors are a variety of distinct neoplasms that 
present multiple challenges in terms of treatment and prognosis. Glioblastoma, 
the most common primary tumor in adults, is associated with poor survival and 
remains one of the least treatable neoplasms. These tumors are highly hetero-
genous and complex in their nature. Due to this complexity, traditional cell 
culturing techniques and methods do not provide an ideal recapitulating model 
for the study of these tumors’ behavior in vivo. Two-dimensional models lack the 
spatial arrangement, the heterogeneity in cell types, and the microenvironment 
that play a large role in tumor cell behavior and response to treatment. Recently, 
scientists have turned towards three-dimensional culturing methods, namely 
spheroids and organoids, as they have been shown to recapitulate tumors in a 
more faithful manner to their in vivo counterparts. Moreover, tumor-on-a-chip 
systems have lately been employed in CNS tumor modeling and have shown 
great potential in both studying the pathophysiology and therapeutic testing. In 
this review, we will discuss the current available literature on in vitro three-
dimensional culturing models in CNS tumors, in addition to presenting their 
advantages and current limitations. We will also elaborate on the future implic-
ations of these models and their benefit in the clinical setting.
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Core Tip: Central nervous system tumors present multiple challenges in treatment and 
patient prognosis. Glioblastoma, the most common adult brain tumor, remains one of 
the most lethal malignant brain tumors even at the current standard of care. Traditional 
in vitro culturing is limited in recapitulating the features of the in vivo tumors. We 
herein discuss recent advancements in three-dimensional culturing for tumor modeling, 
their advantages, and limitations, in addition to future perspectives.
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INTRODUCTION
Central nervous system (CNS) tumors are distinct neoplastic entities that can either 
arise from different cells within the CNS (primary neoplasms) or metastasize to the 
brain from other body organs (secondary neoplasms). In the young population, 
primary brain tumors are more common than metastatic tumors, whereas metastasis 
accounts for more than half of those above 40 years of age[1]. The incidence rate of 
primary CNS tumors in adults in the United States is approximately 30 per 100000 
persons[1]. Brain tumors are the most common and the most lethal tumor type among 
pediatric solid tumors[2]. Of all primary brain tumors, meningiomas and glial tumors 
(glioblastoma, astrocytoma, and oligodendroglioma among others) account for nearly 
two-thirds of adult intracranial tumors[3]. Glioblastoma is the most common malig-
nant primary brain tumor in adults with a median age of 64 years[4,5]. Anaplastic 
astrocytoma and glioblastoma specifically have a 5-year survival rates of 30% and 
5.6%, respectively[1].

Despite the advancement in surgical treatment, radiotherapy, and chemotherapy, 
many high-grade tumors recur and exhibit treatment failure causing high mortality 
among patients[6,7]. Recent development in cancer research has been revolving 
around the problem of therapy resistance and the emergence of recurrence in certain 
tumor types. Accordingly, the idea of cancer stem cells (CSCs) comes into play. Those 
cells are believed to arise from progenitors that reside within the tumor bulk and are 
responsible for tumor resistance and recurrence, adding to the complexity of cancer 
management[8,9]. Those subpopulations of cells are the main reason behind resistance 
to chemotherapy and radiotherapy. They have the ability to replenish the tumor after 
tumor resection and standard subsequent therapies[10]. Besides, the presence of CSCs 
per se might be a main reason behind tumor heterogeneity in different cancers, partic-
ularly CNS tumors[11]. Tumor heterogeneity refers to the presence of multiple 
subpopulations of cells with different genotypic and phenotypic profiles within the 
same tumor[12]. For example, in glioblastoma, CSCs have the capacity to differentiate 
into any of the cells that reconstitute the entire cell population that is found within the 
tumor, such as neurons, oligodendrocytes, and astrocytes[13].

Due to the complexity of CNS tumors, it is crucial to develop models that can 
recapitulate cancer development and progression and emulate better this disease 
process in vitro. While two-dimensional (2D) cell cultures have been the mainstay in 
cell cultures techniques for the past couple of decades, it remains challenging to use 
those models to decipher the in vivo behavior of CNS tumors[14]. This is particularly 
true since 2D cultures hinder the ability to study cell-cell interactions between 
different subpopulations of cells, as well as cell-extracellular matrix (ECM) interactions 
and other spatial relationships (Table 1). Moreover, testing therapeutics on models that 
do not recapitulate in vivo tumor behavior may not present the ideal reliable solution 
that can be applied to clinical settings. Implementing three-dimensional (3D) cell 
culturing techniques provides compelling evidence to perform more advanced 
experiments that can yield valuable insights to study human diseases[19,20]. In this 
review, we aim at recounting the current available literature on 3D culturing models in 
CNS tumors that allows us to surpass limitations of disease modeling. We also discuss 
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Table 1 Comparison between two-dimensional and three-dimensional tumor cell culture systems[14-18]

2D tumor cell cultures 3D tumor cell cultures

Time required Few days Few weeks

Physiological relevance Does not simulate in vivo tumor Simulates in vivo tumor

Cell-cell and cell-ECM 
interactions

Low to no interactions High level of interactions

Cell morphology Flat cells expanding on 2D surface Preserved in vivo cell shapes and growth patterns; multilayer growth

Oxygen and nutrients 
perfusion

Homogeneous Heterogeneous due to the three-dimensional geometry

Response to drugs More susceptible to drug actions More resistant to drugs with a similar drug penetration profile to in vivo 
tumor counterparts 

Gene expression Many differences compared to in vivo tumor 
counterparts

Similar to in vivo tumor counterparts

Differentiation Poor Well differentiated cells

Cost Cheap Expensive

Technique difficulty Low High

2D: Two-dimensional; 3D: Three-dimensional; ECM: Extracellular matrix.

the advantages and limitations of different 3D modeling techniques, particularly 
spheroid and organoid culturing, and elaborate on the future implication of those 
models in the clinical setting.

3D SPHEROID MODELS
Despite the advancement in medicine and development of new therapies for brain 
tumors, resistance to therapy and recurrence still represent main challenges. Hetero-
geneity and tumor initiating cells, known as CSCs, are considered to be the main 
reason behind cancer initiation, progression, metastasis, resistance, and recurrence
[21]. Molecular interactions within the CSC niche are highly correlated with the 
treatment escape strategy. Immune reactions between CSCs and cytokines, such as 
interleukin-6, interleukin-4, and transforming growth factor-β along with epithelial-to-
mesenchymal transition[22] and other processes implicated in cancer progression 
represent key players in tumor resistance to conventional treatments[23,24]. Similarly, 
CSCs rely on several dysregulated pathways to maintain stemness and differentiation 
into diverse cancerous cells. Such path ways include Wnt, Notch, Hedgehog, phospha-
tidylinositol 3 kinase/Akt, nuclear factor kappa B, and janus kinase/signal transducer 
and activator of transcription pathways among others, and are believed to instigate a 
major effect on tumor initiation and resistance[25]. Therefore, targeting this subpopu-
lation of cells may reduce its stemness and hence the growth, migration, and resistance 
of the tumor, which will enable a better control over the outcome post-treatment[21]. 
In gliomas, the interaction of glioma stem cells with their surrounding environment, 
including the ECM, the disorganization of the brain vasculature, and the hypoxic and 
acidic milieu in necrotic areas, all combine to maintain the growth and self-renewal of 
glioma stem cells[26]. Interestingly, a subpopulation of stem/progenitor-like cells in 
human gliomas was identified as tumor-initiating cells expressing A2B5, a glial 
progenitor marker, and CD133, a stem cell marker[27].

To explore further the role of CSCs and eventually develop novel therapies 
targeting this subpopulation of cells in brain tumors, several methods of isolating 
them using specific biomarkers (Table 2) have been designed. Also, the need to mimic 
the ECM along with other factors found within the tumor niche became a necessity. 
More importantly, 2D assays failed to serve as screening tools for studying brain 
tumor growth and progression[34], particularly with the lack in the ability to assess 
cellular interactions using those models[35]. Therefore, 3D culture systems, including 
hanging drops, spheroids, and organoids among others (Figure 1), were developed to 
suit better research purposes in studying patient-derived samples[36] (Table 3).
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Table 2 Cancer stem cells biomarkers in brain tumors

Markers Ref.

CD133 Gonçalves et al[12], Singh et al[13], Ogden et al[27], and Li et al[28]

A2B5 Ogden et al[27],

CD24 Gonçalves et al[12]

Aldehyde dehydrogenase (ALDH) Gonçalves et al[12]

CD15 Li et al[28], and Son et al[29]

ABCG2 Li et al[28], Bleau et al[29], and Kondo et al[30]

Nestin Rahman et al[32], and Pollard et al[33]

SOX2 Rahman et al[32], and Pollard et al[33]

CD44 Rahman et al[32], and Pollard et al[33]

OLIG2 Rahman et al[32], and Pollard et al[33]

Table 3 Characteristics of three-dimensional modeling technologies

Modeling 
technology Methods of generation Applications Limitations

Spheroids[37-
39]

Static suspension; Hanging drops; 
Spinner and rotational bioreactor; 
Magnetic levitation; Microfluidic 
system; Gel embedding (Matrigel, etc.)

Radioresistance through hypoxia and cell-
cell contacts; Chemosensitivity and drug 
screening; Migration and invasion; 
Propagation and analysis of CSCs

Tumor heterogeneity; Immune system response; 
Interaction with normal non-tumor cells; Lack 
organ-like histology

Organoids[14,
17,37,40,41]

Culturing done on matrices (Matrigel, 
collagen I, hyaluronic acid, etc.); 
Addition of culture supplements 
including FGF, EGF, Noggin, N2, B27, 
etc.

Disease mechanism; Drug discovery and 
toxicology; Developmental, stem cell 
biology and regenerative medicine; 
Infectious disease

Oxygen and nutrient distribution 
underdeveloped; Cellular microenvironments 
are challenging to replicate; Imaging difficulties; 
Expensive and time consuming assay

CSC: Cancer stem cell; EGF: Endothelial growth factor; FGF: Fibroblast growth factor.

The increasing demand for spheroid models may be attributed to the characteristics 
offered by these models, such as the relatively decreased cost when compared to 
animal models, in addition to the resolving of ethical issues attributed to animal use
[18]. Heterogeneity of spheroid models, oxygen gradient, and cellular interactions are 
few common characteristics found between spheroid models and normal in vivo 
conditions[18]. For such reasons, culturing cells shifted from the conventional 2D 
systems to the upgraded 3D models as a promising tool to simulate the growth and 
interaction of tissues, whether cancerous or not, under natural conditions. As such, 
spheroid models became widely known for their role in research as tools for anti-
cancer drug screening and discovery[18,42,43].

Several cancers are hard to culture using conventional methods due to their infilt-
rative and heterogenic characteristics. Therefore, recreating tumors by growing tumor 
spheroids from either cell lines or primary cells aims to solidify the efforts made in 
understanding cancer resistance[44], in addition to exploring molecular pathways 
contributing to tumor invasiveness, recurrence, and metastasis. Interestingly, the 
response of both cell lines and patient-derived tumor cells differs between 2D and 3D 
culture systems. Gomez-Roman et al[45] showed that three patient-derived 
glioblastoma cell lines had a similar radiosensitive result in 2D and 3D cultures. 
However, the effect of several drugs on the same cell lines differ on clonogenic 
survival in 2D vs 3D systems. In another study, when pediatric CNS tumor cells were 
cultured in neural stem cell media, generated cells expressing stem cell markers were 
able to undergo differentiation and when injected in immunocompromised mice and 
zebrafish, were able to initiate a tumor[46]. These findings suggest that 3D models 
represent an ideal in vitro culturing method to understand tumorigenic aspects of 
brain tumors, in addition to targeting CSCs.

Using 3D cultures has led to the discovery of several molecular pathways as novel 
therapeutic targets in brain tumors[19,20,47]. As such, Narayan et al[48] used 3D 
spheroid model to show that the inhibition of AKT using MK2206 reduced spheroid 
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Figure 1 Schematic illustrating the implication of three-dimensional cell culturing to model central nervous system tumors. CSCs: Cancer 
stem cells; hESCs: Human embryonic stem cells; iPSCs: Induced pluripotent stem cells.

growth and sensitized spheroids as well to both radiation and chemotherapy 
(Temozolomide; TMZ), while the synergistic effect was not observed in 2D. Our group 
also evaluated the potential anti-tumor effect of Tideglusib, an irreversible glycogen 
synthase kinase-3β inhibitor drug, on human neuroblastoma cells showing that this 
drug significantly hindered the neurospheres formation eradicating the self-renewal 
ability of highly resistant CSCs[49]. We also demonstrated that Tideglusib alone and in 
combination with radiation significantly decreased the sphere formation of 
glioblastoma cell lines by targeting and reducing their CSC population[20]. On another 
note, since drug repurposing has recently emerged as a promising approach to target 
CSCs and overcome therapy resistance by identifying novel therapeutic strategies for 
cancer[47], we demonstrated that Metformin and Ara-a are both effective in the 
treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer 
stem/progenitor cell population[47].

Glioma organotypic multicellular spheroid models were used to study lymphokine-
activated killer (LAK) cell infiltration and toxicity using LAK cell therapy. Results 
showed that those cells caused intense cellular damage to the glioma spheroids, and 
hence, the model offered a solid base on which LAK cell therapy studies are based
[50]. Moreover, MatrigelTM, a gel-like substance used as a 3D culture matrix to 
recapitulate the tumor microenvironment, was used to assess the invasiveness of 
embedded patient-derived glioblastoma cancer cells. Results conveyed that invasion in 
MatrigelTM increased in rigidity-independent cell lines[51]. Moreover, the use of 
spheroid culturing model enabled researchers to assess the effect of protein inhibition 
on the outcome of sphere formation ability. For instance, lentiviral short hairpin RNA 
knockdown of PAR1 in a glioma cell subpopulation expressing A2B5+ was able to 
reduce sphere formation, and consequently the growth and self-renewal as well[52]. 
Also, novel microRNAs were identified as molecular targets for glioblastoma by 
assessing the migration of patient-derived spheroids in serum-free conditions, where 
miR-32 and miR-222 were associated with decreased migration[53]. Generally, the 
spheroid model is widely used in cancer research to enrich the cancer stem/progenitor 
cell subpopulation and to enhance drug discovery using a realistic in vitro model 
before expanding to the relatively expensive in vivo research. Accordingly, a 
chemosensitivity assay has been developed for patient-derived hepatocellular 
carcinoma spheroids in which a 3D co-culture system was established to enable drug 
screening and hence an optimized treatment for every patient[54]. Likewise, patient-
derived non-small cell lung cancer cells were expanded in culture for more than 120 d 
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using the 3D spheroid model, in an attempt to establish a drug screening prototype
[55]. Our group recently derived CSCs (as spheres in 3D cultures) from Kras-mutant 
lung adenocarcinoma cells and used whole-transcriptome sequencing to identify gene 
features differentially expressed in CSCs showing that those cells are associated with 
an augmented malignant phenotype including stemness, tumor-promoting inflam-
mation, and anti-oxidant responses[56].

Although the 2D culture system was the predominant model in the previous 
research era, several attempts are taking place to shift from this conventional method 
towards a more advanced and realistic 3D model for culturing cell lines or patient-
derived cells. In addition to the cell-cell interaction, cell-environment interactions and 
cellular heterogeneity represent an important aspect of the 3D culturing technique. 
Therefore, recapitulating the extracellular environment can provide better analysis of 
tumorigenic behavior to different treatment regimens[17]. However, even though 3D 
culture systems are more physiologically relevant than 2D and currently represent the 
transition between conventional culturing methods and in vivo experiments, several 
limitations still accompany those techniques. For instance, in spheroid formation, the 
distribution of oxygen, nutrients, and waste is still underdeveloped[14]. Also, cellular 
microenvironments are challenging to replicate in certain 3D methods, in addition to 
the difficulty in imaging that requires high standard and specialized microscopes, such 
as laser scanning confocal microscopes. Moreover, the dissociation of spheroids to 
single cells requires to proceed with several experiments, which represents one of the 
issues facing 3D cultures[17]. Last but not least, there is no unique and standard 
protocol for 3D culture formation, and there is a difficulty in obtaining spheres from 
cells extracted from certain tissues, while the most significant disadvantage remains 
the time consumption necessary to perform and analyze such assays[40].

3D ORGANOID MODELS
Basic science research on brain tumors is challenged mainly by the absence of reliable 
models that mimic human response. Organoids, which are 3D cell cultures grown in 
vitro to imitate organs, have emerged as promising tools for preclinical tumor 
modeling and experimentation[57] (Tables 4 and 5). Human neuroepithelial stem cells 
derived from induced pluripotent stem cells of patients with Gorlin syndrome were 
used to model medulloblastoma (MB) upon orthotopic transplantation in mice[66]. 
Genetically engineered cerebral organoids were used to model brain tumor formation 
and progression[38] and recapitulate the key aspects of malignancy in gliomas[58]. In 
cancerous organoids, oncogenes could be amplified using transposons, and mutations 
are induced in tumor suppressor genes using sequence editing techniques (CRISPR-
Cas9). In a study by Bian et al[38], MYC gene amplification yielded CNS primary 
neuroectodermal tumor. Also, combinations of mutations associated with glioblastoma 
generated glioblastoma-like neoplastic cerebral organoids (neoCORs). These 
genetically engineered neoCORs allowed for the study of tumorigenesis and the 
different genetic aberrations that may be found within tumor cells[38]. In addition, 
neoCORs were found to emulate the structural organization of in vivo tumors while 
also containing both tumor cells and normal CNS cells.

Medulloblastoma, an aggressive brain tumor of childhood, causes the highest 
morbidity and mortality rates among cancer patients of the pediatric patient 
population[67,68]. Being a heterogeneous tumor, MB constitutes several subgroups: 
Wnt, Shh, Group 3, and Group 4[69]. Among the molecular subgroups, Group 3 MB 
known as the MYC group, is characterized by c-MYC amplification and is associated 
with a poor prognosis wherein approximately 50% of patients have metastatic disease 
at the time of diagnosis[59,69]. Differential expression of tumor oncogenes such as the 
overexpression of c-MYC with either GFI1 overexpression or p53 loss is shown to 
induce MB tumorigenicity[59]. Yet, neither patient-specific MB models nor specific 
therapy for Group 3 MB patients exists. Ballabio et al[59] showed that OTX2/c-MYC 
together constitute a novel driver gene combination required for MB tumorigenesis. In 
their study, human induced pluripotent stem cell-derived cancer organoids were 
established to model Group 3 MB. These organoids mimicked Group 3 genetic 
alterations as they overexpressed GFI1/c-MYC and OTX2/c-MYC gene combinations. 
Besides, DNA methylation signature and Group 3-specific markers analysis proved 
that the generated organoid-based MB model recapitulates several features of human 
Group 3 MB. In addition, SMARCA4, a chromatin modifier, reduced Otx2/c-MYC 
tumorigenesis in vivo and in human cerebellar organoids. On the other hand, treatment 
with Tazemetostat, a EZH2-specific inhibitor, reduced OTX2/c-MYC tumorigenesis in 
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Table 4 Organoid and organoid-on-a-chip models

Ref. Model 
system

System cell 
origin Tumor type Relevant genes Results summary

Bian et al
[38], 
2018

neoCOR hESCs CNS-PNET; GBM Amplified expression of 
MYC; Differential 
expression of GBM 
associated gene 
aberrations (GBM-1, 
GBM-2, and GBM-3)

neoCOR used to test gain- and loss of-function mutations, 
singly or in combination; generation of CNS-PNET or GBM 
xeno-transplantable tumors

Ogawa 
et al[58], 
2018

Human 
cerebral 
organoids

hESC GBM RAS activation and 
TP53 deletion

Generation of tumors in cerebral organoids using CRISPR/Cas9 
technology; tumors exhibited invasive phenotype and 
replicated the hallmarks of tumorigenesis in vivo

Ballabio 
et al[59], 
2020

Human 
cerebellar 
organoids

Human 
induced 
pluripotent 
stem cell 
(iPSC)

Medulloblastoma 
(MB) subgroup 3

Overexpression of 
GFI1/c-MYC (GM) and 
OTX2/c-MYC (OM) 
gene combinations

OM as a novel driver gene combination required for Group 3 
MB tumorigenesis; GM and OM overexpression induces tumor 
formation in mouse cerebellum; SMARCA4 and Tazemetostat 
reduces OM tumorigenesis

Linkous 
et al[60], 
2019

GLICO hESCs; iPSCs GBM - GLICO recapitulate primary human GBM with in a primitive 
brain microenvironment; GSCs exhibit high resistance to drug 
and radiation-inducedgenotoxic stress; GSCs form tumor by 
relocating to the human cerebral organoid, invasion and 
proliferation within themicroenvironment of the GLICO

Akay et 
al[61], 
2018

Microfluidic 
chip

Patient 
primary 
human GBM 
multiforme 
specimens

GBM - Generation of brain cancer chip that exhibit diffusion 
prevention mechanism to culture GBM-patient derived 3D 
spheroids; treatment with TMZ and bevacizumab (Avastin, 
BEV) in combination enhanced GBM cell death compared to 
TMZ alone

Ayuso et 
al[62], 
2017

Microfluidic 
chip

U-251 MG 
human GBM 
cell line

GBM - Generation of microfluidic device to behavior models that 
simulate blood flow through the tumor; deprivation of 
nutrients and oxygen induces pseudopalisade formation; 
pseudopalisading process renders GBM cells to become of more 
aggressive behavior

Cui et al
[63], 
2018

Microfluidic 
chip

GL261 and 
CT-2A mouse 
glioma cell 
lines

GBM - Generation of microfluidic angiogenesis model that simulate 
GBM tumor angiogenesis and macrophage-associated 
immunosuppression within GBM tumor microenvironment; 
GL261 and CT-2A GBM-like tumors promote angiogenesis 
through driving M2-like macrophage polarization; TGF-b1, and 
surface integrin (avb3) endothelial-macrophage interactions 
regulates inflammation-mediated angiogenesis through Src-
PI3K-YAP signaling; inhibition of integrin (avb3) and cytokine 
receptor (TGFb-R1) repress GBM tumor neovascularization

Lin et al
[64], 
2018

Microfluidic 
chip

Patient 
derived GSCs

GBM - Generation of glioma perivascular niches on a chip; 
Perivascular niches maintain the pluripotent state of GSCs; 
Stronger chemoresistance of GSCs against TMZ associates with 
endothelial cell co-culturing, GSCs neurosphere formation and 
the expression of 6-O-methylguanine and Bmi-1 gene

Yi et al
[65], 
2019

Bio-printed 
chip

Patient 
primary 
human GBM 
specimens

GBM - Generation of complex cancerous-tissue constructs constituting 
brain ECM composition, oxygen gradient-generating system, 
cancer-stroma structure; exhibited patient-specific response 
upon the treatment with drug combinations, chemoradiation 
and TMZ

2-D: Two dimensional; 3-D: Three dimensional; CNS-PNET: Central nervous system primitive neuroectodermal; CSC: Cancer stem cell; GBM: 
Glioblastoma; GLICO: Cerebral organoid glioma; GSCs: Glioma stem cells; hESC: Human embryonic stem cells; NeoCOR: Neoplastic cerebral organoid; 
PI3K: Phosphatidylinositol 3 kinase; PNET: Primary neuroectodermal tumor; TGF: Transforming growth factor; TMZ: Temozolomide.

ex vivo cultures and the established human cerebellar organoids[59]. Therefore, human 
organoids-based models might truly represent useful tools to investigate the molecular 
mechanisms underlying cancer development, drug screening, and therapy.

Among the cell types essential for tumor pathogenesis are the endothelial cells. In 
glioblastoma, for instance, the tumor favors tissue invasion along with existing 
vasculature[70]. However, their absence limits glioma natural history reconstruction in 
organoids. Co-culturing with endothelial and mesenchymal progenitors would 
generate more reliable cerebral organoids[71,72]. Similarly, co-culturing with 
hematopoietic progenitors give rise to microglial cells that mediate brain inflammatory 
and injury responses[73,74]. In addition to the missing cell types, variability in the 
organoid generation is another limitation in human cerebral organoids. Brain 
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Table 5 Features and characteristics comparison between spheroids and organoids

Spheroids Organoids

Cells used Cell lines or CSCs Embryonic stem cells, induced pluripotent stem cells or CSCs

Physiologic 
relevance

Lower Higher

Tumor 
heterogeneity

Lower Higher

Technique 
difficulty

Lower Higher

Cost Lower Higher

Time Weeks 1-3 mo

Genetic 
manipulation

Moderately available Moderately available

Biobanks Not available (cells are difficult to maintain long-term) Available

Advantages Cost effective; Highly accessible; Good for high throughput drug 
testing

Retains tumor heterogeneity; Better simulation of the 
physiological environment

Disadvantages Hard to maintain long-term; Not as representative of the 
physiologic environment

More complex; Higher failure rate; May give variable results

CSC: Cancer stem cell.

organoids contain a subpopulation of non-CNS differentiated tissues and do not 
differentiate completely except for the deepest layers of the human cerebral cortex[58,
75]. However, despite these existing limitations, tumors derived from cerebral 
organoids are like those generated in mice, transplantable like patient-derived tumors, 
and support both the proliferation and invasive behaviors upon using patient-derived 
primary tumor explants as well as established cancer cell lines[58]. Theoretically, to 
address host-tumor cell interaction in 2D culture, it is possible to co-culture brain cells 
with patient-derived glioma stem cells. Unfortunately, the resulting disordered 
mixture of normal cells would lack human ECM and would not represent the carefully 
organized arrangement of cells in the human brain[60]. However, human glioblastoma 
can be modeled in a primitive brain microenvironment using human embryonic stem 
cell-derived cerebral organoids and patient-derived glioblastoma stem cells. By 
growing patient-derived glioblastomas within the cerebral organoids, Linkous et al[60] 
established a clinically relevant cerebral organoid glioma GLICO model. In addition to 
being scalable for high-throughput drug screening, their ex vivo model closely 
phenocopies surgical and autopsy specimens. In addition to exhibiting high resistance 
to drug and radiation-induced genotoxic stress, glioma stem cells were reported to 
relocate to the human cerebral organoid where they invade and proliferate to form 
tumors that highly recapitulate patient glioblastomas[60].

On another note, one of the most recent advancements in CNS tumor modeling are 
the tumor-on-a-chip systems, which have been recently employed in glioblastoma 
(Table 4). Akay et al[61] developed a brain cancer chip able to culture primary tumor-
derived human glioblastoma cells as 3D spheroids. In addition, this chip had a multi-
channel system that allows for targeted drug delivery, which was upgraded from their 
previous model published back in 2016[61,76]. The authors hope that this new 
technology would provide clinical benefits to oncologists as a means of studying 
patient-specific drug responses, in addition to playing a crucial role in improving the 
current drug testing framework. This system showed a lot of potential; however, it 
harbors some limitations, as most spheroid systems do, due to the lack of the complete 
tumor microenvironment, which is known to influence glioblastoma’s drug sensitivity 
and general behavior[26,63,77,78].

In addition, microfluidic chip models were already being investigated as a potential 
biomimetic model for glioblastoma. Ayuso et al[62] developed a microfluidic chip that 
allowed them to simulate blood flow through the tumor in addition to vessel 
obstructing events that have been associated with glioblastoma. At around the same 
time, Cui et al[63] published findings on their microfluidic angiogenesis model chip, 
which allowed them to reconstitute organotypic glioblastoma models in a vascularized 
microenvironment that simulated immune and vascular conditions. This model 



Abou-Mrad Z et al. CNS tumors and 3D cell biology

WJSC https://www.wjgnet.com 1120 August 26, 2021 Volume 13 Issue 8

allowed them to study the effects of immune cells and inflammation on the 
angiogenesis and tumor growth, in addition to possible therapeutic targets. Other 
researchers were also able to use microfluidic chips to study glioblastoma and the 
perivascular CSC niches as an important factor in tumor chemoresistance[64]. More 
recently, Yi et al[65] developed a bio-printed glioblastoma-on-a-chip model using 
patient-derived tumor cells co-cultured with vascular endothelial cells and a decellu-
larized ECM from a porcine brain all compartmentalized in a way to simulate the 
complex tumor microenvironment. This compartmentalization helps create an oxygen 
gradient that recreates what is seen in vivo in glioblastoma with central hypoxia. Their 
model was shown to reproduce successfully the structural, biochemical, and 
biophysical qualities of the original in vivo tumor. The model’s strength comes with its 
ability to recreate a tumor with the same chemotherapy and radiotherapy resistance 
and susceptibility profile as its in vivo counterpart. These advancements have made the 
tumor-on-a-chip model, a fertile field for future studies in personalized medicine and 
the determination of the optimal treatment regimen for each patient. It may even be 
possible, soon, to conduct point-of-care testing using this system as it can be set up 
within 2 wk[65]. While more advanced than other 3D models that do not employ co-
culturing, the glioblastoma-on-a-chip still lacks the immune cell component, which is 
an important aspect of cancer development and progression[79].

Organoids, while still a relatively new field, especially in neuro-oncology, have 
already proven extremely useful in the understanding of tumor pathophysiology, in 
addition to their practical clinical uses in testing therapeutics. Having provided a close 
simulation of the tumor microenvironment, organoids have allowed for the filling of 
many of the missing knowledge gaps in understanding tumor invasion[58,60,79,80], 
the role of the immune and vascular systems[10,63,81], the importance of intra-tumor 
oxygen gradients[77,82], and glioblastoma CSC behavior and role[10,60,83]. In 
addition, as organoids are becoming better models to recapitulate in vivo tumors, 
therapeutic testing may now provide more reliable and applicable results for clinical 
settings. They have also taken us a step further towards the use of patient-derived 
tumors for drug repurposing and drug combination testing to help in the clinical 
decisions pertaining to drug regimens, saving patients’ time and money that could 
have been wasted on ineffective treatments[38,59,61,80].

CLINICAL IMPLICATIONS OF 3D SPHEROID AND ORGANOID MODELS
Going from 2D to 3D culture allowed for better understanding of the pathology and 
the physiology of brain tumors[47]. Tiburcio et al[84] proved that it is better to study 
the effect of hemizygous/heterozygous IDH1R132H in 3D cultures, where they proved 
that in 3D culture, heterozygous cells for the IDH1R132H mutation had low 
malignancy whereas the hemizygous cells fell into a higher malignancy cluster. In 
contrast, among 2D cultures, both types were presented to have the same malignancy. 
In addition, the mesenchymal gene set in glioblastoma cells appears to be enhanced 
only in the 3D models, which is consistent with the fact that 3D cultures are more fit 
models to study glioma biology.

Moreover, brain tumors like glioblastoma can remodel their microenvironment and 
their ECM through interactions with basement membrane proteins in order to gain 
drug resistance against TMZ and increase their survival in its presence. Musah-Eroje 
and Watson[77] demonstrated that 3D models and assays could be used to charac-
terize brain tumor cells and identify the pathways through which such cells gain their 
drug chemo-protection and metastasis abilities. However, it is not only the interaction 
with the microenvironment that makes tumor cells resistant to TMZ but also their 
interaction with nearby endothelial cells. Towards proving such correlation, a 3D 
model was used by Lin et al[64], where neurospheres formed from glioblastoma CSCs 
co-cultured with endothelial cells appeared to be more resistant than those not 
cultured with endothelial cells. A similar study was done by Civita et al[85] 
emphasized the role of astrocyte interaction with glioblastoma cells through the 
formation of nano tunnels that allows the exchange of undamaged mitochondria and 
other cellular contents with tumor cells under stress, which in turn promotes 
chemoresistance against anticancer drugs, including TMZ, vincristine, and 
clomipramine.

When it comes to establishing treatment protocols from a 2D model, heterogeneity 
and diversity between patients are some of the biggest challenges. Trying to solve such 
problem, Skaga et al[10] proved that patient-derived glioblastoma tumor spheres 
maintain the traits and characteristics of the parental tumor, which makes it a good 
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model to test for patient-specific responses to drugs or to test the sensitivity of patient 
to a certain drug. However, such models do not account for the interaction between 
tumor cells and normal cells in the same culture. On the other hand, neoCORs created 
from induced pluripotent stem cells, have a more organ-like histology since they take 
into consideration such interactions between transformed and non-transformed cells
[38]. In these models, it is possible to test for antitumor drug effect while running a 
safety test in the same system. In addition, neoCORs could be used to test the vulner-
ability of subjects to various combinations of driver mutations and improve the 
process of screening for efficient targeted therapy like immuno- and gene-therapy[38,
86]. Furthermore, Malatesta et al[87] used organoids, composed of tumor cells cultured 
with astrocytes and normal neurons, as a model to prove that the knockdown of the 
primate-specific long noncoding RNA, GTT1, inhibits the growth of tumor cells 
without impacting normal cells and thus not affecting the organoids’ viability, making 
it a possible glioma-specific therapeutic target. However, most organoid models are 
limited by their lack of vasculature, and thus the study conducted may not account for 
glomeruloid microvascular proliferations and perivascular palisading necrosis[38]. Cui 
et al[63] avoided such limitations by producing a more complex 3D angiogenesis 
model that included immuno-vascular, cell-cell, and cell-matrix interactions with 
controllable immunosuppressive conditions. In their study, the authors emphasized 
the roles of macrophages in immunosuppression, in addition to the role of endothelial-
macrophage and cell-ECM interactions in controlling malignant angiogenesis in 
glioblastoma tumors. Furthermore, a new 3D model was established mimicking the in 
vivo microenvironment of glioblastoma tumors, focusing on their potential in 
screening for novel therapeutics[63].

Brain cancer chips are another form of 3D modeling that have proven to be very 
effective when it comes to administrating multiple drugs simultaneously and testing 
their responses on patient-derived glioblastoma cells. In addition, they could be used 
to do high-throughput drug screening without any technician input, which renders it 
an efficient method to produce and generate personalized treatment plans in the near 
future[61,76].

CONCLUSION
In conclusion, recent advancements in cell culturing techniques have led to a trending 
gravitation away from 2D culturing models in favor of 3D models such as spheroids 
and organoids. While these new models have historically been more expensive, harder 
to maintain, and require more specialized skills and equipment[88], such limitations 
are becoming less relevant as these techniques are becoming more popular and 
mainstream. Tumor modeling is now a highly evolving field, and the development of 
3D culturing techniques has opened the doors to fast-paced developments making this 
field one of the most dynamic currently in cellular biology. From the first reports of 
spheroid cell cultures in the 1980s to the recent breakthroughs in genetically-
engineered brain organoids and patient-derived models, current tumor modeling 
techniques have brought us closer than ever to the era of personalized medicine and 
point-of-care tumor models for therapeutics testing. The benefit of 3D modeling and 
cell culturing does not stop only at oncological studies but has also been already used 
and paved the way for breakthroughs in other fields such as regenerative medicine[89,
90]. It remains to be seen whether the benefits of 3D models could be harnessed in 
clinical scenarios soon; however, with the current pace of breakthroughs and new 
developments, this future may not be as far off as one might believe.
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