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Abstract: For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog 

pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point 

of view based on mathematical models and simulation in this study. The comprehensive 

forecasting model (CFM) was developed based on the combination forecasting ideas. 

Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks 

(ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time 

series data of PM2.5 concentration. The results of the comprehensive forecasting model 

were obtained by combining the results of three methods based on the weights from the 

Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was 

quantitatively forecasted based on the comprehensive forecasting model. The results were 

compared with those of three single models, and PM2.5 concentration values in the next ten 

days were predicted. The comprehensive forecasting model balanced the deviation of each 

single prediction method, and had better applicability. It broadens a new prediction method 

for the air quality forecasting field. 
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1. Introduction 

With the development of industry and the consumption of fossil fuels, air quality is worsening.  

In recent years, haze-fog pollution has occurred frequently in many parts of China [1]. The average 

concentrations of PM2.5, which is the main influence factor of haze-fog, in some areas of China are 

more than the average annual values in World Health Organization standard, which is 10 µg/m3 [2]. 

The haze-fog pollution goes from the local environmental factor to a nationwide environmental 

disaster. Especially in January 2013, there was extended haze-fog weather in the mid-eastern part of 

China. In the following months, the haze-fog pollution ranged from Beijing Tianjin Hebei region to the 

Yangtze River Delta region [3]. The spread of wide range of haze-fog caused a public panic, and 

caused serious impact on the normal production and operation. Air pollution is not only a threat to 

public health, which affects social stability, but also a bottleneck to economic development of many  

places [4]. The haze-fog pollution has negative effects on the environment, climate, human health, 

economic and other aspects, such as chronic diseases, respiratory and cardiac diseases, visibility reduction, 

damage of natural and agricultural systems and traffic accidents in the land, waterways, and air [5,6]. 

The most important factor for the formation of haze-fog pollution in the atmosphere is PM2.5. PM2.5 can 

suspend in the air for a long time. PM2.5 is particulate matter with an aerodynamic diameter ≤ 2.5 μm.  

It has been regulated in developed countries such as the USA, Australia, and some European  

countries [7,8]. In order to analyze the atmospheric environment pollution in China quantitatively and 

protect the living environment, new “Ambient Air Quality Standards (GB 3095-2012)” were 

introduced by the Ministry of Environmental Protection of China [9]. According to the new Ambient 

Air Quality Standards, Sulfur dioxide (SO2), Nitrogen dioxide (NO2), PM10, Ozone (O3), Carbon 

monoxide (CO) and PM2.5 were set as the six basic monitoring indicators, and released in real-time. “Air 

Quality Index” (AQI) was introduced to replace the earlier “Air Pollution Index” (API) at the same time. In 

the new ambient air quality standards, PM2.5 was added as a monitoring indicator and it is a key influencing 

factor. 

Severe haze pollution and PM2.5 attracted widespread attention of scholars. Some researchers 

argued that the haze-fog formation was closely connected with the chemical reactions of  

pollutants in the planetary boundary layer and thermal and dynamic processes in the atmospheric 

environment [10,11]. Liu et al. (2013) and Zhang et al. (2013) also believed that the haze-fog 

formation might be influenced by primary pollutant emissions, anti-cyclone synoptic conditions, and 

the boundary layer height [12,13]. The major components of PM2.5 were nitrate, secondary sulfate, and 

organic aerosols in the haze-fog pollution in Shanghai, China [14]. The haze-fog pollution was 

extremely serious during the winter in central and eastern China, and the emission of coal combustion 

for heating and stagnant meteorological environment conditions affected the haze-fog greatly [15,16]. 

Because the atmosphere was seriously polluted, studies on prediction of concentration of important 

indicators in the atmosphere and analysis on air quality trends have important theoretical and  

practical significance. Soltani et al. (2007) developed the time-series model to forecast climatic 

fluctuations [17]. Autoregressive (AR) models, moving average (MA) models or autoregressive 

moving average (ARIMA) models were used in air-pollution modeling to predict and analyze the time 

series data [18,19]. However, in respect of the statistical analysis of air pollutant concentrations, the 

present works mainly focus on the future prediction and analysis of common indicators, such as NO2, 
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O3, and PM10. Chelani and Devotta (2006) used the ARIMA model to forecast the NO2 concentration 

in Delhi, India [20]. Prybutok and Mitchell (2000) developed the neural network model for forecasting 

daily maximum ozone levels [21]. Stadlober et al. (2008) presented the forecasting model to analyze 

the performance and quality of PM10 [22]. By contrast, the new indicator PM2.5, which was the main 

influencing factor of haze-fog pollution in China, has not been forecasted and analyzed. 

In this study, PM2.5 was set as the research indicator, and the time series data of PM2.5 concentration 

were analyzed and forecasted. Three methods, that is, the ARIMA model, ANNs model, and 

Exponential smoothing method were used to forecast the time series data of PM2.5 concentration. Their 

results were combined with the entropy weighting method, and the comprehensive forecasting model 

was developed based on combination forecasting ideas. The comprehensive forecasting model was 

applied to predict and analyze the time series data of PM2.5 concentration in Guangzhou, China 

quantitatively. The trend of haze-fog pollution in Guangzhou was analyzed. The results were expected 

to provide a quantitative basis for the management and control of the haze pollution. 

2. Related Theory 

2.1. ARIMA Model 

The Autoregressive Integrated Moving Average Model is an important time series prediction 

method. It was presented by Box and Jenkins in 1970s [23]. The basic ideas of the ARIMA model are 

as follows. In the ARIMA model, the time series data of the prediction object are regarded as a 

stochastic sequence, and this sequence is fitted with some mathematical models. Once this model is 

identified, the future values would be predicted by the time series of past and present values [24].  

The ARIMA model can be divided into three types: (1) The autoregressive model (AR model), where 

p is the number of self-regression items; (2) The moving average model (MA model), where q is the 

number of moving average items; (3) The autoregressive integrated moving average model, that is, 

ARIMA (p, d, q), where d is the difference of frequency of time series data that become the stationary 

difference, and d is generally less than 2 in the practical application [25]. 

Assuming the random variable Yt was an observation value at the time t (t = 1, 2,  , n). Then a 

series of Yt constitute a stochastic process. The ARIMA (p, d, q) model can be written as Yt~ARIMA 

(p, d, q), and its definition is as follows. 

φ ( ) θ ( )εp t q tB W B=  (1)

where 

φp(B) = 1 − φ1B − φ2B2 − … − φp B 
p 

Wt = (1 − B)dYt 

θq(B) = 1 − θ1B − θ2B2 − … − θq Bq 

εt is white noise, and εt~N(0, σa
2); p, d and q are non-negative integers; B is the moving operator, and 

BYt = Yt-1; φ1, φ2, …, φp are the autoregressive parameters, while θ1, θ2, …, θq are the moving  

average parameters. 
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The modeling processes of ARIMA model are as follows. 

(1) Sample pretreatment. The establishment of the ARIMA model requests that the time series data 

should be stationary stochastic process. Thus the data should be tested for stationary before modeling. 

(2) Pattern recognition. After the differential transform for the non-stationary time series, the key 

step is to determine the order of the ARIMA model. There are four methods to determine the 

order: (i) Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) 

method; (ii) Final Prediction Error (FPE) method; (iii) Aikake Information Criterion (AIC) 

method; (iv) Aikake Information Corrected Criterion (AICC) method. The ACF and PACF 

method were used to master the direction of the general model to determine the order in  

this study. 

(3) Model testing. After the order determination and parameter estimation, the applicability of the 

model established should be tested. If the model error is white noise, the obtained model is 

qualified. Otherwise, the order re-determination and parameter re-estimation are needed. 

(4) Prediction. The time series data are forecasted in this step. The processes of model 

identification, parameter estimation, and model diagnosis are often improved gradually.  

The initial choices need to be constantly adjusted according to concrete problems. 

The ARIMA model can find out the characteristics and trends of the variables from the time series 

data, and forecast the future values effectively. The ARIMA model is a prediction method with a good 

statistical theory, and has the advantages of high accuracy, and strong adaptive ability. It is used in 

many fields, and has wide applications [26, 27]. 

2.2. Artificial Neural Networks Model 

The Artificial Neural Network model has been a hot research issue in the field of artificial 

intelligence since the 1980s. It can simulate the human brain neural networks for information 

processing, and construct different network models according to different connection ways. In recent 

years, research on the artificial neural networks developed, and great progress has been made.  

It is widely used in many fields, such as pattern recognition, intelligent robots, automatic control, 

biological, medical, economic etc. [28,29]. It has successfully solved many practical problems which 

are difficult to solve by modern computers, and shows a good intelligent characteristics [30].  

The artificial neural network model is generally composed of the input layer, the hidden layer and the 

output layer, and its structure is shown as Figure 1. 

 

Figure 1. Structure of artificial neural network model. 
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The artificial neural network model has good characteristics of nonlinear combination, and is a 

global approximation network. It has strong learning ability, and can achieve nonlinear mapping 

between the input and output [31]. Artificial neurons in the ANNs model, as a simple processor, can 

sum the coming signal with appropriate weights, and its general expression is: 

1

n

i i
i

y w x b
=

= +  (2)

where xi (i = 1, 2, …, n) are the input data; wi (i = 1, 2, …, n) are the weights; b is a threshold value, y 

is the output result. 

The ANNs model can solve a lot of problems about the nonlinear system, such as function 

approximation, system identification. The choice of transfer functions and sample pretreatment should 

be paid more attention while modeling. The MATLAB neural network toolbox is very functional.  

It provides many functions of the design, training, and simulation of neural network model. The users 

can just call the functions according to their needs to design and simulate the neural network model 

facilitates, and this exempts the troubles of writing the complex and huge algorithms and programs.  

The MATLAB neural network toolbox was utilized to develop the ANNs model in this study. 

2.3. Exponential Smoothing Method 

The Exponential smoothing method is one of the important time series forecasting methods. It has a 

simple principle and good applicability. This method could not only be used for short-term prediction, 

but also had a better effect on the medium term or long term prediction problems. The basic prediction 

ideas are as follows. The average value of the first few periods is set as the initial value of the 

prediction period. Then when one novel observation value occurs, the earliest observation value would 

be removed from the initial few periods, and the novel observation value would be added. The novel 

prediction value can be obtained according to the novel observation value, the initial prediction value 

and weight of the latest observation value [32]. The Exponential smoothing method can eliminate the 

accidental changes of time series data, and enhance the importance of recent data as well. 

The Brown quadratic polynomial exponential smoothing method was employed to predict the PM2.5 

concentration time series data in this study. This method could track non-linear trend changes well.  

Its equation is: 
20.5t m t t tY a b m c m+ = + +  (3)

where Yt+m is the prediction value at the time t + m (t = 1, 2, …, n); m is the prediction step; at, bt and ct 

are the parameters to be estimated, and they could be estimated according to the original time series data. 

3 3t t t ta S S S′ ′′ ′′′= − +  

2α (6 5α) (10 8α) (4 3α) / [2 (1 α) ]t t t tb S S S ′ ′′ ′′′= − − − + − ⋅ −
 

 

2 2α ( 2 ) / (1 α)t t t tc S S S′ ′′ ′′′= − + −  

where 1α (1 α)t t tS x S −
′ ′= + − , 1α (1 α)t t tS S S −

′′ ′ ′′= + − , 1α (1 α)t t tS S S −
′′′ ′′ ′′′= + − ; xt are the original time 

series data; α  is the weight of the latest observation value, and it could take the experience value 

α 0.15=  [32]. 
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2.4. Entropy Weighting Method 

In information science theory, entropy is a very important concept. Information entropy is a measure of 

the degree of disorder of system information, and can measure the amount of useful information of the 

data [33]. The basic idea of the entropy weighting method is as follows. When the data of one object show 

great differences, according to information theory, its entropy would be low. This shows the object could 

contribute much useful information, so its weight should be set high; otherwise, the weight should be set 

low correspondingly [34]. Entropy weighting method is an objective weighting method. In this study, 

the entropy weighting method was used to weight the results of three prediction methods. The processes 

of determining weights are as follows:  

(i) The original data of all objects should be normalized to eliminate effects of dimension. For the 

benefit object, the higher its value, the greater its impact. Its equation is: 

min{ }

max{ } min{ }

ij ij
i

ij
ij ijii

x x
r

x x

−
=

−
 (4)

For the cost object, the lower its value, the greater its impact. Its equation is: 

max{ }

max{ } min{ }

ij ij
i

ij
ij ijii

x x
r

x x

−
=

−
 (5)

where, xij (i = 1, 2, …, m, and j =1, 2, …, n) is the observation value of the j-th object on the i-th object, 

and rij is the dimensionless value that has been normalized. 

(ii) The entropy pi of the i-th object could be defined as: 

1

ln
n

i i j i j
j

p k f f
=

= − 
 

(6)

where 
1

n

ij ij ij
j

f r r
=

=  , k = 1/ln n, i = 1, 2, …, m. While fij = 0, we set fij ln fij = 0. 

(iii) The weight of the i-th object λi could be defined according to the entropy theory: 

1

1
λ i

i m

i
i

p

m p
=

−=
−

 
(7)

where 0 ≤ λi ≤ 1, and 
1

λ 1
m

i
i=

= . 

3. Simulation Data and Qualitative Trend Analysis 

The comprehensive forecasting model was utilized to predict PM2.5 concentration in the atmosphere 

in Guangzhou city in China. Guangzhou city is the capital of Guangdong Province in China, and is the 

center of political, economic, science and technology, education and culture of Guangdong Province. 

Guangzhou in located in the south of Guangdong Province in southern China and at the northern 

margin of the Pearl River Delta. Guangzhou is on the verge of the South China Sea, with significant 

characteristics of an oceanic climate. With the Tropic of Cancer crossing through the north of the city, 
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it is warm and rainy, with plenty of heat, small temperature difference and a long summer and other 

climatic characteristics. Guangzhou has the characteristics of typical southern coastal cities in China, 

and studies in this manuscript had important significance for the studies on the haze-fog pollution in 

this category of cities. The original data were the time series data from 2 December 2013 to 21 January 

2015 in Guangzhou city [35]. They were from the China National Environmental Monitoring Center. 

They were the values of 24-h averages. 

The factors that influenced the changes of PM2.5 concentrations included two aspects: one was the 

basis concentration that was determined by the actual air quality, the other was the impact on PM2.5 

concentration from the external meteorological environment and random factors. With the changes of 

sunshine, temperature, and pressure the concentration of PM2.5 would change along with the time.  

The external environment change, such as increasing automobile exhaust quantity and more garbage 

incineration would also affect the concentration of PM2.5. 

The long-term trend of the concentration of PM2.5 over one year was investigated. It was the trend 

that was affected by some fundamental factors for a long period. The averages of every month of the 

PM2.5 concentration were calculated, as shown in Figure 2. 
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Figure 2. Average of PM2.5 concentrations per month. 

According to Figure 2, averages of PM2.5 concentrations in the winter of 2013 and 2014 were higher 

than those in the summer of 2014. In addition, the averages of PM2.5 concentration in the winter of 

2013 were higher than those of 2014. A seasonal change rule of PM2.5 refers to PM2.5 concentrations 

showing regular changes in one year along with the change of season. The seasonal variations were 

significant according to Figure 2, and the averages were the highest in winter, the lowest in summer. 

This may mainly be affected by the seasonal temperature, precipitation, and other meteorological 

factors. The summer precipitation is substantial, and rainwater can bring some of the particulate matter 

to the ground. In addition, the weather is warm in the summer, and the people in China would not burn 
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coal to keep warm. Thus PM2.5 concentrations were relatively low. In addition, summer weather 

conditions such as: a high atmospheric boundary layer, frequent precipitation, etc. were conducive to 

clear the particles. However, temperatures in winter were always low in China, and the atmospheric 

pressure was high. The concentrations of PM2.5 in winter were generally high. Meanwhile wind speed, 

relative humidity, and other meteorological factors would also affect the concentration of PM2.5. 

4. Simulation Results Based on Comprehensive Forecasting Model 

4.1. Comprehensive Forecasting Model 

For the issue of time series data prediction, there are a variety of forecasting models and methods, 

such as regression analysis, the ARIMA model, gray forecasting system, ANNs and so on. While their 

modeling mechanism and application conditions are different, they all have some limitations for a 

certain prediction problem in the application fields. In 1969, Bates and Granger proposed an idea of 

“combination forecasting” on “Operations Research Quarterly” for the first time [36]. It began a 

systematic study on “combination forecasting” issue. Several forecasting methods were combined into 

one comprehensive prediction model. In this way, a comprehensive description of the objective system 

could be made, and the combination forecasting model was used widely. 

Different forecasting values could be obtained based on different prediction methods. We developed 

mathematical models based on the ARIMA model, the ANNs model and the Exponential smoothing 

method respectively, and combined the predictive values at the same time with the weights from the 

entropy weighting method. Thus the combination forecasting values could be obtained. The 

combination equation was: 
(0) (0) (0) (0)

1 1 2 2ˆ ˆ ˆ ˆn nx k x k x k x= ⋅ + ⋅ + + ⋅  (8)

where k1 + k2 +···+ kn = 1, and ki ≥ 0 (i = 1, 2, ···, n) were the weights of each prediction sequence. 

4.2. Simulation Results 

Based on the algorithm of comprehensive forecasting model in Section 2.1, we programmed the 

MATLAB software platform according to the time series data of PM2.5 concentration. The ARIMA 

model was developed as follow: 

φ(p) W (t) = θ(q) ε(t) (9)

where 

φ(p) = 1 − 0.08989 p−1 − 0.7232 p−2 

θ(q) = 1 + 0.6083 q−1 − 0.3337 q−2 − 0.2434 q−3 

The model we developed was ARMA (2, 3) as the Equation (9). The prediction results were shown 

in Figure 3a. 
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Figure 3. Comparison of original data and prediction results. (a) ARIMA model;  

(b) ANNs model; (c) ESM model; (d) Comprehensive forecasting model. 

Using MATLAB toolbox, the ANNs model was constructed. The input and output models were 

respectively “tansig” (Hyperbolic tangent sigmoid transfer function) and “purelin” (Linear transfer 

function) function. Number of neurons in the hidden layer was selected according to the principle that 

the sum of squares of prediction errors was the smallest, and the number of neurons in the hidden layer 

was selected as 5 finally. The training step was set as 20,000, and the error precision was 0.001. Then 

the prediction values were obtained. They were shown in the Figure 3b. 

According to formulas in Section 2.3, the Exponential Smoothing Model was established based on 

the time series data and the results were shown in Figure 3c. 

From the entropy weighting method, the weights of the three methods were respectively: k1 = 0.2399, 

k2 = 0.5419 and k3 = 0.2182. The results of the three methods were combined with the weights.  

The results of the comprehensive forecasting model were obtained, as were shown in Figure 3d. 

From the four figures we could see, the prediction results of each method were different, and they 

all had their own characteristics. The results of the ARIMA model and the ESM model tracked the 

original time series data, but their results might lag behind the original data. The trend of results of 

ANNs followed the original time series data, and its results were near the means of the data sequence.  

The prediction results of the comprehensive forecasting model were the combination of results of three 

methods. The original data of PM2.5 concentration were severely affected by the external 

meteorological environment and random factors. The original data were with great fluctuation, and the 

fluctuation was often not regular. The ANNs model excluded these irregular changes and seized the 

basic trends of the time series data. We could believe that the results of CFM model followed the trend 

of the original data along with the results of ANN model, and meanwhile they fluctuated around the 
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means of the original data sequence according to the results of the ARIMA and ESM models. Thus the 

prediction results of the comprehensive forecasting model also tracked the original time series data, 

and its curve fluctuated with the curve of original data. 

4.3. Accuracy Test 

In order to investigate the accuracy and precision of the prediction results, the results should be 

tested by error testing indexes. The error testing indexes included Mean Absolute Error (MAE), Mean 

Percentage Error (MPE), Root Mean Square Error (RMSE), Theil inequality coefficient, bias ratio and 

variance ratio. The calculation formulas and functions of the error testing indexes were shown in Table 1. 

The various error testing indexes were calculated, and the results were shown in Table 2. 

Table 1. Calculation formulas of error testing indexes. 

No. Index Formula Function 

1 MAE 
1

1
ˆ

n

i i
i

MAE y y
n =

= −  It can describe the system errors, and is an absolute index. 

2 MPE 
1

ˆ1 n
i i

i i

y y
MPE

n y=

−=   It can describe the system errors, and is a relative index 

and dimensionless. 

3 RMSE 
2

1

1
ˆ( )

n

i i
i

RMSE y y
n =

= −  It can describe the system errors, and is an absolute index. 

4 
Theil inequality 

coefficient 

2

1

2 2

1 1

ˆ1
( )

1 1
ˆ

n
i i

i i

n n

i i
i i

y y
n y

U

y y
n n

=

= =

−

=
+



 
 

It can describe the system errors, and is a relative index 

and dimensionless. 

5 Bias ratio 

2

2

1

ˆ( )
1

ˆ( )
n

i i
i

y y
BR

y y
n =

−=
−

 It can measure the deviation degree of the average between 

the forecasting sequence and original sequence. 

6 Variance ratio 

2
ˆ

2

1

( )

1
ˆ( )

y y
n

i i
i

s s
VR

y y
n =

−
=

−
 It can measure the deviation degree of the variance 

between the forecasting sequence and original sequence. 

Note: In Table 1, iy  (i = 1, 2,  , n) were the actual observation values; ˆiy  were the prediction values; y  

and ŷ  were the averages of iy  and ˆiy ; ys  and ŷs  were the standard deviation of iy  and ˆiy . 

Table 2. Error testing index. 

No. Index ARIMA ANNs ESM CFM 

1 MAE (µg/m3) 12.6578 15.4849 15.8016 13.3090 
2 MPE 0.3212 0.4159 0.3821 0.3522 
3 RMSE (µg/m3) 17.4596 20.7186 21.3586 18.0247 
4 Theil inequality coefficient 0.0050 0.0071 0.0058 0.0060 
5 Bias ratio 6.12 × 10−7 2.69 × 10−5 2.56 × 10−4 5.70 × 10−5 
6 Variance ratio 0.1212 0.2201 0.0021 0.2338 
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The MAE, MPE, RMSE and Theil inequality coefficient can describe the system errors, and 

indicate the dispersion of prediction results and original sequence. These four indexes are as small as 

possible for good prediction results. In Table 2, from these four indexes, results of the ARIMA model 

were the best, and the CFM was slightly lower than those of ARIMA model. Results of the ANNs and 

ESM were worse than those of the former two models. The bias ratio and variance ratio measure the 

deviation degree of the average and variance between the forecasting sequence and the original 

sequence. These two indexes were also as small as possible for good forecasting results. The bias ratio 

of the ARIMA model was the best, while that of the ESM was the worst; the variance ratio of the ESM 

was the best, while that of the CFM was the worst. 

To sum up, the accuracy of the ARIMA model was the best for the historical data in this study, while 

the accuracy of the CFM was close to it. They were significantly higher than that of other two methods. 

This showed that, for a particular sequence, the applicability of one prediction method might just suit to 

it, and its forecasting accuracy might be better than other methods. However, the applicability of the 

single prediction method was often limited, and not universal. We combined multiple methods and 

developed a combination forecasting model. The combination forecasting model can balance the 

deviation of each single prediction method, and had better applicability. High accuracy could also be 

achieved at the same time. Thus the comprehensive effect of the combination forecasting model was 

good in the practical applications. 

4.4. Prediction of Next Ten Days 

The comprehensive forecasting model was applied to predict PM2.5 concentrations in the next ten 

days in Guangzhou, compared with the ARIMA model, ANNs model and ESM model. Their results 

were shown in Table 3. The actual observation values were obtained from the website “Historical data 

of PM2.5” on the internet [35], where PM2.5 concentrations were updated in real-time. The important 

error testing indexes were calculated to evaluate the prediction accuracy, as were shown in Table 4. 

Table 3. Prediction results of next ten days. 

No. Date Actual Observation Value (µg/m3) ARIMA (µg/m3) ANNs (µg/m3) ESM (µg/m3) CFM (µg/m3) 

1 2015/1/22 58.2 101.6861 61.6869 114.865 82.8862 

2 2015/1/23 64.4 37.9755 61.6923 98.6254 64.0614 

3 2015/1/24 73.6 56.3128 61.6964 89.1382 66.3927 

4 2015/1/25 68.8 43.7694 61.6993 86.038 62.7086 

5 2015/1/26 68.3 41.9564 61.7012 81.2968 61.2402 

6 2015/1/27 64.8 43.2804 61.7021 77.4207 60.7125 

7 2015/1/28 49.3 38.7611 61.7022 72.8985 58.6417 

8 2015/1/29 51.7 41.4545 61.7016 62.6025 57.0409 

9 2015/1/30 32.8 38.5742 61.7004 56.4024 54.9964 

10 2015/1/31 35.6 40.069 61.6986 43.6473 52.5709 
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Table 4. Error testing indexes of prediction results of next ten days. 

No. Index ARIMA ANNs ESM CFM 

1 MAE(µg/m3) 19.1119 11.2298 21.5435 10.3321 

2 MPE 0.3188 0.2571 0.3987 0.2229 

3 RMSE(µg/m3) 22.2286 14.2652 25.5865 12.8903 

4 Theil inequality coefficient 0.0033 0.0032 0.0034 0.0025 

5 Bias ratio 0.1417 0.1203 0.7089 0.1739 

6 Variance ratio 0.0522 0.8789 0.0616 0.1757 

From Table 4 we could see MAE, MPE, RMSE and Theil inequality coefficient of the CFM were 

significantly less than those of other three methods in the numerical values. This showed that the 

combination forecasting values of CFM model were closer to the actual observation values.  

The prediction accuracy of the CFM model was higher than that of these three methods, and the results 

of the CFM model were more effective and reliable. However, the comprehensive forecasting model 

had some shortcomings. The workload of the comprehensive forecasting method might be heavier than 

that of the single prediction method. 

5. Conclusions 

Haze-fog was the most serious air pollution in 2013. The most important factor of haze-fog 

pollution was PM2.5. The sources of PM2.5 were wide, and its formation was complex. In order to 

reflect the trend of haze-fog pollution, it is very important to strengthen pollution prevention and 

control. The comprehensive forecasting model was developed based on three prediction models in this 

study. The time series data of PM2.5 concentration were forecasted by the ARIMA model, ANNs 

model, and ESM model. Their results were combined with weights from the entropy weighting 

method. Thus the combination forecasting results were obtained. The comprehensive forecasting 

model was applied to predict PM2.5 concentration in Guangzhou China, and good forecasting results 

were obtained. The results were with high accuracy compared with those of the three single methods. 

The combination forecasting model could make a balance of deviation of each single forecasting 

method, and overcome the applicability limitations of each single method. It broadened a new 

prediction method for the air quality forecasting field. This study could provide a scientific basis for 

the prevention and prediction of haze-fog pollution in the city, and provide a methodological basis for 

this kind of scientific research. 
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