Divergent Effects of the Purinoceptor Antagonists Suramin and Pyridoxal-5′-phosphate-6-(2′-naphthylazo-6′-nitro-4′,8′-disulfonate) (PPNDS) on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors

Erika Suzuki, Markus Kessler, Kyle Montgomery, and Amy C. Arai

Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois

Received May 19, 2004; accepted September 23, 2004

ABSTRACT

Suramin is a large naphthyl-polysulfonate compound that inhibits an array of receptors and enzymes, and it has also been reported to block currents mediated by glutamate receptors. This study shows that suramin and several structurally related compounds [8,8′,11032H]-[carbonyl]bis[(iminio-3,1-phenylenecarboxylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), 6Na (NF023), 8,8′-(carbonyl)bis[(iminio-4,1-phenylenecarboxylamino)limino]bis-(1,3,5-naphthalenetrisulfonic acid), Na (NF279), and 4,4′,4″-(carbonyl)bis[(iminio-5,1,3-benzentriyl-bis-(carbonylimino)]tetrakis-benzene-1,3-disulfonic acid, 8Na (NF449)] reduce binding of [3H]glutamate to rat brain membranes and homomeric GluR1–4 receptors, with IC50 values in the range of 5 to 180 μM. Inhibition often was less than complete at saturating drug concentrations and thus seems to be noncompetitive in nature. Pyridoxal-5′-phosphate-6-(2′-naphthylazo-6′-nitro-4′,8′-disulfonate) (PPNDS) is a potent antagonist of purinoceptors that shares some structural elements with suramin yet is smaller than the latter. PPNDS also had potent effects on AMPA receptors (EC50 value of 4 μM) but of a kind not seen with the other compounds in that it increased binding affinity for radioagonists severalfold. In addition, PPNDS slowed association and dissociation rates more than 10 times. In physiological experiments with GluR2 receptors, PPNDS at 50 μM reduced the peak current by 30 to 50% but had only small effects on other waveform aspects such as desensitization and steady-state currents. This pattern of effects differentiates PPNDS from other compounds such as thioctanate and up-modulators, which increase agonist binding by enhancing desensitization or slowing deactivation, respectively. Receptor model simulations indicate that most effects can be accounted for by assuming that PPNDS slows agonist binding/unbinding and stabilizes the bound-closed state of the receptor. By extension, suramin is proposed to stabilize the unbound state and thereby to reduce affinity for agonists. These drugs thus act through a novel type of noncompetitive antagonism.

Suramin is an extended molecule with a symmetrical backbone of amide-linked aromatic rings and with three negatively charged sulfonate substituents on each of the terminal naphthyl elements (Fig. 1). As such, it shares many structural similarities with a broader class of polysulfonated compounds that include the azo-dyes trypan blue, Evans blue, Chicago sky blue, and basilen blue (also called reactive blue). Like many of the latter, suramin has a remarkably diverse range of pharmacological actions, yet the mechanisms underlying these effects are in most instances still obscure. Suramin was developed 80 years ago and is still occasionally used for the treatment of trypanosomiasis and onchocerciasis (Wang 1995). In vitro, suramin affects a bewildering array of molecular and cellular processes. It inhibits numerous signaling proteins, including growth factors and interleukins (Voogd et al., 1993); among its many other targets are G proteins (Freissmuth et al., 1996) and enzymes such as reverse transcriptase (De Clercq, 1987) and ectonucleotidases.

This work was supported by National Institutes of Health grant NS41020.

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; PPADS, pyridoxal phosphate-6-azophenyl-2′,4′-disulfonate acid; CNQX, 6-cyano-2,3-dihydroxy-7′-nitroquinoxaline; PPNDS, pyridoxal-5′-phosphate-6-(2′-naphthylazo-6′-nitro-4′,8′-disulfonate); HEK, human embryonic kidney; HBS, HEPES-buffered saline; SCN, thioncyanate anion; GluR, glutamate receptor; FW, fluorowillardine; NF023, 8,8′-(carbonyl)bis[(iminio-3,1-phenylenecarboxylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), 6Na; NF279, 8,8′-(carbonyl)bis[(iminio-4,1-phenylenecarboxylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), Na; NF449, 4,4′,4″-(carbonyl)bis[(iminio-5,1,3-benzentriyl-bis-(carbonylimino)]tetrakis-benzene-1,3-disulfonic acid, 8Na; GYKI52466, 4-(8-methyl-9H-1,3-dioxolo[4,5-i][2,3]benzdiazepin-5-yl)-benzeneamine dihydrochloride.

1738

This paper was supported by National Institutes of Health grant NS41020.

Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

doi:10.1124/mol.1.003038.

ABBREVIATIONS: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; PPADS, pyridoxal phosphate-6-azophenyl-2′,4′-disulfonate acid; CNQX, 6-cyano-2,3-dihydroxy-7′-nitroquinoxaline; PPNDS, pyridoxal-5′-phosphate-6-(2′-naphthylazo-6′-nitro-4′,8′-disulfonate); HEK, human embryonic kidney; HBS, HEPES-buffered saline; SCN, thioncyanate anion; GluR, glutamate receptor; FW, fluorowillardine; NF023, 8,8′-(carbonyl)bis[(iminio-3,1-phenylenecarboxylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), 6Na; NF279, 8,8′-(carbonyl)bis[(iminio-4,1-phenylenecarboxylamino)]bis-(1,3,5-naphthalenetrisulfonic acid), Na; NF449, 4,4′,4″-(carbonyl)bis[(iminio-5,1,3-benzentriyl-bis-(carbonylimino)]tetrakis-benzene-1,3-disulfonic acid, 8Na; GYKI52466, 4-(8-methyl-9H-1,3-dioxolo[4,5-i][2,3]benzdiazepin-5-yl)-benzeneamine dihydrochloride.

1738
(Lambrecht, 2000). However, suramin seems particularly potent in blocking purinergic receptors with low micromolar inhibition constants (Charlton et al., 1996; Lambrecht, 2000).

There are also reports that suramin inhibits glutamatergic synaptic transmission (Motin and Bennett, 1995; Gu et al., 1998) and whole-cell currents mediated by AMPA receptors (Nakazawa et al., 1995; Zona et al., 2000) and NMDA receptors (Ong et al., 1997; Peoples and Li, 1998). Suramin was observed to inhibit binding of radioligands to NMDA receptors (Balcar et al., 1995) but not kainate receptors (Ong et al., 1997), which suggested some selectivity among glutamate receptors. Apart from these studies, there have been few efforts to characterize the molecular actions of suramin and the nature of the impact on glutamate receptor function. Even less is known about possible interactions with more recent P2X receptor antagonists, many of which possess structural elements similar to those in suramin. Figure 1 shows examples of three such compounds with terminal naphthyl-polysulfonate groups (Freissmuth et al., 1996; Lambrecht, 2000; Rettinger et al., 2000). A somewhat distinct structural family of purinoceptor antagonists was established some time ago with the development of PPADS (Lambrecht et al., 1992), which has since been widely used as a highly selective P2X receptor blocker. This compound does not have mirror symmetry, is much smaller than suramin, and was indeed found to have no or weak effects on glutamate receptor responses (Motin and Bennett, 1995; Gu et al., 1998; Zona et al., 2000). PPNDS, another member of this drug family, has recently been identified as having even greater affinity for P2X receptors and a marked selectivity toward the P2X1 receptor subtype with a nanomolar inhibition constant (Lambrecht et al., 2000). Yet the two sulfonate groups and the nitro substituent in this compound occupy the same positions as the sulfonate groups in suramin (Fig. 1) and thus the possibility of an interaction with glutamate receptors cannot be dismissed.

The present study was intended to examine whether suramin inhibits binding to AMPA receptors, to clarify the nature of such inhibition, and to test whether the structurally related compounds have similar actions. Binding tests with radiolabeled agonists were used initially because they can readily distinguish between different subclasses of antagonists and their mode of inhibition. For instance, if suramin were to act as a competitive antagonist then it should completely displace radiolabeled agonists such as [3H]AMPA from their binding site, as it is the case for quinoxaline compounds such as CNQX (Honore and Drejer, 1988). In contrast, 2,3-benzodiazepines such as GYKI52466 block AMPA receptor currents through a distinct site because they do not inhibit the binding of agonists (Kessler et al., 1996), except under specific circumstances (Arai et al., 2002b). Guanine nucleotides constitute a third group of AMPA receptor blockers that also reduce agonist binding but through an as yet unidentified mechanism (Monahan et al., 1988; Baron et al., 1989; Dev et al., 1996). Last, if suramin were to act as a channel blocker then binding of agonists would presumably remain unaffected. During examination of the structural analogs described above, it was also found that PPNDS affected AMPA receptors in ways that differed substantially from those of suramin, both in physiological and binding experiments. Thus, the second goal of this project was to identify which aspects of receptor kinetics are most likely influenced by PPNDS. The findings with both suramin and PPNDS have been incorporated into a working model that suggests that both drugs bind to a domain near the agonist-binding site yet with opposite consequences for the stability of the agonist-bound state.

Materials and Methods

Binding Assays. Binding tests were carried out with membranes from rat brain and from HEK293 cells expressing one of the AMPA receptor subunits. Animals were anesthetized with halothane before decapitation according to an institutionally approved protocol and in observation of the guidelines of the National Institutes of Health.
Membranes from rat brain were prepared according to conventional procedures (Kessler et al., 1996) involving homogenization in isotonic sucrose and differential centrifugation to obtain a P₂ pellet fraction, followed by an osmotic lysis and repeated washing by centrifugation. For binding tests, membranes were suspended in HEPEs-buffered saline (HBS; 150 mM NaCl, 20 mM HEPEs, and 0.1 mM EGTA, pH 7.4). Binding studies with recombinant receptors used a preparation of permeabilized and washed cells. Most receptor subunits examined here are stably expressed in HEK293 cells (Hennegirff et al., 1997; Arai et al., 2000) and periodically confirmed by Western blots. HEK293 cells were collected into HBS containing in addition 2 mM EGTA and a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). The cells were centrifuged at least 4 times (2000g; 10 min) and resuspended in HBS without additions; after the first centrifugation, 0.1% saponin was included in the HBS to permeabilize the membranes, and the cell suspension was left at 25°C for 3 min. All other steps were carried out at 0 to 4°C. The cells were stored on ice for up to 1 month without evident change in receptor properties and washed on each test day before use. For some tests, the permeabilized cells were extensively sonicated with an ice-cooled tip, and the resulting membrane fragments were collected by high-speed centrifugation (15 min; 60,000g).

Unless mentioned otherwise, binding tests were conducted using the following protocols. Aliquots of rat brain membranes or permeabilized cells (10–20 μg of protein) were incubated at 0°C with radioligand and appropriate additions in 50 μM KSCN; incubation media contained 50 mM KSCN (potassium thiocyanate), which increases affinity for [³H]AMPA about 10-fold. Incubations were terminated after 30 to 60 min by filtration through GF/A or GF/C filters after diluting the sample in 5 ml of ice-cold buffered saline containing 50 mM KSCN (wash buffer); the filters were rapidly rinsed with 15 ml of additional wash buffer. In some assays with brain membranes, incubations were terminated by 15-min centrifugation in a Beckman JA 18.1 rotor with rotor temperature calibrated to match incubation temperature. The pellet was quickly rinsed with ice-cold wash buffer. Stock solutions of test drugs were prepared in HBS. Nonspecific binding was determined with 5 μM glutamate and subtracted from total binding. The drugs in general had no significant effect on nonspecific binding and did not cause quenching of scintillation counting. Protein content was determined according to Bradford (1976) with serum albumin as standard. Binding data were usually normalized and averaged across experiments and plotted as mean and S.E.M. Binding curves were fitted through nonlinear regression using the Prism program from GraphPad Software Inc. (San Diego, CA).

Excised Patch Currents Mediated by GluR2 Receptors. Currents mediated by homomeric GluR2(R607Q) flop or flip receptors were measured in HEK293 cells transiently transfected with the respective cDNAs in a pRK5 vector, using LipofoetAMINE (Invitrogen, Carlsbad, CA). Cells were submitted to experimentation 72 to 96 h after transfection. Patch pipettes had a resistance of 2 to 5 MΩ and were filled with a solution of 130 mM CsF, 10 mM EGTA, 2 mM ATP Mg²⁺ salt, and 10 mM HEPEs, pH 7.3. The extracellular solution contained 140 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 5 mM glucose, and 10 mM HEPEs, pH 7.3. Patches were excised from the cells and positioned in front of a double pipet delivering a constant flow of background medium (without or with test drug) in one flow line and medium containing 1 mM L-glutamate in the second flow line. The patch was initially placed in the background flow line. A piezo device then moved the double pipet in a fraction of a millisecond into the glutamate flow line (Arai et al., 1996). In general, 10 responses were collected at 5-s intervals and averaged to give one trial. When testing PPNDs, several control trials were collected and then the background flow line was changed to medium containing 50 μM PPNDs. After three to four drug trials, the background medium was switched back to control medium. In tests with suramin, trials were repeatedly alternated between control condition and the various drug concentrations. The holding potential was −70 mV. Data were acquired with a patch amplifier (Axpot-1D) at a filter frequency of 5 kHz and digitized at 10 kHz with PClamp/Digidata 1322A (Axon Instruments Inc., Union City, CA).

Materials. S-[³H]AMPA (40.8 Ci/mmol) was obtained from PerkinElmer Life and Analytical Sciences (Boston, MA). [³H]Fluorowillardine (36 Ci/mmol), FPNDs, PPADs, NF023, NF279, and NF449 were obtained from Tocris Cookson Inc. (Ballwin MO). Suramin and common laboratory reagents were from Sigma-Aldrich.

Results. Suramin reliably inhibited the binding of all radio labeled ligands examined in this study. However, inhibition constants and extent of inhibition varied considerably between assay configurations (Fig. 2). In rat brain membranes, binding of [³H]AMPA (+SCN; 25°C) was inhibited almost completely with an IC₅₀ value of about 100 μM (Fig. 2A) and a Hill slope near 1. In contrast, binding of the agonist [³H]fluorowillardine (FW) was inhibited by only 70 to 80% (95% confidence intervals for lower asymptote, 12–32% at 25°C and 17–47% at 0°C), and Hill slopes were shallower (0.6–0.7; Fig. 2B). The less than complete inhibition was not caused by residual binding to another receptor because [³H]FW binding was completely displaced by AMPA and CNQX (inset). Less than complete inhibition was also observed with [³H]CNQX (IC₅₀ value of 43 μM; lower asymptote, 20 ± 6%; n = 2; not shown). Similar differences between the radioagonists were seen in tests with GluR2-flip receptors stably expressed in HEK293 cells (Fig. 2C). In this preparation, [³H]AMPA binding (without SCN; 0°C) was again inhibited by more than 95%, whereas [³H]FW binding reached a plateau at 21% (95% confidence interval, 17–24%). IC₅₀ values were generally smaller than in brain (18 μM for [³H]AMPA), but Hill slopes were steeper, in particular for FW (nH = −1.6). Similar inhibition profiles and IC₅₀ values (17–49 μM for [³H]AMPA binding without SCN) were obtained in tests with four other AMPA receptor subunits of both the flip and flop type (not shown). A number of observations rule out nonspecific drug effects or interference with the assay method, a possibility that was considered carefully given the massed negative charges and high aromaticity. For instance, inhibition was the same when incubations were terminated by centrifugation and filtration (Fig. 2A) and was only weakly dependent on ionic strength (not shown). With both assay techniques, values for nonspecific binding were not significantly altered except at the highest suramin concentrations (1–3 mM), at which they were reduced by maximally 20%. Identical inhibition curves were obtained if incubation times were extended from 30 to 90 min or beyond (not shown).

The less than complete inhibition seen in some assays suggested that the interaction between suramin and agonists is not competitive. In the remainder of Fig. 2 (D–F), we examined the nature of these interactions in more detail for [³H]AMPA binding. These tests were carried out in the presence of KSCN so that near saturating concentrations of [³H]AMPA could be reached. Figure 2D shows that suramin progressively shifted saturation curves for [³H]AMPA to the right with only insignificant changes (<12%) in the B₅₀max value. A similar right-shift was seen in inverse concentration-effect experiments in which suramin inhibition curves were constructed for different [³H]AMPA concentrations (IC₅₀ values of 44, 109, and 531 μM at 2, 30, and 180 nM)
Fig. 2. Suramin inhibits binding to native (A and B) and homomeric (C–F) AMPA receptors. A, binding of [3H]AMPA (50 nM) at 25°C to rat brain membranes in the presence of 50 mM potassium thiocyanate (SCN), using either filtration or centrifugation to terminate the incubation. Nonspecific binding was determined with 5 mM glutamate and subtracted from total binding. For each experiment, binding at each concentration of suramin was normalized to that in its absence. The data shown are means and S.E.M. from three experiments conducted with each assay type. The averaged data points were fitted with four-point logistic equations to obtain the IC50 and nH values shown in the figure. Binding without suramin was 0.5 to 0.8 pmol/mg protein; specific binding was 80% (filtration) or 50% (centrifugation) of total binding. B, binding of [3H]FW (50 nM, no SCN, filtration assay) at 0°C (IC50 value of 77 nM; nH value of 0.61; bottom asymptote, 32%) and at 25°C (IC50 value of 178 nM; nH value of 0.65; bottom asymptote, 23%; n = 3 each). The inset shows inhibition by CNQX and AMPA at 0°C in the same preparation (CNQX: IC50 value of 0.22 μM; nH value of 0.80; bottom asymptote, 1%; AMPA: IC50 value of 0.24 μM; nH value of 0.80; bottom asymptote, 1%; both n = 2). Binding at 0 μM suramin was 2.4 μM (2.5°C) and 2.9 μM (0°C) pmol/mg; specific binding was >85% of total binding. C–F, tests with GluR2o flop receptors (GluR2o) stably expressed in HEK293 cells. C, binding of [3H]AMPA (50 nM; n = 7) and [3H]FW (5 nM; n = 3), both measured in the absence of SCN. Control binding was 1.6 (AMPA) and 1.7 (FW) pmol/mg; specific binding was 80 and 97% of total binding, respectively. D, effect of 0.2 and 1 mM suramin on [3H]AMPA saturation curves (n = 2) measured in the presence of SCN. Specific binding was >90% of total binding under all conditions. Curve-fitting to the data points with four-point logistic equations yielded Kd values of 7.1, 24, and 59 nM; Bmax values of 5.8, 5.9, and 5.7 pmol/mg; and nH values of 0.93, 1.06, and 1.01, respectively. The inset shows an Eadie-Hofstee transformation of the same binding data and a linear regression fit to those data; Bmax values without and with suramin differed by less than 12%. E, inhibition curves for suramin at three different [3H]AMPA concentrations. Assays were conducted in the presence of SCN at 2, 30, and 180 nM [3H]AMPA. IC50 values (95% confidence intervals) for suramin were 44 μM (37–51) at 2 nM [3H]AMPA, 109 μM (89–132) at 30 nM [3H]AMPA, and 531 μM (262–1077) at 180 nM [3H]AMPA; nH values were −1.55, −1.58, and −1.05, and lower asymptotes were 8.0 ± 2.2, 18 ± 3, and 57 ± 5%, respectively. F, effects of suramin and/or glutamate on dissociation (0°C) of bound AMPA receptor; representative experiment (from n = 3). GluR2o receptors were equilibrated for 90 min with 10 nM [3H]AMPA in the presence of SCN. To force dissociation, 2 μL of 50 mM glutamate, 20 mM suramin, or a combination of both, were added to 20 μL of the equilibrated aliquots. Inset, percentage dissociated at 90 s (n = 6).

Fig. 3. Suramin analogs. A, binding of [3H]AMPA (50 nM) to GluR2o receptors in the absence of thiocyanate (0°C); averages (with S.E.M.) from three (NF023), seven (NF279), and two (NF449) experiments. The 95% confidence interval of nH for NF279 was from −2.9 to −4.2. B, binding of [3H]FW (50 nM) to rat brain membranes (0°C); data are from two (NF023) and five (NF279) experiments. The nH value, but not the bottom asymptote, differed significantly between the two curves (p = 0.013).
compounds contain a polysulfonated ring element, are much smaller than suramin, and lack mirror-symmetry (Fig. 1). PPNDS, however, possesses a naphthyl-disulfonate component that is almost identical to the terminal ring elements in suramin. As shown in Fig. 4A, PPADS was a weak inhibitor of [3H]FW binding, which accords with the reported lack on AMPA receptor currents. In contrast, PPND produced a severalfold increase in [3H]FW binding to rat brain membranes (Fig. 4A) and thus had effects that are fundamentally different from those of the other compounds. The drug was potent with an EC50 of 4.1 μM at 0 and 25°C, and the effect was highly reproducible over a wide range of incubation times (not shown). PPNDS also enhanced [3H]fluorowillardiine binding if thiocyanate was included in the assay (2.3-fold; Fig. 4A); thiocyanate itself had only modest effects on [3H]FW binding if thiocyanate was included in the assay (2.3-fold; not shown).

Similar results were obtained in four other experiments with rat brain and GluR2o receptors.

Figure 4. Effect of PPND on agonist binding to AMPA receptors. A, binding of [3H]FW (50 nM) to rat brain membranes at 0 or 25°C, without and with 50 mM SCN. For all data, binding was normalized to that without drug and without SCN. Percent values from three to five experiments for each assay condition were averaged and expressed as mean ± S.E.M. Data points were fitted with logistic equations; data points obtained for the highest two drug concentrations (100 and 500 μM) were excluded from this fit because of a possibility of nonspecific effects. Control binding (0 PPND) was 2.7 pmol/mg protein at 25°C, or about 10% of the Bmax value according to saturation tests. A also includes data obtained with PPADS (0°C; −SCN; α = 3). B, binding of [3H]AMPA and [3H]FW to GluR2o receptors. Membranes were incubated for 30 min at 0°C with 20 nM [3H]AMPA (no SCN); or 5 nM [3H]FW and the PPND concentrations indicated on the x-axis. Inset, Scatchard transformation of [3H]FW saturation experiments in the absence of PPND (control) and at the near saturating PPND concentration of 40 μM (averaged values from three experiments for each condition). Binding was measured at 0°C at 0.5, 2, 10, 30, and 100 nM [3H]FW. Kd values for FW derived from the slope of the regression lines are 11.7 nM in the absence of drug and 1.5 nM in the presence of 40 μM PPND. C, association of [3H]FW to rat brain membranes at 0 and 100 μM PPND (25°C; representative experiment). Membranes were mixed at t = 0 with 50 nM [3H]FW and filtered at the time indicated. PPNDs was added either together with [3H]FW (circles) or 60 min before (squares). Data were normalized to control binding at 60 min. Curve fittings with two-exponential functions were in all cases statistically preferred over single-exponential fits (p < 0.05; extra-sum-of-squares F-tests by Prism). Rate constants (in min−1) were simultaneous application, 6.7 (85%) and 0.18 (15%); and PPNDs preincubation, 1.5 (34%) and 0.07 (66%). Association in controls was too fast to be accurately determined (>15 min−1 for the dominant component). Similar results were obtained in six other experiments with both rat brain and GluR2o receptors. D, dissociation at 25°C from brain membranes pre-equilibrated for 90 min with 50 nM [3H]FW, either without or with 100 μM PPNDs (representative experiment). Dissociation was initiated by adding 2 μl of 50 mM glutamate (2 mM final). Data were normalized to the respective binding at t = 0. Two-exponential fits were again statistically preferred over one-site fits, which may be in part a result of the presence of high- and low-affinity binding sites in brain membranes. Rate constants were (in min−1): control 10 (66%) and 0.35 (34%), with PPNDs 0.5 (32%) and 0.04 (68%). Similar results were obtained in four other experiments with rat brain and GluR2o receptors.
less than 2. Steady-state currents in some experiments increased by a larger factor, but they always remained small compared with the respective peak currents (left) and hence responses with both receptor subtypes continued to exhibit strong desensitization even after infusion of the drug, in clear distinction from the effects of typical AMPA receptor up-modulators such as CX546, which essentially abolished desensitization (Arai et al., 2002b). PPNDS effects were not readily reversible and most response parameters did not return to baseline after drug offset, even after washout times of several minutes. The effects of suramin in the same recording system differed substantially from those of PPNDS in that currents were completely blocked (Fig. 6) and readily reversed after drug washout. However, like PPNDS, suramin did not have a significant effect on the waveform of the response (Fig. 6, inset). The IC50 value was on the order of 20 to 60 μM and thus agreed with those obtained from binding tests.

Figure 7 illustrates one possible interpretation for the effects of PPNDS in the framework of a previously used elementary receptor model (Patneau and Mayer, 1991; Ambros-Ingerson and Lynch, 1993; Arai et al., 2002b). The equation given in the figure caption shows how binding affinity is related to rate constants in this particular model. A plausible first scenario would be that PPNDS slows both association and dissociation of the agonist without affecting channel gating and desensitization. As shown by the simulations of receptor currents (Fig. 7, center), a 20-fold slowing of these rate constants (condition 2) leads to a reduction in the peak current similar to that observed with modest or no changes in steady-state currents, rise times, and decay time constants. With these modifications, however, binding affinity is not altered and hence there must be additional changes in receptor kinetics. One such possibility is that PPNDS causes a stabilization of the bound-closed state with the consequence that dissociation from this state is slowed more than the association (condition 3 in Fig. 7). This would lead to a commensurate increase in binding affinity because the KD value is in first approximation given by the ratio k-1/k1 × k-2/k2. If we assume that the rate of dissociation is slowed 200 times, then the response waveform remains similar to that of condition 2, but the binding KD is greatly reduced and hence binding measured at any fixed [3H]agonist concentration would be increased; small changes in other rate constants may account for the observed minor changes in the steady-state current. These properties are reminiscent of those observed with PPNDS and thus we tentatively propose that the primary effect of this drug is to slow agonist association and dissociation and that it either stabilizes the bound-closed receptor state or destabilizes the unbound state.

Discussion

This study has shown that suramin-type compounds and PPNDS have major effects on AMPA receptors at low micromolar concentrations and that due caution should be exercised when interpreting experiments in which such drugs are used to block purinergic receptors. Of greater interest, how-
ever, are questions concerning the nature of the drug action and the finding that effects on AMPA receptors differed substantially between drugs. Thus, suramin and the NF analogs consistently inhibited agonist binding, whereas PPNDS increased agonist binding to an extent rarely seen with other drugs. The effects of suramin on \(^{3}H\)AMPA binding on first inspection seemed competitive with essentially complete inhibition at high drug concentrations and a right-shift in the saturation concentration-effect curve for AMPA. However, the only partial inhibition of \(^{3}H\)fluorowillardiine binding and of \(^{3}H\)AMPA binding when tested at high \(^{3}H\)AMPA concentrations makes it in the end seem more likely that suramin instead acted on a site distinct from that for agonists and that it thereby lowered the affinities for the latter. The inhibition by suramin can thus be distinguished from the antagonistic effects produced by drugs like CNQX and the 2,3-benzodiazepines.

The effects of PPNDS were unexpected yet highly consistent across preparations and assay conditions. Binding affinity for FW was increased 8-fold and accompanied by a slowing of both association and dissociation. In physiological tests, PPNDS reduced the peak amplitude of responses to glutamate but had conspicuously weak impact on other response parameters. This pattern of effects is unique and clearly different from that previously reported for other modulatory factors. Thus, thiocyanate, which also increases binding affinity for \(^{3}H\)AMPA, accelerated desensitization in patch experiments (Arai et al., 1995) and lowered the steady-state current in oocyte recordings (Bowie and Smart, 1993), both of which pointed to the conclusion that it facilitates transition into the desensitized state. PPNDS did not promote desensitization and its effects on binding were not occluded by thiocyanate. Agonist binding is also increased in the presence of many drugs referred to as up-modulators. Although structurally and functionally diverse, these compounds augment the current passed through AMPA receptors by increasing the peak current and/or slowing the decay of the current after glutamate pulses (Arai and Lynch, 1998; Arai et al., 2002a,b). Increases in agonist binding produced by these drugs were usually less than 100%, with only a few exceptions (Arai et al., 2002a,b). The latter compounds, however, also caused a dramatic slowing of response deactivation and desensitization, and it has been argued that binding increase and response prolongation are related (Arai et al., 2002b). These effects are again clearly distinct from those of 2,3-benzodiazepines.

Fig. 6. Inhibition by suramin of GluR2 receptor currents. Currents through GluR2/R607Q flop receptors in response to 1-ms pulses of 0.5, 1, or 10 mM glutamate in outside-out patches. Suramin was present at 1 to 500 \(\mu\)M in the background medium between glutamate pulses. Data were collected from nine patches and fitted with logistic curves for each glutamate concentration. IC\(_{50}\) values were 21, 31, and 66 \(\mu\)M, respectively, and Hill slopes were between 0.5 and 0.6. Inhibition was complete when extrapolated to saturating suramin concentrations. The inset shows a typical set of responses from one patch in the presence of 0, 1, 10, 30, 100, and 500 \(\mu\)M suramin.

Fig. 7. Simulations with a five-state receptor model. A, scheme of five-state receptor model. Rate constants suggested to be reduced by PPNDS are indicated by shortened arrows in the lower scheme. R, receptor; A, agonist; R*, desensitized states; numbering of rate constants is indicated next to arrows. Basic rate constants were selected as follows: \(k_{R}, 7.5 \, \mu\text{M}^{-1} \, s^{-1}\); \(k_{p}, 50 \, \mu\text{M}^{-1} \, s^{-1}\); \(k_{-p}, 10000 \, s^{-1}\); \(k_{-a}, 4 \, s^{-1}\); \(k_{pa}, 1500 \, s^{-1}\); \(k_{a}, 1.2 \, s^{-1}\); \(k_{pa}, 3 \, s^{-1}\); \(k_{-a}, 40 \, s^{-1}\); \(k_{o}, 10,000 \, s^{-1}\); and \(k_{-o}, 2000 \, s^{-1}\). These rate constants are similar to those previously used to simulate brain receptors (Arai et al., 2002) but were adjusted in \(k_{1}, k_{-1}, k_{2}, k_{-2}, k_{3}, k_{-3}\), and \(k_{4}, k_{-4}\) to reproduce the faster response kinetics, smaller steady-state/peak ratios, and lower binding \(K_{D}\) values of homomeric receptors such as GluR2 flop. B, responses to 60-ms pulses of glutamate for three selected conditions: 1, with the basic set of rate constants; 2, with the assumption that association and dissociation rates are slowed 20\(\times\); and 3, that association is slowed 20\(\times\) and dissociation is slowed 2000\(\times\); in the latter case \(k_{-a}\) and \(k_{a}\) were adjusted by small factors to maintain microreversibility and to account for the observation that the steady-state was slightly increased. The \(y\)-axis unit represents the percentage of receptors in the open state. C, factors by which the rate constants were multiplied, and associated values for binding \(K_{D}\), peak current, and steady-state current. The binding \(K_{D}\) was computed from the equation \(K_{D} = (k_{a} / k_{o} + k_{-a} / k_{-o} + k_{pa} / k_{-pa} + k_{-pa} / k_{pa} + k_{-o} / k_{o})^{-1}\) (Ambros-Ingerson and Lynch, 1993) and represents the expected binding affinity for glutamate. Actual binding affinity constants of homomeric receptors for glutamate are on the order of 0.6 to 6 \(\mu\)M, depending on the subunit (E. Suzuki, M. Kessler, and A.C. Arai, unpublished data).
PPNDS. Based on such considerations, it seems unlikely that the primary effect of PPNDS is to influence receptor functions involving desensitization (k_{2}/k_{-2} in Fig. 7) or channel gating (k_{2}/k_{-3}). Simulations with the five-state kinetic receptor model indicated instead that most observed effects can be reproduced if association and dissociation rates for agonists are reduced with the latter being more extensive. Similar conclusions were obtained when using the two-ligand glutamate receptor model of Jonas et al. (1993) (not shown). The marked slowing of association shown in Fig. 2 has indeed been a distinctive feature of the PPNDS effect. It should also be noted, however, that the associations and dissociations measured in those binding tests involve multiple kinetic transitions, including those related to desensitization, and thus the magnitude of changes in k_{2} and k_{-1} can not be directly inferred from those measurements.

A further question is whether the actions of PPNDS and suramin involve separate sites and mechanisms. One plausible way to explain the slowing of association and dissociation caused by PPNDS would be to assume that the drug restricts passage to the agonist site. The latter is indeed buried deep within a cleft between the S1 and S2 domains that form the two lobes of the glutamate receptor “flytrap” mechanism (Stern-Bach et al., 1994; Mano et al., 1996). By binding to the outer part of the cleft, PPNDS could thus potentially reduce the rate with which agonists move into and out of the cleft, without occupying the agonist-binding site itself. It is of interest in this regard that guanine nucleotides also seem to bind in this region. In the chicken kainate binding protein, mutation of a lysine residue at the outer edge of the upper lip of the flytrap reduced the potency of GDP to inhibit kainate binding (Paas et al., 1996). Given that guanine nucleotides inhibit [3H]AMPA binding (Dev et al., 1996) and that suramin and PPNDS inhibit proteins with nucleotide-binding sites (see Introduction), we conjecture that the compounds examined in this study mimic guanine nucleotides and that suramin and PPNDS bind to the same receptor domain yet differ in the specifics of their docking mode and the impact on receptor kinetics. The proposed modes of action are sketched in Fig. 8. PPNDS, by binding to the outer lip of the S1-S2 domain, stabilizes the receptor in a “closed-cleft” conformation that is characteristic for the “agonist-bound” state. If agonists and PPNDS are applied together, the agonist presumably binds first and then becomes stabilized when PPNDS associates with the receptor. As a consequence, equilibrium binding affinity is increased and dissociation of the agonist is slowed. If PPNDS is applied before the agonist, as in some association experiments, the receptor is shifted into the closed-cleft conformation even if the agonist site is not occupied. This greatly slows subsequent penetration of the agonist into the cleft and hence association with the receptor. In physiological tests, responses to glutamate pulses are accordingly reduced in amplitude because glutamate is not able to effectively reach its site in short time. According to this scenario the downstream conformational changes associated with channel opening and desensitization kinetics would not be influenced in a major way by PPNDS.

Binding of suramin would have opposite consequences. Perhaps because of its larger molecular dimensions and the presence of two polyanionic domains, it may act like a wedge that prevents the S1 and S2 domains to close around the bound glutamate (Fig. 8, right). It would thus hold the receptor in a conformation nearer that of the unbound state and thereby lower the affinity for agonist in binding tests. In studies using an S1-S2 model system, cleft-closure upon agonist binding was shown to involve a rotation of the two lobes relative to each other. The degree of this rotation was smaller for FW than for AMPA because of the larger molecular size of FW (Jin et al., 2003). It is thus conceivable that the “open-cleft” state stabilized by suramin can still bind FW with only modest loss of affinity, whereas the smaller AMPA molecule may not be able to make sufficient contact with the two lobes. This could explain the much larger reduction in affinity seen with AMPA as radioligand (a similar, although inverse, rationale may explain why PPNDS produced a larger gain in affinity for [3H]FW than for [3H]AMPA). In addition, if suramin binds to the open-cleft state, it may not be able to

![Fig. 8. Suggested mode of action for PPNDS and suramin. The scheme represents a single subunit of the tetrameric receptor complex. The indicated structural elements of the subunit are the S1-S2 domain, which contains the agonist binding site in the depth of a cleft, the N-terminal domain (NTD) of unknown function, and the three transmembrane helices connected to S1-S2. G, glutamate; A, AMPA; and F, fluorowillardiine. Far left, receptor in the conformation without bound agonist. The other diagrams show various extents of S1-S2 domain closure after binding of the agonist and the proposed influence of the drugs. Arrow size indicates the shift in the association-dissociation equilibrium relative to the situation without drug. Drugs are represented by simplified structures with negatively charged substituents indicated with black dots; only one of the possible suramin conformations is shown. The structures are not drawn to scale. For suggested mode of drug action, see text.](https://images.springer.com/content/image/42687/206871747/)
bind as long as glutamate is holding the receptor in a closed-cleft conformation. This could explain the apparent competitive behavior observed in the dissociation experiments, which suggested that glutamate must leave before suramin can bind.

An assumption underlying many of the above-mentioned deliberations has been that the polysulfonated ring elements represent the critical pharmacophore. However, several polysulfonated azo-dyes also inhibit AMPA receptor currents, and it has been argued that their action mainly involves hydrophobic interactions mediated by the aromatic backbone. This was based on observations such as that currents were almost completely blocked by 1 μM Evans blue (Fig. 1), whereas Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective whereas Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective at this concentration (Keller et al., 1993; Price and Raymond, 1996). In our binding tests, however, Evans blue and Chicago sky blue exhibited comparable potencies for inhibiting [3H]FW binding, and the IC50 values were in the 100-1996). In our binding tests, however, Evans blue and Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective whereas Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective at this concentration (Keller et al., 1993; Price and Raymond, 1996). In our binding tests, however, Evans blue and Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective whereas Chicago sky blue, which differs only in a methoxy substituent on the central benzidine moiety, was ineffective at this concentration (Keller et al., 1993; Price and Raymond, 1996).

In conclusion, the drugs examined here produced stimulatory and inhibitory effects on agonist binding that are unique and differ in major ways from those produced by other groups of AMPA receptor modulators. The drug effects exhibit mixed competitive and noncompetitive traits that can be adequately understood if one assumes that they do not physically occupy the binding domain of the agonists yet control access for agonists and compete for, or stabilize, certain receptor conformations. This would lead to an effective functional antagonism in the case of suramin yet perhaps to a more controlled and partial response attenuation in the presence of PPNDs. Although PPNDs is unlikely to cross the blood-brain barrier, compounds acting like it might offer new avenues to treat conditions such as epilepsy in which a limited reduction of synaptic responses in Xenopus laevis oocytes microinjected with rat brain mRNA, Br J Pharmacol 109:779–787.

Price CJ and Raymond LA (1996) Evans blue antagonizes both α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate and kainate receptors and modulates receptor desensitization. *Mol Pharmacol* **50**:1665–1671.

Address correspondence to: Dr. M. Kessler, Department of Pharmacology, Southern Illinois University School of Medicine, MC 9629, 801 N. Rutledge St., Springfield, IL 62702. E-mail: mkessler@siumed.edu