On the relationship between limit spaces, many valued topological spaces, and many valued preorders

Lingqiang Li, Dexue Zhang*

Department of Mathematics, Sichuan University, Chengdu 610064, China

Received 13 January 2007; received in revised form 15 August 2008; accepted 15 August 2008
Available online 5 September 2008

Abstract

Let \((L, *, 1)\) be a residuated complete lattice with the underlying lattice \(L\) a meet continuous lattice. This paper presents a systematic investigation of the interrelationship between the categories of limit spaces, \(L\)-topological spaces, and \(L\)-preorders. The results exhibit a close connection between these different mathematical structures.

Keywords: Category theory; Topology; Residuated lattice; Limit space; Many valued topology; Many valued preorder

1. Introduction

The interaction between topological structures and order structures is a stimulating topic in mathematics and computer science, e.g., the theory of locales [17] and the theory of domains [9]. This interaction also plays an important role in the theory of many valued topology, see, e.g., [5,8,13–16,19,20,22,29,30].

This paper presents, in the case that \(L\) is a meet continuous residuated lattice, a systematic investigation of the interrelationship between the categories of limit spaces, \(L\)-preorders, and \(L\)-topological spaces.

A residuated lattice [2] is a triple \((L, *, 1)\), where, \(L\) is a complete lattice with a top element 1 and a bottom element 0; * is a binary operation on \(L\) such that (i) \((L, *, 1)\) is a commutative monoid and (ii) * distributes over arbitrary joins.

A complete lattice \(L\) is meet continuous [9] if the binary meet operation \(\wedge\) distributes over directed joins. In particular, a residuated lattice \((L, *, 1)\) is called a meet continuous residuated lattice if \(L\) is meet continuous.

Let \((L, *, 1)\) be a meet continuous residuated lattice. This article is concerned with the interrelationship between the following categories:

- **Top**, the category of topological spaces and continuous functions;
- **Prord**, the category of preordered sets and order-preserving functions;
- **Lim**, the category of limit spaces and continuous functions;
- **TopLim**, the full subcategory of **Lim** consisting of topological limit spaces;

\(^\star\) This work is supported by the Natural Science Foundation of China (10771147).
* Corresponding author. Tel.: +86 28 66918160.
E-mail addresses: llingsiang@126.com (L. Li), dxzhang@scu.edu.cn (D. Zhang).
2. Preliminaries

In this section, we recall some basic notions from lattice theory and category theory which shall be needed in the subsequent sections.

Given a residuated lattice \((L, *, 1)\), define a binary operation \(\rightarrow\) on \(L\) by

\[b \rightarrow c = \bigvee \{a \in L|a * b \leq c\}. \]

The binary operation \(\rightarrow\) is called the residuation with respect to \(*\). The operations \(*\) and \(\rightarrow\) are interlocked with each other by the adjoint property: \(a * b \leq c \iff a \leq b \rightarrow c\). This adjoint property enables \(L\) to play the role of the set of truth-values in a many valued logic. \(1 \in L\) is interpreted as true, \(0 \in L\) as absurd, \(*\) as the logic connective conjunction, and \(\rightarrow\) as implication. The reader is referred to \([2,10–12,23]\) for more in this regard. So, the study concerning \(L\)-subsets (i.e., functions with codomain \((L, *, 1)\)) has a strong flavor of many valued logic. This is why \(L\)-topological spaces and \(L\)-preorders are also called many valued topological spaces and many valued preorders, respectively \([10,14,31]\).

Some basic properties of the operations \(*\) and \(\rightarrow\) in a residuated lattice are collected here for later use, they can be found in many places, e.g., \([11,12]\).

\[
\begin{align*}
(11) & \quad 0 * p = 0; \\
(12) & \quad p \rightarrow (q \rightarrow r) = (p * q) \rightarrow r; \\
(13) & \quad p \rightarrow q = 1 \iff p \leq q; \\
(14) & \quad (p \rightarrow q) * (q \rightarrow r) \leq (p \rightarrow r); \\
(15) & \quad \left(\bigvee_{j \in J} p_j\right) \rightarrow q = \bigwedge_{j \in J}(p_j \rightarrow q); \\
(16) & \quad p \rightarrow \left(\bigwedge_{j \in J} q_j\right) = \bigwedge_{j \in J}(p \rightarrow q_j).
\end{align*}
\]

For any set \(X\), the set \(L^X\) of mappings \(X \rightarrow L\) with the pointwise order is also a complete lattice. Elements of \(L^X\) are called \(L\)-subsets (or fuzzy subsets) of \(X\). For \(x, y \in L\) and \(x, y \in L\), we denote by \(x * y\) and \(x \rightarrow y\) the \(L\)-subsets defined by \((x * y)(x) = x * y(x), (x \rightarrow y)(x) = x \rightarrow y(x)\) for each \(x \in X\). Also, for each subset \(U \subseteq X, a \in L\), we denote by \(a \wedge 1_U\) the function \(X \rightarrow L\) defined by \(a \wedge 1_U(x) = a\) if \(x \in U\) and \(a \wedge 1_U(x) = 0\) if \(x \notin U\). When \(a = 1, a \wedge 1_U\) is simplified to \(1_U\).

Let \(L\) be a complete lattice and \(x, y \in L\). We say that \(x\) is way below \(y\) (in symbols, \(x \ll y\)) if for all directed subsets \(D \subseteq L, x \leq \sup D\) always implies that \(x \leq d\) for some \(d \in D\). A complete lattice \(L\) is said to be continuous \([9]\) if \(x = \sup \downarrow x\) for all \(x \in L\), where \(\downarrow x = \{y \in L : y \ll x\}\).

Finally, we recall some basic notions from category theory. Our reference to category theory is the monograph \([1]\).

Let \(A\) and \(B\) be categories. By an adjunction \([1]\) between \(A\) and \(B\) (in symbols, \(F: A \rightarrow B, G: B \rightarrow A\)) is meant a pair of functors \(F: A \rightarrow B, G: B \rightarrow A\) such that there is a natural isomorphism between the functors \(\hom_A(\cdot, G(\cdot))\)
and \(\text{hom}_B(F(-), -) \). In this case, \(F \) is called a left adjoint of \(G \) and \(G \) a right adjoint of \(F \). The symbol \(F \dashv G : A \longrightarrow B \) is often abbreviated to \(F \Rightarrow G \) if the categories \(A \) and \(B \) are evident.

In this paper, by a concrete category is meant a concrete category over \(\text{Set} \) (i.e., a construct in the terminologies of [1]). Precisely, a concrete category is a pair \((A, U) \), where \(A \) is a category and \(U : A \longrightarrow \text{Set} \) is a faithful functor (called a forgetful functor). For each \(X \in A \), \(U(X) \) is called the underlying set of \(X \) (also denoted by \(|X| \) if no confusion would arise). So, every object in a concrete category is nothing but a set with a structure on it. We often write \(A \) for a concrete category \((A, U) \) if the forgetful functor is evident.

A concrete functor \(F : (A, U) \longrightarrow (B, V) \) between concrete categories is a functor \(F : A \longrightarrow B \) such that \(U = V \circ F \). That means, \(F \) only changes the structures on the underlying sets, leaving the underlying sets and morphisms untouched.

Thus, in order to define a concrete functor is trivial for the functors involved in this paper, we often omit the verification of this step.

Definition 2.1 (Adámek et al. [11]). Suppose that \(A \) and \(B \) are concrete categories; \(F : A \longrightarrow B \), \(G : B \longrightarrow A \) are concrete functors. The pair \((F, G) \) is called a **Galois correspondence** if either of the following equivalent conditions hold:

1. \(\{ \text{id}_Y : F \circ G(Y) \longrightarrow Y | Y \in B \} \) is a natural transformation from the functor \(F \circ G \) to the identity functor on \(B \); and \(\{ \text{id}_X : X \longrightarrow G \circ F(X) | X \in A \} \) is a natural transformation from the identity functor on \(A \) to \(G \circ F \).

2. For each \(Y \in B \), \(\text{id}_Y : F \circ G(Y) \longrightarrow Y \) is a \(B \)-morphism; and for each \(X \in A \), \(\text{id}_X : X \longrightarrow G \circ F(X) \) is an \(A \)-morphism.

If \((F, G) \) is a Galois correspondence, then \(F \) is a left adjoint of \(G \) [1].

3. Review of related results

This section reviews some basic notions and results about limit spaces, \(L \)-topological spaces, and \(L \)-preordered sets.

3.1. The interrelationship between \(\text{Top} \), \(\text{Prord} \), and \(\text{Lim} \)

A preorder on a set \(X \) is a reflexive and transitive relation \(\preceq \) on \(X \). The pair \((X, \preceq) \) is called a preordered set. A function \(f : X \longrightarrow Y \) between two preordered sets is order-preserving if \(x \preceq y \) implies \(f(x) \preceq f(y) \). The category of preordered sets and order-preserving functions is denoted by \(\text{Prord} \).

Given a preordered set \((X, \preceq) \) and \(A \subseteq X \), let \(\uparrow A = \{ y \in X | x \preceq y \text{ for some } x \in A \} \). A subset \(A \) of \(X \) is an upper set if \(A = \uparrow A \). Dually, a subset \(B \) is a lower set if \(B = \downarrow B = \{ y \in X | y \preceq x \text{ for some } x \in B \} \). The family of all the upper sets of \(X \) is a topology on \(X \), called the Alexandrov topology on \(X \) and denoted by \(\mathcal{I}(\preceq) \). The correspondence \((X, \preceq) \mapsto (\mathcal{O}(X, \mathcal{I}(\preceq))) \) defines a concrete functor \(\Gamma : \text{Prord} \longrightarrow \text{Top} \).

Given a topological space \((X, T) \), define a binary relation \(\mathcal{O}(T) \) on \(X \) as follows: \((x, y) \in \mathcal{O}(T) \) if for any open set \(U \), \(y \in U \) whenever \(x \in U \). Then \(\mathcal{O}(T) \) is a preorder on \(X \), called the specialization order [17] of \((X, T) \). The correspondence \((X, T) \mapsto (X, \mathcal{O}(T)) \) defines a concrete functor \(\Omega : \text{Top} \longrightarrow \text{Prord} \). \((\mathcal{I}, \mathcal{O}) \) is a Galois correspondence [17].

For a set \(X \), let \(\mathcal{F}(X) \) denote the set of filters on \(X \). For each \(x \in X \), let \(\mathcal{I} \) denote the principal filter generated by \(x \), i.e., \(\mathcal{I} = \{ A \subseteq X | x \in A \} \).

A convergence structure on \(X \) is a subset \(T \subseteq \mathcal{F}(X) \times X \) such that

1. \((x, x) \in T \) for all \(x \in X \),
2. \((F, x) \in T \), \(\mathcal{F} \subseteq G \Rightarrow (G, x) \in T \).

The pair \((X, T) \) is called a convergence space. If \((\mathcal{F}, x) \in T \), we also write \(T \longrightarrow x \) (or simply, \(\mathcal{F} \longrightarrow x \), if no confusion would arise). A continuous function \(f : (X, T_X) \longrightarrow (Y, T_Y) \) between convergence spaces is a function \(f : X \longrightarrow Y \)
such that $\mathcal{F} \to x \Rightarrow f(\mathcal{F}) \to f(x)$, where $f(\mathcal{F})$ is the filter on Y generated as a filterbase by \{ $f(A) | A \in \mathcal{F}$ \}. The category of convergence spaces and continuous functions is denoted by \textbf{Con}.

A convergence space (X, T) is called a limit space if

(3) $\mathcal{F} \to x, \mathcal{G} \to x \Rightarrow \mathcal{F} \cap \mathcal{G} \to x$.

\textbf{Lim} denotes the full subcategory of \textbf{Con} consisting of limit spaces.

A convergence space (X, T) is called pretopological if

(4) $\mathcal{F}_j \to x, \forall j \in J \Rightarrow \bigcap_{j \in J} \mathcal{F}_j \to x$.

Every pretopological convergence space is clearly a limit space. A limit space (X, T) is called topological if it is pretopological and satisfies

(5) for all $x \in X$ and $U \in \bigcap\{\mathcal{F} | \mathcal{F} \to x\}$, there exists $V \in \bigcap\{\mathcal{F} | \mathcal{F} \to y\}$ such that $\forall y \in V$, $U \in \bigcap\{\mathcal{F} | \mathcal{F} \to y\}$.

The full subcategory of \textbf{Lim} consisting of topological limit spaces is denoted by \textbf{TopLim}.

Let (X, T) be a topological space. Then

\[e(T) = \{(x, x), x \in (X, T) \} \]

is a limit structure on X. The correspondence $(X, T) \mapsto (X, e(T))$ defines a full and faithful (concrete) functor $e : \textbf{Top} \to \textbf{Lim}$. The image of e is exactly the full subcategory \textbf{TopLim} of \textbf{Lim}. Thus, if we write $\hat{e} : \textbf{Top} \to \textbf{TopLim}$ for the functor obtained by restricting the codomain of e to \textbf{TopLim}, then \hat{e} is an isomorphism [27]. Denote the inverse of \hat{e} by $\hat{e}^{-1} : \textbf{TopLim} \to \textbf{Top}$.

The functor $e : \textbf{Top} \to \textbf{Lim}$ has a concrete left adjoint $\mathcal{R} : \textbf{Lim} \to \textbf{Top}$ given by $\mathcal{R}(X, T) = (X, \mathcal{R}(T))$, where

$\mathcal{R}(T) = \{U \subseteq X | \forall x \in U, \mathcal{F} \to x \Rightarrow U \in \mathcal{F} \}$.

Therefore, \textbf{TopLim} (which is concretely isomorphic to \textbf{Top}) is concretely reflective, hence initially closed, in \textbf{Lim} [1,27].

Given a limit structure T on X, define a binary relation \leq_T on X as follows: $x \leq_T y$ if $\mathcal{F} \xrightarrow{T} x$ whenever $\mathcal{F} \xrightarrow{T} y$. Then \leq_T is a preorder on X, called the specialization order of (X, T) and denoted by $\Theta(T)$. We leave it to the reader to verify that if (X, T) is topological, i.e., $(X, T) = e(X, T)$ for some topology T on X, then the preorder $\Theta(T)$ coincides with preorder $\Omega(T)$.

It should be noted that the correspondence $(X, T) \mapsto (X, \Theta(T))$ is not functorial (this was pointed out to us by W. Yao in a personal communication). And it is not hard to check that for any topological limit space (X, T), $\Theta(T) = \Omega \circ \hat{e}^{-1}(T)$.

The composition $\textbf{Lim} \xrightarrow{\mathcal{R}} \textbf{Top} \xrightarrow{\Omega} \textbf{Prord}$ defines another preorder on each limit space.

Proposition 3.1. Let (X, T) be a limit space.

(1) $\Theta(T) \subseteq \Omega \circ \mathcal{R}(T)$.

(2) The topology $\mathcal{R}(T)$ is coarser than the topology $\Gamma \circ \Theta(T)$.

Proof. (1) Assume that $(x, y) \in \Theta(T)$, i.e., $x \leq_T y$. By definition of \leq_T, $x \leq_T y$ implies that $\hat{y} \to x$. Hence if U is an open neighborhood of x in $(X, \mathcal{R}(T))$, then $U \in \hat{y}$, i.e., $y \in U$. Thus, that $(x, y) \in \Omega(\mathcal{R}(T))$.

(2) It suffices to check that for every open set U in $(X, \mathcal{R}(T))$, U is an upper set w.r.t. the preorder \leq_T. In fact, if $x \in U$ and $x \leq_T y$, then $\hat{y} \xrightarrow{T} x$ by definition of \leq_T. Hence, $U \in \hat{y}$ by definition of $\mathcal{R}(T)$, whence $y \in U$.

Example 3.2. The converse statements of the above proposition are not true. Let $X = \{x, y, z\}$. T is the limit structure on X given by $(\mathcal{F}, x) \in T \iff \mathcal{F} \supseteq \breve{\hat{x}} \cap \breve{\hat{z}}$, $(\mathcal{F}, y) \in T \iff \mathcal{F} \supseteq \breve{\hat{y}}$, and $(\mathcal{F}, z) \in T \iff \mathcal{F} \supseteq \breve{\hat{y}} \cap \breve{\hat{z}}$. Then

$\mathcal{R}(T) = \{\{x, y, z\}, \emptyset, \{y, z\}, \{y, z\}\}$.

$\Theta(T) = \{(x, x), (y, y), (z, z), (z, y)\}$.

But,
\[
\Theta \circ \Theta(T) = \{(x, y, z), \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, \{x, y, z\}\}.
\]
\[
\Omega \circ \Phi(T) = \{(x, y), (x, z), (x, x), (y, y), (z, z), (z, y)\}.
\]

3.2. The adjunction \(\omega_L \vdash i_L : \text{Lim} \rightarrow \text{SL-Top}\)

\((L, \ast, 1)\) denotes a meet continuous residuated lattice in this subsection if not otherwise specified. An \(L\)-topology on a set \(X\) is a subset \(\tau\) of \(L^X\) closed with respect to finite meets and arbitrary joins. \((X, \tau)\) is called an \(L\)-topological space. An \(L\)-topology \(\tau\) on \(X\) is called stratified if it contains all the constant functions from \(X\) to \(L\). The category of (stratified) \(L\)-topological spaces is denoted by \((\text{SL-Top}) \rightarrow \text{SL-Top}\) respectively.

Limit spaces and \(L\)-topological spaces are extensions of topological spaces in quite different directions. However, they are closely related to each other via the Scott convergence on the complete lattice \(L\) [13–15,30].

An upper set \(U\) on a complete lattice \(L\) is called Scott open if for each directed set \(D \subseteq L\), \(\exists D \in U\) implies that \(D \cap U \neq \emptyset\). The Scott open sets on \(L\) form a topology \(\sigma L\) on \(L\), called the Scott topology. For a meet continuous lattice \(L\), it is routine to check that \(\mathcal{H}(L, \gamma L) = (L, \sigma L)\).

For every limit space \((X, T)\), let
\[
\omega_L(T) = \{\lambda : (X, T) \rightarrow (L, \gamma L)|\lambda\text{ is continuous}\}.
\]
Then \(\omega_L(T)\) is a stratified \(L\)-topology on \(X\). The correspondence \((X, T) \mapsto (X, \omega_L(T))\) defines a concrete functor \(\omega_L : \text{Lim} \rightarrow \text{SL-Top}[13,30]\).

Conversely, for an \(L\)-topological space \((X, \tau)\), let
\[
i_L(\tau) = \left\{ (F, x)|\lambda(x) \leq \bigvee_{A \in F} \bigwedge_{y \in A} \lambda(y) \text{ for all } \lambda \in \tau \right\}.
\]
Then \(i_L(\tau)\) is a limit structure on \(X\) and
\[
\{\lambda : (X, i_L(\tau)) \rightarrow (L, \gamma L)\}_{\lambda \in \tau}
\]
is an initial source in \(\text{Lim}\). The correspondence \((X, \tau) \mapsto (X, i_L(\tau))\) defines a concrete functor \(i_L : \text{SL-Top} \rightarrow \text{Lim}\) [13,30].

Proposition 3.3 (Höhle [13], Zhang [30]). Let \(L\) be a meet continuous lattice. Then the pair \((\omega_L, i_L)\) is a Galois correspondence.

Proposition 3.4. Suppose that \(L\) is a continuous lattice.

1. For every stratified \(L\)-topological space \((X, \tau)\), \((X, i_L(\tau))\) is topological.
2. \(\omega_L = \omega_L \circ i \circ \Phi\).

Proof. (1) First, the limit space \((L, \gamma L)\) is topological since \(L\) is a continuous lattice. Second, because \(\text{TopLim}\) is initially closed in \(\text{Lim}\) and the source \(\{\lambda : (X, i_L(\tau)) \rightarrow (L, \gamma L)\}_{\lambda \in \tau}\) is initial in \(\text{Lim}\), the limit space \((X, i_L(\tau))\) is therefore topological.

(2) By (1), the correspondence \((X, \tau) \mapsto (X, i_L(\tau))\) actually defines a concrete functor \(i_L^c : \text{SL-Top} \rightarrow \text{TopLim}\) such that \(i_L = i \circ i_L^c\), where \(i\) is the embedding of \(\text{TopLim}\) in \(\text{Lim}\). Write \(\omega_L^c : \text{TopLim} \rightarrow \text{SL-Top}\) for the functor obtained by restricting the domain of \(\omega_L\) to \(\text{TopLim}\). Then, appealing to Proposition 3.3, we obtain an adjunction \(\omega_L^c \vdash i_L^c\).
Since $R+e$, $\omega_L \circ e_L$, and $e \circ e^{-1}$, where $e : \text{Top} \rightarrow \text{TopLim}$ is the isomorphism defined in the above subsection and e^{-1} is the inverse of e, the composition

$$\text{Lim} \xrightarrow{\hat{\epsilon}} \text{Top} \xrightarrow{e} \text{TopLim} \xrightarrow{\omega_L} \text{L-STOP}$$

is a left adjoint of the composition

$$\text{SL-STOP} \xrightarrow{i_L} \text{TopLim} \xrightarrow{\hat{e}^{-1}} \text{Top} \xrightarrow{e} \text{Lim}.$$

Because $i_L = e \circ \hat{e}^{-1} \circ i_L$ and ω_L is a left adjoint of i_L, we obtain that $\omega_L = \omega_L \circ \hat{e} \circ R = \omega_L \circ e \circ R$, as desired. □

Remark 3.5. If $L = \{0, 1\}$, then $\text{SL-STOP} = \text{Top}$ and the adjunction $\omega_L \circ L$ is the adjunction $R+e$. So, $\omega_L : \text{Lim} \rightarrow \text{SL-STOP}$ is an extension of the functor $R : \text{Lim} \rightarrow \text{Top}$ to the many valued setting.

Proposition 3.6 (Höhle and Kubiak [15], Lai and Zhang [21]). If L is a meet continuous lattice, then the functor $\omega_L \circ e : \text{Top} \rightarrow \text{SL-STOP}$ has a left adjoint given by $\rho_L : \text{SL-STOP} \rightarrow \text{Top}$, $\rho_L(X, \tau) = (X, \rho_L(\tau))$, where, $\rho_L(\tau) = \{U \subseteq X | 1_U \in \tau\}$.

3.3. The adjunction $\Gamma_L \circ \Omega_L : L-\text{Prord} \rightarrow \text{SL-STOP}

In this subsection, $(L, \ast, 1)$ always denotes a residuated complete lattice.

Definition 3.7 (Bělohlávek [2,3], Gottwald [10], Valverde [28]). An L-preorder (or, a fuzzy preorder) on a set X is a function $R : X \times X \rightarrow L$ such that

1. $R(a, a) = 1$ for every $a \in X$ (reflexivity);
2. $R(a, b) \ast R(b, c) \leq R(a, c)$ for all $a, b, c \in X$ (transitivity).

The pair (X, R) is called an L-preordered set.

An L-preorder R is called an L-equivalence if it is symmetric in the sense that

3. $R(x, y) = R(y, x)$ for all $x, y \in X$.

In the sequel, we write simply X for an L-preordered set (X, R) and $X(x, y)$ for $R(x, y)$ if there would be no confusion with respect to the L-preorder R.

Remark 3.8. There is a more general notion of fuzzy order, fuzzy equivalence based preorders, introduced and studied in [4,6,7] under the name M-E-ordering, where E is an L-equivalence. If E is the identity relation on X, then an M-E-ordering is exactly an L-preorder on X discussed in this paper.

An L-order-preserving function $f : (X, R) \rightarrow (Y, S)$ between L-preordered sets is a function $f : X \rightarrow Y$ such that $R(a, b) \leq S(f(a), f(b))$ for all $a, b \in X$. f is said to be an isometry if $R(a, b) = S(f(a), f(b))$ for all $a, b \in X$. The class of all L-preordered sets and L-order-preserving functions constitute a category, denoted by $L-\text{Prord}$.

A classical preorder \leq on a set X defines an L-preorder on X with range $\{0, 1\} \subseteq L$. Precisely, let $\phi_L(\leq)(x, y) = 1$ if $x \leq y$; otherwise, $\phi_L(\leq)(x, y) = 0$. The correspondence $(X, \leq) \mapsto (X, \phi_L(\leq))$ defines a concrete functor $\phi_L : \text{Prord} \rightarrow L-\text{Prord}$, which is indeed an embedding.

Proposition 3.9 (Lai [22]). The embedding functor $\phi_L : \text{Prord} \rightarrow L-\text{Prord}$ has both a left and a right adjoint.

Proof. This conclusion was proved in [22] in the case L is the unit interval. The proof therein is valid in the general case. We copy the proof here in order to fix notations for later use.

Let R be an L-preorder on X. Define a binary relation R^* on X as follows: $x R^* y$ if $R(x, y) > 0$. R^* is a reflexive relation. Let $\sigma_L(R) = \bigcup_{n=1}^{\infty} (R^*)^n$, where $(R^*)^1 = R^*$, $(R^*)^{n+1} = (R^*)^n \circ R^*$. Then $\sigma_L(R)$ is a preorder on X. The correspondence $(X, R) \mapsto (X, \sigma_L(R))$ defines a concrete functor $\sigma_L : L-\text{Prord} \rightarrow \text{Prord}$, which is a left adjoint of ϕ_L.
If we let \(\psi_L(R) = \{(x, y) \in X \times X | R(x, y) = 1\} \), then \(\psi_L(R) \) is a preorder on \(X \). The correspondence \((X, R) \mapsto (X, \psi_L(R)) \) defines a concrete functor \(\psi_L : \text{L-Prord} \rightarrow \text{Prord} \), which is a right adjoint of \(\phi_L \). □

Example 3.10. In this example, we list some well-known examples of \(\text{L-preorders} \) and \(\text{L-order-preserving functions} \). The aim is to fix some notations for later use.

1. Suppose \((X, R)\) is an \(\text{L-preordered set} \). Let \(R^\text{op}(a, b) = R(b, a) \) for all \(a, b \in X \). Then \(R^\text{op} \) is an \(\text{L-preorder on } X \), called the **opposite** of \(R \).
2. Let \(R : L \times L \rightarrow L \) be defined by \(R(x, y) = x \rightarrow y \). Then \((L, R)\) is an \(\text{L-preordered set} \) because of (I3) and (I4), which shall be denoted by \((L, \rightarrow)\) in the sequel.
3. Let \((X, \leq)\) be a classical preordered set. Then \(\mu : (X, \phi_L(\leq)) \rightarrow (L, \rightarrow) \) is an \(\text{L-order-preserving function} \) if and only if \(\mu : (X, \leq) \rightarrow L \) is order-preserving.
4. Given \(\text{L-preordered sets } X, Y \), let \([X, Y]\) denote the set of \(\text{L-order-preserving functions} \) from \(X \) to \(Y \). For all \(f, g \in [X, Y] \), let

\[
[X, Y](f, g) = \bigwedge_{x \in X} Y(f(x), g(x)).
\]

Then \([X, Y]\) becomes an \(\text{L-preordered set} \).
5. For an \(\text{L-preordered set } X \), the function \([23]\)

\[
y : X \rightarrow [X^\text{op}, (L, \rightarrow)], \quad y(a)(x) = X(x, a)
\]

and the function

\[
y' : X \rightarrow [X, (L, \rightarrow)]^\text{op}, \quad y'(a)(x) = X(a, x)
\]

are both isometries.

Let \((X, R)\) be an \(\text{L-preordered set} \). Following the terminologies in [22], every \(\text{L-order-preserving function} \) \(\mu : (X, R) \rightarrow (L, \rightarrow) \) is called an upper \(\text{L-subset of } (X, R) \), and every \(\text{L-order-preserving function} \) \(\mu : (X, R^\text{op}) \rightarrow (L, \rightarrow) \) a lower \(\text{L-subset of } (X, R) \). For each \(a \in X \), \(y(a) \) is an upper \(\text{L-subset} \) (the principal upper \(\text{L-subset} \) generated by \(a \)); \(y(a) \) is a lower \(\text{L-subset} \) (the principal lower \(\text{L-subset} \) generated by \(a \)).

The following theorem asserts that the upper \(\text{L-subsets} \) in an \(\text{L-preordered set } (X, R) \) constitute a stratified \(\text{L-topology} \) on \(X \), called the Alexandrov \(\text{L-topology} \) on \((X, R) \).

Theorem 3.11 (Klavonv and Castro [18]). For a given \(\text{L-preorder } R \) on \(X \), the family \(\Gamma_L(R) \) of upper \(\text{L-subsets} \) satisfies the following properties: for all \(K \subseteq \Gamma_L(R) \), \(\mu \in \Gamma_L(R) \), and \(a \in L \),

1. Every constant \(\text{fuzzy set } X \rightarrow L \) belongs to \(\Gamma_L(R) \);
2. \(\forall K \in \Gamma_L(R); \bigvee K \in \Gamma_L(R) \);
3. \(a * \mu \in \Gamma_L(R); a \rightarrow \mu \in \Gamma_L(R) \).

If \(R \) is an \(\text{L-equivalence} \), then \(\Gamma_L(R) \) satisfies moreover

4. \(\mu \rightarrow a \in \Gamma_L(R) \).

Conversely, for a given set \(\mathcal{F} \subseteq L^X \) satisfying conditions (1)–(3), there is a unique \(\text{L-preorder } R \) such that \(\mathcal{F} = \Gamma_L(R) \). In this case, \(R(x, y) = \bigwedge_{\mu \in \mathcal{F}} \mu(x) \rightarrow \mu(y) \). Moreover, if \(\mathcal{F} \) satisfies moreover (4), then \(R \) is symmetric.

Suppose that \(f : (X, R) \rightarrow (Y, S) \) is an \(\text{L-order-preserving function} \). It is easy to verify that \(f : (X, \Gamma_L(R)) \rightarrow (Y, \Gamma_L(S)) \) is continuous. Therefore, the correspondence \((X, R) \mapsto (X, \Gamma_L(R)) \) defines a concrete functor \(\Gamma_L : \text{L-Prord} \rightarrow \text{SL-Top} \).

Proposition 3.12 (Valverde [28]). Let \(K \subseteq L^X \) be a family of functions from \(X \) to \(L \). Then \(\Omega_L(K)(x, y) = \bigwedge_{\mu \in K} \mu(x) \rightarrow \mu(y) \) is an \(\text{L-preorder on } X \), called the \(\text{L-preorder} \) determined by \(K \). Each \(\mu \in K \) is an upper \(\text{L-subset} \) in \((X, \Omega_L(K))\).
Given an L-topological space (X, τ), the L-preorder $\Omega_L(\tau)$ on X is called the \textit{specialization order} of (X, τ) [22]. We leave it to the reader to check that the correspondence $(X, \tau) \mapsto (X, \Omega_L(\tau))$ defines a concrete functor $\Omega_L : \mathbf{SL}\text{-}\mathbf{Top} \rightarrow \mathbf{L\text{-}\mathbf{Prord}}$. It is easy to check that when $L = [0, 1]$, Ω_L is exactly the functor $\Omega : \mathbf{Top} \rightarrow \mathbf{Prord}$. So, Ω_L is an extension of the functor Ω to the many valued setting.

Proposition 3.13 (Lai [22]). (Γ_L, Ω_L) is a Galois correspondence. Moreover, Ω_L is a left inverse of Γ_L.

An L-topological space (X, τ) is said to be pseudo-discrete [22] if $\lambda \rightarrow a \in \tau$ for all $\lambda \in \tau$ and $a \in L$. Then part of Theorem 3.11 can be restated as follows.

Proposition 3.14. Suppose that R is an L-preorder on X. Then R is an L-equivalence if and only if $\Gamma_L(R)$ is pseudo-discrete.

For a non-empty subset K of L^X,

$$\tau_K = \bigcap \{ \tau | \tau \text{ is a stratified } L\text{-}topology on } X \text{ with } K \subseteq \tau \}$$

is a stratified L-topology on X, called the stratified L-topology generated by K.

Proposition 3.15 (Lai [22]). Suppose that τ is an L-topology on X generated by $K \subseteq L^X$. Then for all $x, y \in X, \Omega_L(\tau)(x, y) = \bigwedge_{\mu \in K} \mu(x) \rightarrow \mu(y)$.

4. The main results

This section presents the main results in this paper about the connection between limit spaces, L-topological spaces, and L-preorders. Throughout this section, $(L, \ast, 1)$ is assumed to be a meet continuous residuated lattice if not otherwise specified.

We begin with two lemmas.

Lemma 4.1. Let (X, T) be a limit space. Every continuous function $\lambda : (X, T) \rightarrow (L, \gamma L)$ is order-preserving with respect to the specialization order \preceq_T on X.

Proof. If $x \preceq_T y$ then $\lambda(y) \rightarrow \lambda(x)$ since λ is continuous. This means that $\lambda(\lambda(x)) \preceq \bigwedge_{a \in A} \lambda(a) = \lambda(y)$ by definition of the Scott convergence structure γL. \square

Lemma 4.2. Let (X, T) be a topological space and L a meet continuous lattice. Then $f : (X, e(T)) \rightarrow (L, \gamma L)$ is continuous if and only if there is a family of open sets $\{U_s|s \in S\}$ and a subset $\{a_s|s \in S\}$ of L such that $f = \bigwedge_{s \in S} a_s \land 1_{U_s}$. Therefore, the set $\{a \land 1_{U}|a \in L, U \in T\}$ is a base for the stratified L-topology $\omega_L \circ e(T)$.

Proof. Let (X, T) be a topological space. First of all, we note that if a filter G on X converges to x in $(X, e(T))$ if and only if $\hat{G} \succeq N^\circ(x)$, where $N^\circ(x) = \{U \in T | x \in U\}$ is the set of open neighborhoods of x in (X, T). For each $x \in X$, let $\hat{N}(x) = \{A \subseteq X | \exists U \in N^\circ(x), U \subseteq A\}$. Then $\hat{N}(x)$ is the smallest filter converging to x. Therefore, $f : (X, e(T)) \rightarrow (L, \gamma L)$ is continuous if and only if $f(\hat{N}(x)) \rightarrow f(x)$ for every $x \in X$ if and only if

$$f(x) = \bigwedge_{A \in \hat{N}(x)} \bigwedge_{y \in A} f(y) = \bigwedge_{U \in N^\circ(x)} \bigwedge_{y \in U} f(y)$$

for every $x \in X$.

Sufficiency: Suppose that $f = \bigwedge_{s \in S} a_s \land 1_{U_s}$ for some family of open sets $\{U_s|s \in S\}$ and some subset $\{a_s|s \in S\}$ of L. For each $x \in X$, let $M_x = \{s \in S | x \in U_s\}$. Then

$$f(x) = \bigvee_{s \in M_x} a_s \leq \bigvee_{s \in M_x, y \in U_s} f(y) \leq \bigwedge_{U \in N^\circ(x)} \bigwedge_{y \in U} f(y),$$

where the first inequality holds because $f(y) \succeq a_s$ for any $y \in U_s$.

Proof. Suppose that \(f : (X, e(T)) \to (L, \gamma L) \) is continuous. Then for each \(x \in X \), \(f(x) \leq \bigvee_{U \in N'(x)} \bigwedge_{y \in U} f(y) \). The converse inequality \(f(x) \geq \bigvee_{U \in N'(x)} \bigwedge_{y \in U} f(y) \) is obvious. Thus, \(f(x) = \bigvee_{U \in N'(x)} \bigwedge_{y \in U} f(y) \).

For each \(U \in \mathcal{T} \), let \(a_U = \bigwedge_{y \in U} f(y) \). Then for all \(x \in X \),

\[
f(x) = \bigvee_{U \in N'(x)} \bigwedge_{y \in U} f(y) = \bigvee_{U \in N'(x)} a_U \wedge 1_U(x) = \left(\bigvee_{U \in \mathcal{T}} a_U \wedge 1_U \right)(x),
\]

where the last equality holds because \(a_U \wedge 1_U(x) = 0 \) if \(U \notin N'(x) \). Therefore, \(f = \bigvee_{U \in \mathcal{T}} a_U \wedge 1_U \).

Finally, since each function of the form \(a_U \wedge 1_U \) with \(U \) an open set is clearly a member of \(\omega_L \circ e(\mathcal{T}) \), it follows that \(\{a \wedge 1_U | a \in L, U \in \mathcal{T}\} \) is a base for \(\omega_L \circ e(\mathcal{T}) \). \(\square \)

Theorem 4.3. \(\Gamma_L \circ \phi_L = \omega_L \circ e \circ \Gamma \). That is, the following diagram commutes.

\[
\begin{array}{ccc}
\text{Prord} & \xrightarrow{\Gamma} & \text{Top} & \xrightarrow{e} & \text{Lim} \\
\phi_L \downarrow & & \downarrow \omega_L & & \\
L\text{-Prord} & \xrightarrow{\Gamma_L} & SL\text{-Top} \\
\end{array}
\]

Proof. Let \((X, \leq)\) be a preorder set. By Example 3.10(3), \(\lambda \in \Gamma_L \circ \phi_L(\leq) \) if and only if \(\lambda : (X, \leq) \to L \) is order-preserving.

For any open set \(U \) in \((X, \Gamma(\leq))\) and \(a \in L \), \(a \wedge 1_U \) is an order-preserving function since \(U \) is an upper set in \((X, \leq)\). Since every element in \(\omega_L \circ e \circ \Gamma(\leq) \) can be written as a supremum of a family of functions of the form \(a_U \wedge 1_U \) with \(U \in \mathcal{T} \) by the above lemma, we obtain that every element in \(\omega_L \circ e \circ \Gamma(\leq) \) is order-preserving. Therefore, \(\omega_L \circ e \circ \Gamma(\leq) \subseteq \Gamma_L \circ \phi_L(\leq) \).

On the other hand, suppose that \(\lambda : (X, \leq) \to L \) is order-preserving. If \(F \xrightarrow{e \circ \Gamma} x \), then \(\uparrow x \in F \) because \(\uparrow x \) is an open neighborhood (indeed, the smallest one) of \(x \) in \((X, \Gamma(\leq))\). Thus,

\[
\bigvee_{A \in F} \bigwedge_{y \in A} \lambda(y) \geq \bigwedge_{y \in \uparrow x} \lambda(y) = \lambda(x).
\]

This means that \(\lambda : (X, e \circ \gamma(\leq)) \to (L, \gamma L) \) is continuous. Therefore, \(\Gamma_L \circ \phi_L(\leq) \subseteq \omega_L \circ e \circ \Gamma(\leq) \). \(\square \)

Proposition 4.4. For every limit space \((X, T)\), \(\phi_L \circ \Theta(X, T) \leq \Omega_L \circ \omega_L(X, T) \).

Proof. For all \(x, y \in X \), we distinguish two cases. If \(\phi_L \circ \Theta(T)(x, y) = 0 \), the conclusion holds trivially. If \(\phi_L \circ \Theta(T)(x, y) = 1 \) (i.e., \(x \leq_T y \)), then for all \(\lambda \in \omega_L(T) \), \(\lambda(x) \leq \lambda(y) \) by Lemma 4.1. Therefore,

\[\Omega_L \circ \omega_L(T)(x, y) = \bigwedge_{\lambda \in \omega_L(T)} \lambda(x) = 1. \square\]

Example 4.5. The inequality \(\phi_L \circ \Theta(X, T) \leq \Omega_L \circ \omega_L(X, T) \) can be strict. Let \(L = \{0, 1\} \). Then \(\phi_L \) is the identity functor, \(\Omega_L = \Omega \) and, as observed in Remark 3.5, \(\omega_L = \mathcal{P} \). Let \((X, T)\) be the limit space in Example 3.2. The conclusion in Example 3.2 just asserts that \(\phi_L \circ \Theta(X, T) \neq \Omega_L \circ \omega_L(X, T) \).

Theorem 4.6. \(\Omega_L \circ \omega_L \circ e = \phi_L \circ \Omega \). That is, the following diagram commutes.

\[
\begin{array}{ccc}
\text{Top} & \xrightarrow{e} & \text{Lim} & \xrightarrow{\omega_L} & SL\text{-Top} \\
\Omega \downarrow & & \downarrow \Omega_L & & \\
\text{Prord} & \xrightarrow{\phi_L} & L\text{-Prord} \\
\end{array}
\]

Proof. Let \((X, T)\) be a topological space and \(\leq \) be the specialization order \(\Omega(T) \) on \(X \). By Lemma 4.2, the set \(\{a \wedge 1_U | a \in L, U \in \mathcal{T}\} \) is a base of \(\omega_L \circ e(T) \). Thus, \(\omega_L \circ e(T) \) is generated by \(\{1_U | U \in \mathcal{T}\} \).
For all $x, y \in X$, appealing to Proposition 3.15, we have that

$$\Omega_L \circ \omega_L \circ e(T)(x, y) = \bigwedge_{U \in T} 1_U(x) \to 1_U(y) = \begin{cases} 1, & x \leq y, \\ 0, & x \leq y. \end{cases}$$

Therefore, $\Omega_L \circ \omega_L \circ e(T)(x, y) = \phi_L \circ \Omega(T)(x, y)$. □

Corollary 4.7. $\Gamma \circ \sigma_L = \rho_L \circ \Gamma_L$. That is, the following diagram commutes.

$$\begin{array}{ccc}
L\text{-Prord} & \xrightarrow{\Gamma_L} & SL\text{-Top} \\
\sigma_L \downarrow & & \downarrow \rho_L \\
\text{Prord} & \xrightarrow{\Gamma} & \text{Top}
\end{array}$$

Proof. Since $\sigma_L \circ \phi_L \colon \Gamma \circ \Omega \colon \Gamma_L \circ \Omega_L$ and $\rho_L \circ \omega_L \circ e$ (Proposition 3.6), we obtain that $\Gamma \circ \sigma_L \circ \phi_L \circ \Omega$ and $\rho_L \circ \Gamma_L \circ \Omega_L \circ \omega_L \circ e$. By Theorem 4.6, $\Omega_L \circ \omega_L \circ e = \phi_L \circ \Omega$. Thus, $\Gamma \circ \sigma_L = \rho_L \circ \Gamma_L$. □

Theorem 4.8. For every stratified L-topological space (X, τ), $\Theta \circ i_L(\tau) = \psi_L \circ \Omega_L(\tau)$.

Proof. Let (X, τ) be a stratified L-topological space. For all $(x, y) \in X \times X$, we distinguish two cases.

Case 1: $(x, y) \in \Theta \circ i_L(\tau)$. By definition of $\Theta(i_L(\tau))$, we have $\hat{y} \xrightarrow{i_L(\tau)} x$. Thus, for all $\lambda \in \tau$,

$$\lambda(x) \leq \bigvee_{A \in \mathcal{F}_0} \bigwedge_{a \in A} \lambda(a) = \lambda(y).$$

Hence

$$\Omega_L(\tau)(x, y) = \bigwedge_{\lambda \in \tau} \lambda(x) \to \lambda(y) = 1.$$ Therefore, $(x, y) \in \psi_L \circ \Omega_L(\tau)$.

Case 2: $(x, y) \notin \Theta \circ i_L(\tau)$. By definition of $\Theta(i_L(\tau))$, there is some $(\mathcal{F}_0, y) \in i_L(\tau)$ such that $(\mathcal{F}_0, x) \notin i_L(\tau)$.

We claim that there is some $\lambda_0 \in \tau$ such that $\lambda_0(x) \neq \lambda_0(y)$. Otherwise, for all $\lambda \in \tau$, it holds that

$$\lambda(x) \leq \lambda(y) \leq \bigvee_{A \in \mathcal{F}_0} \bigwedge_{a \in A} \lambda(a).$$

Then, $(\mathcal{F}_0, x) \in i_L(\tau)$ by definition of $i_L(\tau)$, contradictory to the assumption. Thus,

$$\Omega_L(\tau)(x, y) = \bigwedge_{\lambda \in \tau} \lambda(x) \to \lambda(y) \leq \lambda_0(x) \to \lambda_0(y) < 1.$$ Therefore, $(x, y) \notin \psi_L \circ \Omega_L(\tau)$.

A combination of the two cases yields that $\Theta \circ i_L(\tau) = \psi_L \circ \Omega_L(\tau)$. □

Proposition 4.9. (1) $e \circ \Gamma \circ \psi_L \subseteq i_L \circ \Gamma_L$; (2) $\sigma_L \circ \Omega_L \leq \Omega \circ \rho_L$.

Proof. (1) Let R be an L-preorder on X. It is easy to check that if $R(x, y) = 1$ then $\lambda(x) \leq \lambda(y)$ for all $\lambda \in \Gamma_L(R)$.

For any $x \in X$, the principal upper set generated by x w.r.t the preorder $\psi_L(R)$ is given by $\uparrow x = \{y \mid R(x, y) = 1\}$. Thus, if $(\mathcal{F}, x) \in e \circ \Gamma \circ \psi_L(R)$, then $\uparrow x \in \mathcal{F}$ by definition of $\Gamma \circ \psi_L(R)$. Therefore, for any $\lambda \in \Gamma_L(R)$,

$$\bigvee_{A \in \mathcal{F}} \bigwedge_{y \in \uparrow x} \lambda(y) \geq \bigwedge_{y \in \uparrow x} \lambda(y) \geq \lambda(x).$$

Then we obtain that $(\mathcal{F}, x) \in i_L \circ \Gamma_L(R)$ by definition.
The inequality can be strict since the right side is a limit space in general, but the left side is always a topological limit space.

(2) Let \(\tau \) be a stratified \(L \)-topology on \(X \). Denote the preorders \(\Omega \circ \rho_L(\tau) \) and \(\sigma_L \circ \Omega_L(\tau) \) by \(\leq \) and \(\leq' \), respectively. First, note that for any \(x, y \in X \), if \(\Omega_L(\tau)(x, y) = \bigwedge_{\lambda \in \mathcal{L}} (\hat{\lambda}(x) \rightarrow \hat{\lambda}(y)) > 0 \), then for any \(U \in \rho_L(\tau), x \in U \) implies that \(y \in U \). Therefore, \(\Omega_L(\tau)(x, y) > 0 \) implies that \(x \leq y \).

Suppose that \(x \leq y \). By definition of \(\sigma_L(\Omega_L(\tau)) \) (Proposition 3.9), there exist \(x_0, \ldots, x_n \in X \) such that

\[
x_0 = x, \quad x_n = y, \quad \Omega_L(\tau)(x_i, x_{i+1}) > 0, \quad i = 0, 1, \ldots, n - 1.
\]

Then \(x_i \leq x_{i+1} \) for each \(i \leq n - 1 \), whence \(x \leq y \) by transitivity.

The inequality can be strict as shown in [22], Example 4.21(1). \(\square \)

In the following we present another description of the limit structure \(\iota_L \circ \Gamma_L(R) \) for an \(L \)-preordered set \((X, R) \). Let \(T(R) \) be the limit structure on \(X \) such that the source

\[
\{ y'(a) : (X, T(R)) \rightarrow (L, \gamma_L) \}_{a \in X}
\]

is initial in \(\text{Lim} \), where \(\gamma_L \) is the Scott convergence structure on \(L \) and \(y'(a) : (X, R) \rightarrow (L, \rightarrow) \) is the \(L \)-order-preserving function given by \(y'(a)(x) = R(a, x) \) (also see Example 3.10(5)).

Proposition 4.10. For every \(L \)-preordered set \((X, R) \), \(T(R) = \iota_L \circ \Gamma_L(R) \). Therefore, the correspondence \((X, R) \mapsto (X, T(R)) \) defines a concrete functor \(\iota_L : \text{L-Prord} \rightarrow \text{Lim} \), which is equal to the composition \(\iota_L \circ \Gamma_L \).

Proof. For each \(a \in X \), \(y'(a) : (X, \iota_L \circ \Gamma_L(R)) \rightarrow (L, \gamma_L) \) is continuous. Therefore, \((\mathcal{F}, x) \in \iota_L(\Gamma_L(R)) \) implies that \((\mathcal{F}, x) \in T(R) \), whence, \(\iota_L(\Gamma_L(R)) \subseteq T(R) \).

On the other hand, if \((\mathcal{F}, x) \in T(R) \), then for every \(a \in X \),

\[
R(a, x) = y'(a)(x) = \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} y'(a)(z) = \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(a, z).
\]

Letting \(a = x \) we obtain that

\[
1 = R(x, x) = \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(x, z).
\]

Then, for any \(\lambda \in \Gamma_L(R) \),

\[
\lambda(x) \rightarrow \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} \lambda(z) \supseteq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} \lambda(x) \supseteq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(x, z) \supseteq 1,
\]

whence

\[
\lambda(x) \leq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} \lambda(z).
\]

which implies that \((\mathcal{F}, x) \in \iota_L(\Gamma_L(R)) \). \(\square \)

Example 4.11. If \(\leq \) is a classical preorder on \(X \), then \(T(\phi_L(\leq)) \) is equal to \(e \circ \Gamma(\leq) \) (hence, topological). In fact, by definition, \((\mathcal{F}, x) \in T(\phi_L(\leq)) \) if and only if for all \(a \in X \),

\[
\phi_L(\leq)(a, x) = y'(a)(x) = \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} y'(a)(z) = \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} \phi_L(\leq)(a, z).
\]

Since

\[
\phi_L(\leq)(a, x) = \begin{cases} 0, & a \not\leq x, \\ 1, & a \leq x, \end{cases}
\]

we obtain that
\[(\mathcal{F}, x) \in T(\phi_L(\leq)) \Leftrightarrow \forall a \leq x, 1 = \phi_L(\leq)(a, x) \leq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} \phi_L(\leq)(a, z)\]
\[\Leftrightarrow \forall a \leq x, \exists A \in \mathcal{F} \text{ such that } A \subseteq a \]
\[\Leftrightarrow \uparrow x \in \mathcal{F} \]
\[\Leftrightarrow (\mathcal{F}, x) \in e \circ I(\leq),\]
where the last equivalence holds because \(\uparrow x\) is the smallest neighborhood of \(x\) in \((X, e \circ I(\leq))\).

If \(L\) is a continuous lattice, by Proposition 3.4, \((X, T(R))\) is a topological limit space, that is \(T(R) = e(T)\) for some topology \(T\) on \(X\). In the following, we present a simple description of this topology \(T\). First, we recall some properties of the way below relation \(\ll\) on a continuous lattice [9]: (i) \(x \ll y \Rightarrow x \leq y\); (ii) \(x \ll y, y \ll z \Rightarrow x \ll z\); and (iii) for a directed set \(D\), \(x \ll z \leq \sup D\) implies \(x \ll d\) for some \(d \in D\).

Proposition 4.12. Suppose that \(L\) is a continuous lattice and that \(R\) is an \(L\)-preorder on \(X\). For any \(x \in X, r \in L \setminus \{0\}\), let \(B(x, r) = \{y | r \ll R(x, y)\}\). Then \([B(x, r)|x \in X, r \in L \setminus \{0\}]\) is a base for some topology \(T\) on \(X\) with \(T(R) = e(T)\).

Proof. That \([B(x, r) : x \in X, r \in L \setminus \{0\}]\) is a base for some topology \(T\) on \(X\) was proved in [22] in the case \(L\) is the unit interval \([0, 1]\). The proof therein is valid for a continuous lattice by replacing the strictly smaller-than relation \(<\) on \([0, 1]\) by the way below relation \(\ll\) on \(L\). So, we need only prove that \(T(R) = e(T)\).

We note firstly that for any \(x \in X, N(x) = \{B(a, r)|x \in B(a, r)\}\) is a neighborhood base of \(x\) w.r.t. the topology \(T\), hence, \(\mathcal{F}\) converges to \(x\) with respect to \(e(T)\) if and only if \(N(x) \subseteq \mathcal{F}\).

Assume that \((\mathcal{F}, x) \in T(R)\) and \((B(a, r) \in N(x)\). Because \(r \ll R(a, x)\) and
\[y'(a)(x) = R(a, x) \leq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(a, z)\]
by definition of \(T(R)\), there is some \(A \in \mathcal{F}\) such that \(r \ll \bigwedge_{z \in A} R(a, z)\). Therefore \(A \subseteq B(a, r)\), whence \(B(a, r) \in \mathcal{F}\) and \(N(x) \subseteq \mathcal{F}\). This proves that \(T(R) \subseteq e(T)\).

What remains is to show that \(e(T) \subseteq T(R)\). It suffices to show that if \((\mathcal{F}, x) \in e(T)\), then for all \(a \in X\) it holds that
\[R(a, x) = y'(a)(x) \leq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(a, z) = y'(a)(z) \leq \bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(a, z)\]
This inequality holds trivially if \(R(a, x) = 0\). Suppose that \(R(a, x) = r > 0\). Then, \(x \in B(a, s)\) for all \(s \ll r\). Thus, \(B(a, s) \in N(x) \subseteq \mathcal{F}\). Therefore,
\[\bigvee_{Z \in \mathcal{F}} \bigwedge_{z \in Z} R(a, z) \geq \bigvee_{s \ll r} \bigwedge_{z \in B(a, s)} R(a, z) \geq \bigvee_{s \ll r} s = r = R(a, x),\]
as desired. \(\square\)

Definition 4.13 (Lowen [24]). A limit space \((X, T)\) is called symmetric if for any \(x, y \in X, x\) converges to \(y\) implies \(x\) and \(y\) have the same convergent filters.

The following proposition shows that the functor \(T = t_L \circ I_L\) preserves symmetry in the sense that if \((X, R)\) is an \(L\)-equivalence, then \((X, T(R))\) is a symmetric limit space.

Proposition 4.14. Let \(R\) be an \(L\)-preorder on \(X\). Then \((X, T(R))\) is symmetric if and only if the kernel of \(R\), \(\ker(R) = \{(x, y) \in X \times X | R(x, y) = 1\}\), is an equivalence relation on \(X\).

Proof. Necessity: Suppose that \(\hat{x} \rightarrow y\). By definition of \(T(R)\), for all \(a \in X\),
\[y'(a)(y) = R(a, y) \leq \bigvee_{A \in \hat{x} \subseteq \mathcal{A}} \bigwedge_{z \in Z} y'(a)(z) = R(a, x),\]
Letting \(a = y \) we obtain that \(R(y, x) = 1 \). Hence \(R(x, y) = 1 \) by assumption. Consequently, \(R(a, x) = R(a, y) \) for every \(a \in X \) by transitivity of \(R \). If \(\mathcal{F} \xrightarrow{T(R)} x \), then

\[
R(a, y) = R(a, x) \leq \bigvee_{A \in \mathcal{F}} \bigwedge_{z \in A} y'(a)(z),
\]

for all \(a \in X \). Thus, \(\mathcal{F} \xrightarrow{T(R)} y \). Similarly, one can check that \(\mathcal{F} \xrightarrow{T(R)} y \) implies that \(\mathcal{F} \xrightarrow{T(R)} x \). Therefore, \(x \) and \(y \) have the same convergent filters.

Sufficiency: From the proof of the necessity part, we see that \(x \xrightarrow{T(R)} y \) if and only if \(R(y, x) = 1 \). If \(T(R) \) is symmetric, then \(R(x, y) = 1 \) if and only if \(R(y, x) = 1 \) if and only if \(\text{ker}(R) \) is symmetric. Since \(\text{ker}(R) \) is clearly reflexive and transitive, it is therefore an equivalence relation. \(\square \)

Example 4.15. Suppose that \(L \) has at least three elements. Take \(a \in L \setminus \{0, 1\} \). Let \(X = \{x, y\} \), \(R(x, y) = a \), \(R(y, x) = 0 \), \(R(x, x) = R(y, y) = 1 \). Then \(R \) is an \(L \)-preorder on \(X \) which is not symmetric, but \(T(R) \) is symmetric by the above proposition. Thus, the functor \(T \) does not reflect symmetry in general.

To summarize the results in this paper, for a meet continuous residuated lattice \((L, \ast, 1)\), consider the following diagrams:

\[
\begin{array}{ccc}
\text{Lim} & \xrightarrow{e \circ \Gamma} & \text{Prord} \\
\omega_L & \xrightarrow{\Theta} & \phi_L \\
\downarrow{L\text{-Top}} & & \downarrow{L\text{-Prord}} \\
\Omega_L & \xrightarrow{\theta} & \psi_L
\end{array}
\quad
\begin{array}{ccc}
\text{Top} & \xrightarrow{\Gamma} & \text{Prord} \\
\omega_L \circ e & \xrightarrow{\rho_L} & \phi_L \\
\downarrow{L\text{-Top}} & & \downarrow{L\text{-Prord}} \\
\Omega_L & \xrightarrow{\sigma_L} & \psi_L
\end{array}
\]

- The arrow \(\Theta \) is not a functor; all the other arrows are functors.
- Adjunctions: \(\omega_L + \downarrow L \); \(\Gamma_L + \downarrow \Omega_L \); \(\phi_L + \downarrow \psi_L \); \(\rho_L + \downarrow \omega_L \circ e \); \(\sigma_L + \downarrow \phi_L \); and \(\Gamma + \downarrow \Omega \).
- If \(L = \{0, 1\} \), then the adjunctions \(\Gamma_L + \downarrow \Omega_L \) and \(\omega_L + \downarrow L \) are exactly the adjunctions \(\Gamma + \downarrow \Omega \) and \(\rho_L + \downarrow e \), respectively.
- For the left square: \(\Gamma_L \circ \phi_L = \omega_L \circ e \circ \Gamma \); \(\Theta \circ \downarrow L = \psi_L \circ \downarrow \Omega_L \); \(\phi_L \circ \Theta \leq \downarrow \omega_L \circ e \); \(e \circ \Gamma \circ \psi_L \leq \downarrow \Omega_L \circ \downarrow L \).
- For the right square: \(\Gamma_L \circ \phi_L = \omega_L \circ e \circ \Gamma \); \(\Gamma \circ \sigma_L = \rho_L \circ \Gamma_L \); \(\phi_L \circ \Omega = \Omega_L \circ \omega_L \circ e \); and \(\Omega \circ \rho_L \geq \sigma_L \circ \Omega_L \).

Acknowledgment

The authors thank Dr. H. Lai for discussions during the preparation of this paper. The authors thank the referees for their most valuable suggestions.

References