Requirements Interaction and Conflicts: A Rough Set Approach

Sheela Ramanna
Department of Applied Computer Science
University of Winnipeg
Winnipeg, Manitoba R3B 2E9, Canada
Email: s.ramanna@uwinnipeg.ca

Andrzej Skowron
Institute of Mathematics
Warsaw University
Banacha 2, 02-097 Warsaw, Poland
Email: skowron@mimuw.edu.pl

Abstract—Rough set theory and approximation spaces introduced by Zdzisław Pawlak provide frameworks for modeling interaction amongst requirements. These interactions can be viewed as conflicts. The problem here is how to model a combination of complex situations where there are social conflicts (due to differing stakeholder views) and technical conflicts (due to inconsistent requirements). These two sources of conflicts are intertwined. That is, inconsistent requirements often reflect the inconsistent need of stakeholders. The solution consists of a unified requirements interaction framework that simplifies the representation of technical (requirements inconsistency) and social conflicts (stakeholder views). The solution makes it possible to represent conflict degrees and trace dependency information. An illustrative example of such a framework is presented. Reasoning about conflict dynamics is made possible by risk patterns.

I. INTRODUCTION

Requirements Engineering provides the appropriate mechanism for understanding what the customer wants, analyzing the need, negotiating a reasonable solution, specifying the solution unambiguously, validating the specification, and managing the requirements as they are transformed into an operational system [24]. Consequently, requirements engineering research spans a wide range topics, but a topic of increasing importance is the analysis and management of dependencies (relationships) among requirements also known as Requirements Interaction Management (RIM) [23]. Understanding and representing requirements conflict is one of the objectives of RIM. Rough set theory and approximation spaces introduced by Zdzisław Pawlak provide frameworks for modeling socio-technical interaction amongst requirements. These interactions can be viewed as conflicts. In particular, development of complex software systems involves a collaborative process of requirements identification through negotiation. Conflicts arising during this negotiation process are especially acute due to the nature of the intense collaboration between project stakeholders. The problem here is how to model a combination of complex situations as a result of requirements interaction where there are social conflicts (due to differing stakeholder views) and technical conflicts (due to inconsistent requirements). The solution is a rough-set based requirements interaction framework that facilitates assessment of conflict dynamics as a means of achieving consensus regarding the scope of system functionality that needs to be developed. The basic architecture for requirements interaction framework is shown in Fig. 1.

This paper is organized as follows. In Sect. II, we introduce the architecture for a requirements interaction framework which unifies technical and social conflicts and describe the steps for setting up the model. We present the formal model for social conflicts in Sect. III. This is followed by a discussion of a model for technical conflicts in Sect. IV. We introduce a socio-technical model in the context of an example for a home lighting automation system in Sect. V. Conflict dynamics assessment with discernibility degree and risk patterns are illustrated in Sect. VI. A brief discussion of related works is given in Sect. VII.
II. REQUIREMENTS INTERACTION FRAMEWORK

In Fig. 1, the first step is to identify requirements R and also to decide on parameters V. The parameters form a checklist of questions that need to be answered as a part of the review of each requirement [14]. These are: level of effort, importance of a requirement, stability, risk, testability to name a few. The requirements and parameters (also called issues) become input to the social conflict model. The basic concepts of conflict theory upon which the social conflict model is built is due to [9]. This model represents subjective opinions about issues (parameters) of stakeholders of each requirement in the form of votes. As a result, one can compute degree of conflict amongst stakeholders, explore coalitions and measure discernibility. In other words, the social model encapsulates conflict situations and facilitates win agreements about requirements.

Thus, the second step involves computation of a conflict degree d for each requirement. The third step involves the determination of degree of overlap between requirements based on trace dependency information. In this paper, we assume that this information is obtained by an requirements management tools such as those listed in [1]. In theory, steps 2 and 3 can be performed in parallel. However, in practice, it is better to get agreements between stakeholders about the specific requirements before exploring inconsistencies between them. The technical model in (step four) captures the degree of overlap, type of requirements and the extent to which requirements conflict or cooperate. At this time, this model is used as a look-up table. The output of step four is the requirements interaction degree ri. The socio-technical model is then constructed which is a decision table [11] and elaborated in [10], [12], [13]. The construction of the decision table in step five is rather involved. In addition to d and ri, project teams need to estimate the values for A shown in Fig. 1. The socio-technical model is comprehensive in that it takes into account objective and subjective estimates. In step six, conflict dynamics is assessed. In this paper, the focus is on an analysis of the deviations to conflict degrees using risk patterns. A distance function used to derive risk patterns represents an acceptable the level of deviation (risk) for a project.

III. SOCIAL CONFLICT MODEL

In a rough set approach to conflict analysis, an information system is represented by a table containing rows labeled by objects (agents), columns by attributes (issues). The entries of the table are values of attributes (votes), which are uniquely assigned to each agent and attribute, i.e., each entry corresponds to a row x and column a representing opinion of an agent x about issue a. Formally, an information system can be defined as a pair $S = (U, A)$, where U is a nonempty, finite set called the universe (elements of U are called objects) and A is a nonempty, finite set of attributes [11]. Every attribute $a \in A$ is a partial function $a : U \rightarrow V_a$, where V_a is the set of values of a, called the domain of a. Elements of V_a will be referred to as opinions, and $a(x)$ is the opinion of an agent x about issue a. Although the definition given above is general, for conflict analysis we will need its simplified version, where the domain of each attribute is restricted to three values only, i.e. $V_a = \{-1, 0, 1\}$, for every a, meaning disagreement, neutral and agreement respectively. For the sake of simplicity, we will assume $V_a = \{-, +\}$. Every information system with the restriction mentioned above will be referred to as a situation.

We now observe that any conflict situation $CS = (Ag, V)$ can be treated as an information system where $Ag = \{ag_1, \ldots, ag_n\}$ and $V = \{v_1, \ldots, v_k\}$ with the set of objects Ag (agents) and the set V of attributes (issues). A conflict degree $Con(CS)$ of the conflict situation $CS = (Ag, v)$ is defined by

$$ Con(CS) = \frac{\sum_{(ag, ag') \in Ag^2} |\phi_v(ag, ag')|}{2^n - 1} $$

(1)

where $n = Card(Ag)$. For a more general conflict situation $CS = (Ag, V)$ where $V = \{v_1, \ldots, v_k\}$ is a finite set of voting functions each for a different issues the conflict degree in CS (tension generated by V) can be defined by (2).

$$ Con(CS) = \frac{\sum_{i=1}^k Con(CS_i)}{k} $$

(2)

In the social conflicts model, $\delta_r = Con(CS)$ for any $CS = (Ag, V)$ for each $r \in R$. That is, there is a decision for each requirement. As a result, the universe Ag will now consist of SH(set of stakeholders) and the voting function $v : SH \rightarrow \{-1, 0, 1\}$, which gives a number representing the voting result about some issue about requirements under negotiation. Formally a social conflict model is $SCM = (SH, V)$ where $SH = \{sh_1, \ldots, sh_n\}$ and $V = \{v_1, \ldots, v_k\}$ where V denotes a finite set of voting functions for scope negotiation parameters. Note the notation V has been used interchangeably (for scope negotiation parameters) in Fig. 1 as well as for voting functions. The conflict situation can now be interpreted as opinions held by two or more stakeholders about requirements that cause an inconsistency. The model for social conflicts has been used to achieve consensus on the high-level requirements (for details, see [15]).

IV. TECHNICAL CONFLICT MODEL

Technical conflicts arise due to contradictory specifications of requirements. Requirements conflict with each other when they make contradictory statements about common software attributes, and they cooperate when they mutually enforce such attributes [4]. These software attributes are generally referred to, as persistent or non-functional attributes and include quality attributes such as efficiency, reliability, scalability, usability, security to name a few. Formally, a technical conflict model is a decision system defined as $TCM = (U, B, ri)$, where U is a nonempty, finite set called the universe (elements of U are called requirements) and B is a nonempty, finite set of conflict attributes and ri represents requirement interaction degree with the restriction $B = \{-, +\}$.
CM is designed to capture information from requirements traceability. Requirements traceability involves defining and maintaining relationships with artifacts created as a part of a system's development such as architectural designs, requirements, source code to name a few. In this paper, we restrict the artifact information to other requirements as an aid to identifying conflicting (or cooperating) requirements [3]. The exemplary domain for degree of overlap and conflict degrees are due to [4]. In this paper, we assume that an automated requirements traceability tool makes it possible to automatically extract i) conflicts and cooperation information amongst requirements and ii) trace dependencies. The degree of overlap between requirements and the conflict degrees are to a large extent manually assessed. With TCM one can assess requirements interaction r_i, for each $r \in R$.

V. ILLUSTRATION: SOCIO-TECHNICAL MODEL

In this section, we will illustrate the construction of a socio-technical model with a set of detailed requirements for a single high-level requirement (R1- Custom Lighting Scenes) for a home lighting automation system (HLAS) described in [6]. A complete example of the problem of achieving agreement on high-level system requirements for a home lighting automation system (HLAS) described in [6] can be found in [15]. Assume that R1 includes the following specifications (objects):

- $r_{1.1}$ - ability to control up to a maximum of 20 custom lighting scenes,
- $r_{1.2}$ - each scene provides a preset level of illumination within 5 seconds for each lighting bank,
- $r_{1.3}$ - maximum range of a scene is 20 meters,
- $r_{1.4}$ - activated using Control Switch only,
- $r_{1.5}$ - activated within 3 seconds using Central Control Unit,
- $r_{1.6}$ - Ability to control an additional 2 lighting scenes in the yard.

We consider the following negotiation parameters V with the domain for each parameter as follows:

- $Effort$ which is a rough estimate of development effort (High, Medium, Low),
- $Importance$ which determines whether a requirement is essential to the project (High, Medium, Low),
- $Stability$ of a requirement which indicates its volatility (Yes, Perhaps, No),
- $Risk$ which indicates whether the requirement is technically achievable (High, Medium, Low),
- $Testability$ indicating whether a requirement is testable (Yes, No).

Table I represents the Socio-Technical Model with two decision attributes d and ri representing the sources for the two conflicts.

<table>
<thead>
<tr>
<th>Requirement r1.1 - SOCIAL CONFLICT MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>sh_1</td>
</tr>
<tr>
<td>sh_2</td>
</tr>
<tr>
<td>sh_3</td>
</tr>
<tr>
<td>sh_4</td>
</tr>
<tr>
<td>sh_5</td>
</tr>
</tbody>
</table>

Table III represents a TCM for requirement R1. The table is meant to give the reader an illustration of a conflict situation for just for individual requirement r1.1 and for a subset of negotiation parameters V. We can now compute the conflict degree for $CS_{r_{1.1}} = (SH, V)$ using Eqn. 2 where $V = \{Priority, Effort, Risk\}$, $Con(CS_{r_{1.1}}) = 0.22$ with $Con((SH, Priority)) = 0$, $Con((SH, Effort)) = 0.33$ and $Con((SH, Risk)) = 0.33$. Note that + indicates the highest level of support, − indicates the lowest level of support and 0 indicates the intermediate level of support. Therefore, for the issue $Priority$, + means Critical, − means Useful and 0 means Important. Voting for the remaining requirements $r_{1.2} \ldots r_{1.6}$ is performed in a similar manner.
and is a worst best-case scenario. In practice, one must take
into account the degree of overlap between requirements and
the type of requirement since it has a direct bearing on the
degree of conflict or cooperation. Trace dependencies based
on scenarios and observations are used to arrive at the degree
of overlap [3]. Table III in its current form is used as a look-up
table since degree of overlap and the determination of degree
of conflict are assessed in a semi-automated manner.

TABLE III

<table>
<thead>
<tr>
<th>Technical Conflict Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>r1.1</td>
</tr>
<tr>
<td>r1.2</td>
</tr>
<tr>
<td>r1.3</td>
</tr>
<tr>
<td>r1.4</td>
</tr>
<tr>
<td>r1.5</td>
</tr>
<tr>
<td>r1.6</td>
</tr>
</tbody>
</table>

VI. CONFLICT DYNAMICS ASSESSMENT

A. Discernibility Degree

The discernibility degree between agents ag and ag′ in CS
can be defined by (3).

\[disc_{CS}(ag, ag′) = \sum_{i \in N} \phi_i(\{ag, ag′\}) \cdot \frac{|\phi_i(\{ag, ag′\})|}{k}, \]

where ag, ag′ ∈ Ag. Now, one can consider reducts of the
SCM CS relative to the discernibility degree defined by
disc_{CS}. For example, one can consider agents ag, ag′ as
discernible if

\[disc_{CS}(ag, ag′) \geq tr, \]

where tr is a given threshold. Any reduct R ⊆ V of CS is
a minimal set of voting functions preserving all discernibility
in voting between agents that are at least equal to tr. All
every voting functions from V − R are dispensable with respect to
preserving such discernibility between objects. In an analogous
way, one can consider reducts of the information system
CS\,^T with the universe of objects equal to \{v_1, \ldots, v_k\} and
attributes defined by agents and voting functions by ag(v) =
v(\{ag\}) for ag ∈ Ag and v ∈ V. The discernibility between
every voting function can be defined, e.g., by (4).

\[disc_{CS}(v, v′) = \|\text{Con}(CS_\,^T) - \text{Con}(CS_\,^T)\|, \]

which makes it possible to measure the difference between
every voting functions v and v′, respectively. Any reduct R of
CS\,^T is a minimal set of agents that preserves the differences
between voting functions that are at least equal to a given threshold tr. For example, one can observe

from Table II that parameters priority and effort are 0.35-
indiscernible since disc_{CS}(v, v′) = 0.33. In practice, measuring disc_{CS}(ag, ag′) and/or disc_{CS}(v, v′) could be very
useful. In particular, if the stakeholder group is rather large,
this measure can have a beneficial effect of shrinking the group
size.

B. Risk patterns

Risk patterns are defined by specific reducts (and their approximations) of the socio-technical model. In this section, we assume that the distance between conflict degrees is defined by equation (4).

Now, one can consider reducts of this decision table relative
to a fixed distance \(\delta \) between decision values. Such reducts are
called the distance reducts [22]. Let \(DT = (U, A, d) \) be a
(consistent) decision table [11] and let \(\delta \) be a distance function
between decisions from \(V_d \). Any minimal set \(B \subseteq A \) satisfying
condition (5).

\[\delta(d(x, d(y)) \geq tr \land \non(xIND(A)y) \rightarrow \non(xIND(B)y) \]

where \(IND(A), IND(B) \) are the indiscernibility relations
relative to \(A, B \) respectively [11] and \(tr \) is a given threshold
is called \((d, tr) \)-reduct of \(DT \).

One can use an approach presented in [16] and define
modified discernibility reducts making it possible to compute
such reducts using Boolean reasoning method. Any such
reduct \(B \) defines a set of risk patterns. They are obtained by
taking the values of attributes from \(B \) on any object \(x \) from
\(DT \), i.e.,

\[\bigwedge_{a \in B} (a = a(x)). \]

From the distance reduct definition, the deviation of the
decision on the set of objects satisfying formula (6) in \(DT \);
that is, on the set (7).

\[|| \bigwedge_{a \in B} (a = a(x)) ||_{DT} = \{y \in U : a(y) = a(x) \forall a \in B\}, \]

is at most \(tr \). Assume that requirement interaction \(ri \in [0, 1] \)
instead of \(ri \in \{SC, WC, VW, NC\} \), in other words, the
team decides to use numbers (finer granularity) to represent
technical conflict degree rather than levels. Table I can be rewritten as Table IV.
For example, if we assume $tr = 0.3$, we obtain the following discernibility function for the distance reduces for the socio-technical decision table represented in Table IV (for simplicity, we consider only the decision d):

$$\delta(S \vee R) \wedge (E \vee S).$$

Hence, we obtain two reducts $\{S\}$ and $\{E, R\}$. One can see that the deviation of the social conflict degree d on the indiscernibility classes defined by $\{S\}$ or $\{E, R\}$ is at most 0.24 and 0.22, respectively. However, if we exclude certain conditions (team negotiation parameters) the deviation increases, e.g., for the indiscernibility class defined by E and $r1.1$, the deviation is 0.67 and for the indiscernibility class defined by R and $r1.1$ is 0.44. However, the distance in technical conflict degree r_i on indiscernibility classes defined by $\{S\}$ or $\{E, R\}$ is at most 0.15. Again for the indiscernibility class defined by E and $r1.1$, the deviation is 0.2 and for the indiscernibility class defined by R and $r1.1$ is 0.65. So there is considerable variation in deviations between social and technical conflict degrees. The distance reduces can be generalized by adding a requirement that the reduced set of attributes should not only preserve the discernibility between objects but to preserve it to a degree (at least equal to a given threshold). In this case one can use reducts proposed in [17].

One can analyze the dynamics of conflict degree changes by dropping conditions from defined risk patterns. Excluding certain conditions may cause small changes to the deviation of decisions, while excluding other conditions can lead to a substantial increase in the decision deviation. In other words, different sets of issues can lead to differing deviations in social and technical conflict degrees.

VII. RELATED WORKS

Basic ideas of conflict theory in the context of rough sets are due to [9]. Investigations about conflicts and groups of agents were presented in [18]. Recent research with approximate reasoning about vague concepts in conflict resolution and negotiations between agents (information sources) [7, 5, 4], requirements negotiation decision model [1], trace-dependency for identifying conflicts and cooperation among requirements [4], requirements interaction management [23] provide a basis for comparison of the proposed approach and also points to the usefulness of a unified framework for software requirement conflict analysis and negotiation. Inconsistent requirements (technical conflicts) using classifiers based on rough sets can be found in [8]. Central to this research is the notion that a conflict relation can be viewed as a special kind of discernibility relation. The relationships between the approach to conflicts and information systems as well as rough sets are illustrated in [15], [19], [20], [21].

VIII. CONCLUSION

This paper introduces a unified framework and an architecture for a socio-technical conflict model based on rough sets for requirements interaction which encapsulates both social conflicts (stakeholder viewpoints) and technical conflicts (requirements interaction). The unified framework makes it possible to represent requirements (both functional and non-functional) and their attributes, identify technical conflicts and coalitions (cooperation) and incorporate trace dependency information. The proposed research points to a means of simplifying the representation of technical and social conflicts. Conflict dynamics using risk patterns where one can measure deviations of the conflict degree amongst social as well as technical viewpoints has been introduced. This is achieved with distance reduces extracted from conflict data using Boolean reasoning.

ACKNOWLEDGMENTS

The research of Andrzej Skowron and Sheela Ramanna is supported by grant 3 T11C 002 26 from the Ministry of Scientific Research and Information Technology of the Republic of Poland and NSERC Canada grant 194376, respectively.

REFERENCES

