
Compressing Integers for Fast
File Access

Benjamin Tripp
COSI 175a: Data Compression

October 23, 2006

Hugh E. Williams
Justin Zobel

Introduction

● Many data processing applications depend
on access to integer sets of data, such as in
scientific and financial data

● Compression schemes allow for faster
retrieval of stored text in document
databases, since computational cost of
decompressing can be offset by reductions in
disk seeking and transfer costs

● This paper set out to see if similar gains
could are possible with integer sets of data

● Experimented using multiple compression
technique: Elias gamma and delta codes,
and Golomb codes, and variable-byte

Variable-Byte Coding

● 7 bits in each byte are used to code an
integer, and the last bit is a zero to indicate
short, or a 1 to indicate there are more digits

● Useful for storing small data sets, or with
data sets where the structure of data is
unknown and other coding techniques
cannot be selectively applied

● Variable-Byte coding requires few CPU
operations to decode

Elias Gamma Code

● A positive integer x is represented by 1 +
floor(log2 x) in unary (which is floor(log2 x) 0
bits followed by a 1 bit) followed by the binary
representation of x without its most
significant bit

● Efficient for small integers, but not suited to
large integers

Elias Gamma Code (cont.)

● Example: 9 is represented as 0001001, since
1 + floor(log2 9) = 4, or 0001 in unary and 9 is
001 in binary with the most significant bit
removed.

Elias Delta Code

● For an integer x, a delta codes stores the
gamma code representation of 1 + log2 x,
followed by the binary representation of x
without the most significant bit

● Example: 9 is represented 00100001, since
the Gamma code of 1 + log2 x is 00100 and
9 is 001 in binary with the most significant
bit removed

Golomb Codes

● Compression uses a parameter k in
algorithm

● Parameter k must be calculated and often
stored with each array coded integers. The
choice k has a significant impact on the
compression

Golomb Codes (cont.)

● A positive integer v is represented in two
parts:

− First is a unary representation of the quotient q =
floor((v-1)/k) +1

− Second is a binary representation of the
remainder r = v – q * k -1

Comparing Sizes

Code lengths in bits of Elias gamma and delta codes, a Golomb code
with k = 10, and variable-byte integer codes for integers in the range

1 to around 1 million

Examples

Test Data

● WEATHER: A collection of weather station
measurements

● TEMPS: Smaller temperature data set from
single weather station

● MAP: Elevation levels for all points on a land
contour map

● LANDSAT: Frequency spectrum of layered
satellite data

● PRIME: Collection of the first one million
prime numbers

● VECTOR: Collection of sorted integer arrays
from file indexes

Selected compression
● More efficient representation is possible by

selectively applying variable-bit codes to the
VECTOR, TEMPS, and PRIME collections.

● VECTOR: Use separate local Golomb
parameters for each list of document
identifiers and word positions, and gamma
codes for storing counts of identifiers in each
list

● TEMPS: Use two different Golomb
parameters for time values and for
temperature values

Compression Performance

Compression performance of integer coding schemes, in bits per
integer. The first line shows the size of each data set.

Sequential Retrieval

Sequential stream retrieval performance of integer coding schemes,
in megabytes per second. In each case data is retrieved from disk

and, in all bu the first case, decompressed.

Random Access

● For random access a separate file of offsets
for each collection

● Each offset represents a file position in the
collection that is the begging of a block of
1,000 integers

● Report the speed of randomly seeking to
10% of the offsets in each collection and
retrieving blocks of 1,00 integers at each
offset

Random Retrieval

Random-access retrieval performance of integer coding schemes, in
megabytes per second. In each case data is retrieved from disk and,

in all but the first case, decompressed.

Conclusion

● Storing integers in compressed form
improves the speed of disk retrieval for both
sequential and random access to files.

● Best performance is achieved by selecting a
compression scheme that specific to the
data.

● Disk retrieval costs are reduced by
compression since the cost of retrieving a
compressed representation from the disk and
the CPU cost of decompressing is less than
just retrieving an uncompressed
representation.

