Check for updates

OPEN ACCESS

EDITED BY Yusufjon Gafforov, Academy of Sciences Republic of Uzbekistan (UZAS). Uzbekistan

REVIEWED BY

Saowaluck Tibpromma, Qujing Normal University, China Lei Su, Chinese Academy of Medical Sciences and Peking Union Medical College, China

*CORRESPONDENCE Nakarin Suwannarach I suwan_461@hotmail.com

RECEIVED 03 July 2023 ACCEPTED 01 August 2023 PUBLISHED 25 August 2023

CITATION

Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S and Suwannarach N (2023) Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family *Herpotrichiellaceae*. *Front. Cell. Infect. Microbiol.* 13:1252482. doi: 10.3389/fcimb.2023.1252482

COPYRIGHT

© 2023 Thitla, Kumla, Hongsanan, Senwanna, Khuna, Lumyong and Suwannarach. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Exploring diversity rockinhabiting fungi from northern Thailand: a new genus and three new species belonged to the family *Herpotrichiellaceae*

Tanapol Thitla^{1,2}, Jaturong Kumla^{2,3}, Sinang Hongsanan^{2,3}, Chanokned Senwanna³, Surapong Khuna^{2,3}, Saisamorn Lumyong^{2,3,4} and Nakarin Suwannarach^{2,3*}

¹Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ²Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ³Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand, ⁴Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.

KEYWORDS

herpotrichiellaceous fungi, new taxa, rock-inhabiting fungi, taxonomy, tropical area

Introduction

Herpotrichiellaceae is a family within order *Chaetothyriales* (class *Eurotiomycetes*), which was introduced by Munk (1953) to accommodate *Herpotrichiella*, with *H. moravica* as the type species. Accordingly, *Herpotrichiella moravica* is now considered a synonym of *Capronia moravica* based on the teleomorph–anamorph connection of *Herpotrichiellaceae* (Müller et al.,

1987). Likewise, the morphology of Capronia moravica and Ca. pilosella has been found to be identical; thus, Ca. moravica is now synonymized under Ca. pilosella (Untereiner, 1997). Capronia is the older name that was introduced by Saccardo (1883); therefore, Capronia has been retained over Herpotrichiella (Untereiner, 1997; Quan et al., 2020). Herpotrichiellaceae is characterized by having setose, ostiolate ascomata, and bitunicate asci with endotunica; by appearing greenish gray to brown; and by having didymosporous, phragmosporous, or dictyosporous ascospores (Müller et al., 1987; Untereiner et al., 1995; Untereiner, 1997; Tian et al., 2021). The asexual morphs of the family are characterized as dematiaceous hyphomycetes, and commonly referred to as black yeast (Müller et al., 1987; Untereiner et al., 1995; Tian et al., 2021). This family is well-known to consist of a sexual morph as a genus Capronia and several asexual morph genera, such as Cladophialophora, Exophiala, Fonsecaea, Phialophora, and Rhinocladiella (de Hoog et al., 2011; Phukhamsakda et al., 2022). Due to the similar morphological features of these asexual genera, the morphological identification of these asexual genera can be challenging (Badali et al., 2008; Yang et al., 2021). Therefore, a combination of morphological and molecular data is needed to identify the species in this family and to clarify their phylogenetic placement. Twenty genera are currently accepted in Herpotrichiellaceae; namely, Aculeata, Atrokylindriopsis, Brycekendrickomyces, Capronia, Cladophialophora, Exophiala, Fonsecaea, Marinophialophora, Melanoctona, Metulocladosporiella, Minimelanolocus, Neosorocybe, Phialophora, Pleomelogramma, Rhinocladiella, Sorocybe, Thysanorea, Uncispora, Valentiella, and Veronaea (Wijayawardene et al., 2020; Tian et al., 2021; Bezerra et al., 2022; Wijayawardene et al., 2022). The members of Herpotrichiellaceae have been collected from several sources worldwide. These consist of air, insects, lichens, plants, rocks, and soil (Diederich et al., 2013; Feng et al., 2014; Das et al., 2019; Libert et al., 2019; Lima et al., 2020; Sun et al., 2020; Thitla et al., 2022). In addition, numerous studies have reported that some herpotrichiellaceous fungi are opportunistic fungi in humans and other animals (Badali et al., 2008; de Hoog et al., 2011; Li et al., 2017). Several herpotrichiellaceous fungi were reported to survive under extreme conditions (high and low temperatures, desiccation, lack of nutrients, and UV radiation), such as the species within genera Exophiala and Cladophialophora (Seyedmousavi et al., 2011; Gostinčar et al., 2022; Tesei, 2022). The accumulation of melanin in the cell walls of these fungi is one of the key factors to survival in extreme conditions (de Hoog et al., 2011; Li et al., 2017; Coleine and Selbmann, 2021).

Cladophialophora is one of the genera in the family *Herpotrichiellaceae* and has been reported in many regions of the world including Africa, Asia, Europe, North America, Oceania, and South America (de Hoog et al., 1995; de Hoog et al., 2007; Badali et al., 2008; Badali et al., 2011; Madrid et al., 2016; Sun et al., 2020; Nascimento et al., 2021). The genus was introduced by Borelli (1980) with *Cl. ajelloi* Borelli as the type species [currently named *Cl. carrionii* (Badali et al., 2008; Boonmee et al., 2021). Presently, there are 53 records of *Cladophialophora* in the Index Fungorum database (Index Fungorum, 2023). Of those, some species may belong to different genera. For example, *Cl. brevicatenata, Cl.*

hachijoensis, and *Cl. kellermaniana* were subsequently transferred to *Tyrannosorus hanlinianus*, *Pseudocladosporium hachijoense*, and *Chalastospora gossypii*, respectively (Braun, 1998; Crous et al., 2009; Shen et al., 2020). However, 49 *Cladophialophora* species have currently been validated and accepted.

Rocks are one of the interesting natural habitats of fungi. Rockinhabiting fungi were divided into two groups on the basis of their ecology and taxonomy. The first group comprises hyphomycetes of soil and epiphytic fungi (such as Aureobasidium or Phoma), whereas the second group includes melanized cell-walled fungi that exhibit slow growth, meristematic growth, or the production of yeast-like cells, typically belonging to the orders Capnodoales, Chaetothyriales, and Dothideales (Wollenzien et al., 1995; Gorbushina, 2007; Coleine and Selbmann, 2021). There are numerous reports on the biotechnological capabilities of rockinhabiting fungi in astrobiology, radioprotection, biomedical, and bioremediation fields (Aureli et al., 2020; Lin and Xu, 2020; Tran-Ly et al., 2020; Coleine and Selbmann, 2021; Mattoon et al., 2021; Cassaro et al., 2022; Liu et al., 2022). Several species of herpotrichiellaceous fungi were previously isolated from rocks, such as Cladophialophora nyingchiensis, Cl. tumulicola, Exophiala bonariae, Ex. clavispora, and Ex. siamensis (Isola et al., 2016; Kiyuna et al., 2018; Sun et al., 2020; Thitla et al., 2022). In addition, numerous prior reports have highlighted Thailand as a hot spot for discovering new fungal species (Hyde et al., 2018; Khuna et al., 2022). Nonetheless, information on the rock-inhabiting fungi in Thailand is still limited. Thus, the main objective of this study is to study the diversity of rock-inhabiting fungi in Thailand. During our investigation, we identified 12 herpotrichiellaceous fungi, viz., 10 strains of Cladophialophora and two strains of unrecognized fungal taxa. Morphology, growth temperature, and multi-gene phylogenetic analyses indicate that four herpotrichiellaceous fungi are novel in Herpotrichiellaceae. In addition, we have updated the existing reference data on the members of Herpotrichiellaceae.

Materials and methods

Sample collection and fungal isolation

Rock samples appearing black fungal mycelia were collected from a dipterocarp forests in Lamphun (18°32'13"N 99°07'31"E, elevation at 432 m; and 18°32'11"N 99°07'22"E, elevation at 444 m) and Sukhothai (17°32'58"N 99°29'49"E, elevation at 153 m) provinces, Thailand, in 2021–2022. During the collection period, Lamphun province had daily rainfall of 6.5 mm, whereas Sukhothai province received daily rainfall of 2.3 mm. Temperatures in Lamphun province ranged from 22°C to 36°C, whereas temperatures in Sukhothai province ranged from 24°C to 38°C. Rock samples were obtained following the method described by Thitla et al. (2022). Fungi were isolated using an adaptation of the technique reported by Selbmann et al. (2014). Rock samples were cleaned in 1% sodium hypochlorite for 10 min before being rinsed five times with sterile and deionized water to eliminate any trace of detergent. To obtain the fungal strain, pounding rock samples and seeding rock shards were sprinkled onto malt extract agar (MEA; Gibco, Life Technologies Corporation, USA) and dichloran-rose bengal agar (DRBC; Difco, Becton, Dickinson and Company, USA) supplemented with chloramphenicol 100 mg/L. Plates were incubated at 25°C for 4 weeks, with daily inspections. Dark mycelia fungi were aseptically transferred to a MEA plates. Pure fungal strains were kept in 15% glycerol and deposited in the Culture Collection of Sustainable Development of Biological Resources Laboratory (SDBR), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand. In addition, new fungal taxa were registered in the MycoBank database (MycoBank, 2023).

Morphology and growth temperature

Macro-morphologies, including colony characterization, pigment production, and colony diameter, were investigated on potato dextrose agar (PDA; Condalab, Laboratorios Conda S.A., Spain), MEA, and oatmeal agar (OA; Difco, Becton, Dickinson and Company, USA) at 25°C in the dark for 28 days. To examine the fungal growth at different temperatures, the colony diameter was measured on MEA at 4°C, 10°C, 15°C, 20°C, 25°C, 28°C, 30°C, 35° C, 37°C, and 40°C for 4 weeks in darkness. Three replicates were performed for each fungal strain at each temperature. Micromorphological features were investigated using a light microscope (Nikon Eclipse Ni-U, Japan). The Tarosoft (R) Image was used to calculate the size of fungal structures (e.g., hyphae, conidiophore, conidiogenous cell, conidia, and chlamydospore).

DNA extraction, amplification, and sequencing

Fungal genomic DNA of each fungal strain was extracted from mycelia grown on MEA at 25°C for 3 weeks, using s DNA extraction kit (FAVORGEN, Ping-Tung, Taiwan). The internal transcribed spacer (ITS), large subunit (nrLSU), and small subunit (nrSSU) of ribosomal RNA, beta tubulin gene (tub2), and the translation elongation factor $1-\alpha$ (*tef1-* α) genes were amplified by polymerase chain reaction (PCR) using ITS5/ITS4 (White et al., 1990), LROR/ LR5 (Vilgalys and Hester, 1990; Rehner and Samuels, 1994), NS1/ NS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995), and EF1-728F/EF1-986R (Carbone and Kohn, 1999) primers, respectively. PCR amplifications were performed using 20 µL of reaction mixtures, consisting of 1 µL of genomic DNA, 1 µL of each primer, 10 µL of Quick TaqTM HS Dye-Mix (TOYOBO, Japan), and 7 μL of deionized water. The conditions of PCR reactions consisted of a first denaturation step performed at 95°C for 5 min and denaturation step at 95°C for 30 s; then, to amplify the ITS region, an annealing step was performed at 55°C for 30 s, an annealing step of nrSSU and nrLSU region was performed at 52° C for 45 s, whereas annealing step of the *tub2* gene was performed at 52°C for 30 s; an elongation step were performed at 72°C for 1 min; lastly to amplify the *tef1*- α gene, annealing step at 57°C for 1 min and an elongation step at 72°C for 1.30 min were was performed. Cycles were performed 35 times, with a final extension at 72°C for 10 min on a peqSTAR thermal cycler (PEQLAB Ltd., Fareham, UK). PCR products were checked on 1% agarose gel electrophoresis and measured quantity with NanoDrop OneC (Thermo Scientific, USA). Then, the PCR clean-up Gel Extraction NucleoSpin[®] Gel and the PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) were used to purify PCR products. Purified PCR products were sequenced by 1st BASE Company (Kembangan, Malaysia).

Sequence alignment and phylogenetic analyses

The ITS, nrLSU, nrSSU, *tub2*, and *tef1-\alpha* sequence data were assembled using the software Sequencher 5.4.6 (Nishimura, 2000). The consensus sequences were blasted in the BLAST search tool via NCBI website. Two datasets were prepared to construct the phylogenetic trees for clarifying the family Herpotrichiellaceae (Table 1) and genus Cladophialophora (Table 2). Multiple sequence alignment was performed by MUSCLE using MEGA 6 (Edgar, 2004) and adjusted manually in BioEdit v.7.2.5 (Hall, 2004). Phylogenetic analysis of the family Herpotrichiellaceae (analysis I) was carried out on the basis of only the ITS, nrLSU, and SSU sequences because the amount of available sequence data in the *tub2* and *tef1-\alpha* genes is practically limited. To construct a phylogenetic tree of Cladophialophora (analysis II), five gene datasets (ITS, nrLSU, nrSSU, *tub2*, and *tef1-\alpha*) were used. Maximum likelihood (ML) analysis was generated with 25 categories and 1,000 bootstrap (BS) replications under the GTRCAT model using the RAxML-HPC2 on XSEDE (v.8.2.12) in the CIPRES web portal (Felsenstein, 1985; Stamatakis, 2006; Miller et al., 2009). Bayesian inference (BI) analysis was performed using MrBayes v.3.2.6 (Ronquist and Huelsenbeck, 2003). Bayesian posterior probability (PP) was determined by Markov chain Monte Carlo (MCMC) sampling. Six simultaneous Markov chains were run for 5 million generations for analysis I and 2 million generations for analysis II with random initial trees, wherein every 100th generations were sampled. The first 20% of generated trees representing the burn-in phase of the analysis were discarded, whereas the remaining trees were used for calculating PP in the majority-rule consensus tree. Branches with BS support and PP values of more than or equal to 75% and 0.95, respectively, were deemed to have been substantially supported. The tree topologies were visualized in FigTree v1.4.0 (Rambaut, 2019).

Results

Fungal isolation, morphological study, and growth temperature

A total of 12 fungal strains were obtained from different rock samples. Ten fungal strains (SDBR-CMU446, SDBR-CMU447, SDBR-CMU448, SDBR-CMU449, SDBR-CMU450, SDBR-CMU451, SDBR-CMU452, SDBR-CMU453, SDBR-CMU476, and SDBR-CMU477) exhibited similar characteristics by appearing

TABLE 1 GenBank accession numbers of herpotrichiellaceous fungi used in the molecular phylogenetic analysis.

Constant	Churcha -	GenBank Accession No.		Deferrer	
Species	Strains	ITS	nrLSU	nrSSU	References
Aculeata aquatica	MFLUCC 11-0529 ^T	MG922571	MG922575	MG922579	Dong et al. (2018)
Ac. ramosa	CGMCC 3.16372 ^T	KP174844	KP174923	KP174883	Sun et al. (2020)
Ac. saxincola	CGMCC 3.17315 ^T	KP174843	KP174924	KP174880	Sun et al. (2020)
Arthrocladium caudatum	CBS 457.67 ^T	LT558701	KT337443	LT558701	Nascimento et al. (2016); Réblová et al. (2016)
Ar. fulminans	CBS 136243 ^T	KT337439	KT337444	-	Nascimento et al., 2016
Ar. tropicale	CBS 134926 ^T	KX822543	KX822350	KX822310	Vasse et al. (2017)
Atrokylindriopsis setulosa	HMAS245592 ^T	KP337330	KP337329	-	Ma et al. (2015)
Bradymyces alpinus	CCFEE 5493 ^T	HG793052	GU250396	GU250354	Hubka et al. (2014)
Br. graniticola	CBS 140773 ^T	LT558704	LT558704	LT558704	Réblová et al. (2016)
Br. oncorhynchi	CCF 4369 ^T	HG426062	HG426063	HG426064	Hubka et al. (2014)
Brycekendrickomyces acaciae	CBS 124104 ^T	FJ839606	FJ839641	-	Crous et al. (2009)
Capronia acutiseta	CBS 618.96 ^T	AF050241	KF155191	AJ232942	Untereiner and Naveau (1999); Vicente et al. (2014)
Ca. camelliae-yunnanensis	CGMCC 3.19061 ^T	MH807377	MH807378	MH807379	Phookamsak et al. (2019)
Ca. capucina	BBB561 ^T	MH809170	MH791322	-	Sánchez et al. (2019)
Ca. coronata	CBS 617.96 ^T	JF747040	AF050242	JN856009	Untereiner and Naveau (1999); de Hoog et al. (2011)
Ca. dactylotricha	CBS 604.96 ^T	AF050243	KX712343	AJ232943	Untereiner and Naveau (1999); Teixeira et al. (2017)
Ca. fungicola	CBS 614.96 ^T	KY484990	FJ358224	FJ358292	Gueidan et al. (2008)
Ca. leucadendri	CBS 122672 ^T	EU552108	MH874754	-	Marincowitz et al. (2008); Vu et al. (2019)
Ca. mansonii	CBS 101.67 ^T	AF050247	AY004338	X79318	Untereiner and Naveau (1999); Lumbsch et al. (2005)
Ca. munkii	CBS 615.96 ^T	MH862601	-	-	Vu et al. (2019)
Ca. nigerrima	CBS 513.69	MH859363	AY605075	AY541478	Lumbsch et al. (2004); Lumbsch et al. (2005); Vu et al. (2019)
Ca. parasitica	CBS 123.88	AF050252	FJ358225	JN941212	Untereiner and Naveau (1999); Gueidan et al. (2008)
Ca. pilosella	AFTOL-ID 657	DQ826737	DQ823099	DQ823106	James et al. (2006)
Ca. rubiginosa	BBB 536 ^T	MH809171	MH791323	-	Sánchez et al. (2019)
Cladophialophora abundans	CBS 126736 ^T	KC776592	KC812100	-	Feng et al. (2014)
Cl. aquatica	MFLUCC 21-0108 ^T	MT864355	MT860433	MT860446	Boonmee et al. (2021)
Cl. arxii	CBS 306.94 ^T	EU103986	KX822320	AJ232948	Haase et al. (1999); Badali et al. (2009); Vasse et al. (2017)
Cl. australiensis	CBS 112793 ^T	EU137331	EU035402	KX822275	Crous et al. (2007); Feng et al. (2014); Vasse et al. (2017)
Cl. bantiana	CBS 173.52 ^T	EU103989	KF155189	AY554284	Badali et al. (2009); Vicente et al. (2014)
Cl. boppii	CBS 126.86 ^T	MH861932	FJ358233	FJ358301	Gueidan et al. (2008); Vu et al. (2019)
Cl. bromeliacearum	URM 8085 ^T	MW794272	MW794274	-	Nascimento et al. (2021)
Cl. cabanerensis	CBS 146718 ^T	MN310213	MN308512	-	Crous et al. (2020a)
Cl. carrionii	CBS 160.54 ^T	EU137266	FJ358234	FJ358302	de Hoog et al. (2007); Gueidan et al. (2008)
Cl. chaetospira	CBS 491.70 ^T	EU035405	EU035405	KX822276	Crous et al. (2007); Vasse et al. (2017)
Cl. devriesii	CBS 147.84 ^T	EU103985	KC809989	AJ232947	Haase et al. (1999); Badali et al. (2009); Feng et al. (2014)
Cl. emmonsii	CBS 979.96 ^T	EU103996	-	-	Badali et al. (2009)
Cl. eucalypti	CBS 145551 ^T	MK876380	MK876419	_	Crous et al. (2019a)
Cl. exuberans	CMRP1227 ^T	KY680429	KY570931	-	Nascimento et al. (2017)

Constant	Churcha -	GenBank /	Accession N	0.	Deferrer
Species	Strains	ITS	nrLSU	nrSSU	References
Cl. floridana	NRRL 66282 ^T	AB986343	AB986343	-	Obase et al. (2016)
Cl. immunda	CBS 834.96 ^T	MH862619	KC809990	KF155194	Feng et al. (2014); Vu et al. (2019)
Cl. inabaensis	EUCL1 ^T	LC128795	-	-	Usui et al. (2016)
Cl. lanosa	KNU 16032 ^T	LC387460	LC387461	-	Das et al. (2019)
Cl. matsushimae	MFC-1P384 ^T	FN549916	FN400758	-	Koukol (2010)
Cl. minourae	CBS 556.83 ^T	AY251087	FJ358235	FJ358303	Braun et al. (2003); Gueidan et al. (2008)
Cl. multiseptata	CBS 136675 ^T	HG003668	HG003671	-	Crous et al. (2013)
Cl. mycetomatis	CBS 122637 ^T	FJ385276	KX822321	KX822278	Badali et al. (2008); Vasse et al. (2017)
Cl. nyingchiensis	CGMCC 3.17330 ^T	MG012699	MG197824	MG012728	Sun et al. (2020)
Cl. parmeliae	CBS 129337	JQ342180	JQ342182	-	Diederich et al. (2013)
Cl. potulentorum	CBS 115144 ^T	DQ008141	-	-	Badali et al. (2009)
Cl. proteae	CBS 111667 ^T	EU035411	EU035411	KJ636039	Crous et al. (2007); Gueidan et al. (2014)
Cl. psammophila	CBS 110553 ^T	AY857517	KX712346	-	Prenafeta-Boldú et al. (2006); Teixeira et al. (2017)
Cl. pseudocarrionii	CBS 138591 ^T	KU705827	KU705844	_	Madrid et al. (2016)
Cl. pucciniophila	KACC 43957 ^T	JF263533	JF263534	-	Park and Shin (2011)
Cl. recurvata	CBS 143843 ^T	LT985878	LT985879	-	Rodríguez-Andrade et al. (2019)
Cl. rupestricola	SDBR-CMU446 ^T	OP903465	OP903502	OR141860	This study
Cl. rupestricola	SDBR-CMU447	OP903466	OP903503	OR141861	This study
Cl. rupestricola	SDBR-CMU448	OP903467	OP903504	OR141862	This study
Cl. samoensis	CBS 259.83 ^T	MH861581	KC809992	KX822281	Feng et al. (2014); Vasse et al. (2017); Vu et al. (2019)
Cl. saturnica	CBS 118724 ^T	EU103984	-	-	Badali et al. (2009)
Cl. sribuabanensis	SDBR-CMU476 ^T	OQ991178	OQ979608	OR141868	This study
Cl. sribuabanensis	SDBR-CMU477	OQ991179	OQ979609	OR141869	This study
Cl.subtilis	CBS 122642 ^T	FJ385273	KX822322	KX822283	Badali et al. (2008); Vasse et al. (2017)
Cl. tengchongensis	CGMCC3.15201 ^T	MG012702	MG197827	MG012731	Sun et al. (2020)
Cl. thailandensis	SDBR-CMU449	OP903468	OP903505	OR141863	This study
Cl. thailandensis	SDBR-CMU450	OP903469	OP903506	OR141864	This study
Cl. thailandensis	SDBR-CMU451 ^T	OP903470	OP903507	OR141865	This study
Cl. thailandensis	SDBR-CMU452	OP903471	OP903508	OR141866	This study
Cl. thailandensis	SDBR-CMU453	OP903472	OP903509	OR141867	This study
Cl. tortuosa	ATCC TSD-9 ^T	AB986424	AB986424	-	Obase et al. (2016)
Cl. tumbae	JCM 28749 ^T	LC192107	LC192072	-	Kiyuna et al. (2018)
Cl. tumulicola	JCM 28766 ^T	LC192098	LC192063	-	Kiyuna et al. (2018)
Cl. yegresii	CBS 114405 ^T	EU137322	KC809994	KX822284	de Hoog et al. (2007); Feng et al. (2014); Vasse et al. (2017)
Epibryon interlamellare	CBS 126286	MH863958	MH875417	-	Vu et al. (2019)
Ep. turfosorum	CBS 126587	MH864165	MH875627	-	Vu et al. (2019)
Exophiala abietophila	CBS 145038 ^T	MK442581	MK442523	-	Crous et al. (2019b)
Ex. alcalophila	CBS 520.82 ^T	MH861524	AF361051	JN856010	de Hoog et al. (2011); Vu et al. (2019)

Constant	GenBank Accession No.		0.		
Species	Strains	ITS	nrLSU	nrSSU	References
Ex. angulospora	CBS 482.92 ^T	MH862370	KF155190	JN856011	de Hoog et al. (2011); Vicente et al. (2014); Vu et al. (2019)
Ex. bergeri	CBS 353.52 ^T	MH857080	FJ358240	FJ358308	Gueidan et al. (2008); Vu et al. (2019)
Ex. bonariae	CBS 139957 ^T	JX681046	KR781083	-	Isola et al. (2016)
Ex. brunnea	CBS 587.66 ^T	MH858890	KX712342	JN856013	de Hoog et al. (2011); Teixeira et al. (2017); Vu et al. (2019)
Ex. castellanii	CBS 158.58 ^T	MH857734	KF928522	JN856014	de Hoog et al. (2011); Attili-Angelis et al. (2014); Vu et al. (2019)
Ex. crusticola	CBS 119970 ^T	MH863070	KF155180	KF155199	Vicente et al. (2014); Vu et al. (2019)
Ex. dermatitidis	CBS 207.35 ^T	MH855649	KF928508	-	Attili-Angelis et al. (2014); Vu et al. (2019)
Ex. encephalarti	CBS 128210 ^T	HQ599588	HQ599589	-	de Hoog (2010)
Ex. eucalypti	CBS 142069	KY173411	KY173502	-	Crous et al. (2016)
Ex. eucalypticola	CBS 143412 ^T	MH107891	MH107938	-	Crous et al. (2018a)
Ex. jeanselmei	CBS 507.90 ^T	AY156963	KJ930161	FJ358310	Vitale and de Hoog (2002); Gueidan et al. (2008)
Ex. lecanii-corni	CBS 123.33 ^T	MH855383	FJ358243	FJ358311	Gueidan et al. (2008); Vu et al. (2019)
Ex. mesophila	CBS 402.95 ^T	MH862536	KX712349	JN856016	de Hoog et al. (2011); Teixeira et al. (2017); Vu et al. (2019)
Ex. nidicola	CBS 138589 ^T	MG701055	MG701056	-	Crous et al. (2018b)
Ex. nishimurae	CBS 101538 ^T	JX473274	KX712351	KX822288	Woo et al. (2013); Teixeira et al. (2017); Vasse et al. (2017)
Ex. oligosperma	CBS 725.88 ^T	AY163551	FJ358245	AY554287	Haase et al. (1999); de Hoog et al. (2003); Gueidan et al. (2008)
Ex. opportunisticica	CBS 109811 ^T	KF928437	KF928501	-	Attili-Angelis et al. (2014)
Ex. pisciphila	CBS 537.73 ^T	DQ826739	AF050272	DQ823108	Untereiner and Naveau (1999); James et al. (2006)
Ex. placitae	CBS 121716 ^T	MH863143	MH874694	-	Vu et al. (2019)
Ex. quercina	CBS 146024 ^T	MT223797	MT223892	-	Crous et al. (2020b)
Ex.radicis	P2854 ^T	KT099204	KT723448	KT723453	Glynou et al. (2016); Maciá-Vicente et al. (2016)
Ex. salmonis	CBS 157.67 ^T	JF747137	AY213702	EF413608	Rakeman et al. (2005); Geiser et al. (2006); de Hoog et al. (2011)
Ex. siamensis	SDBR-CMU417 ^T	ON555811	-	ON555826	Thitla et al. (2022)
Ex. siamensis	SDBR-CMU418	ON555812	-	ON555827	Thitla et al. (2022)
Ex. sideris	CBS 121818 ^T	HQ452311	-	HQ441174	Seyedmousavi et al. (2011)
Ex. spinifera	CBS 899.68 ^T	MH859248	MH870977	-	Vu et al. (2019)
Fonsecaea brasiliensis	CBS 119710 ^T	JN173784	KF155183	KF155203	Vicente et al. (2012); Vicente et al. (2014)
F. erecta	CBS 125763 ^T	KC886414	KF155186	KF155210	Vicente et al. (2014)
F. monophora	CBS 102243 ^T	EU938579	FJ358247	FJ358315	Gueidan et al. (2008); Najafzadeh et al. (2009)
F. multimorphosa	CBS 980.96 ^T	JF267657	KF155188	JF433950	Najafzadeh et al. (2011); Vicente et al. (2014)
F. pedrosoi	CBS 271.37 ^T	AB114127	KJ930166	AY554290	Haase et al. (1999); Tanabe et al. (2004); Li et al. (2017)
Knufia cryptophialidica	DAOM 216555 ^T	JN040501	JN040500	EF137364	Scott et al. (2007); Tsuneda et al. (2011)
K. epidermidis	CBS 120353 ^T	EU730589	FJ355954	FJ355953	Li et al. (2008)
K. marmoricola	CBS 139726 ^T	KP791775	KR781063	_	Isola et al. (2016)
K. mediterranea	CBS 139721 ^T	KP791791	KR781078	-	Isola et al. (2016)
K. petricola	CBS 726.95 ^T	KC978746	KC978741	KC978739	Nai et al. (2013)
Lithohypha aloicola	CPC 35996 ^T	MN562103	MN567611	-	Crous et al. (2019c)
L. catenulata	CGMCC 3.14885 ^T	JN650519	KP174917	KP174911	Sun et al. (2020)

	GenBank Accession No.				
Species	Strains	ITS	nrLSU	nrSSU	References
L. guttulata	CBS 139723 ^T	KP791773	KR781061	-	Isola et al. (2016)
Marinophialophora garethjonesii	KUMCC 16-0066 ^T	KY305175	KY305177	KY305179	Li et al. (2018)
Melanoctona tectonae	MFLUCC 12-0389 ^T	KX258778	KX258779	KX258780	Tian et al. (2016)
Metulocladosporiella musae	CBS 161.74 ^T	DQ008137	DQ008161	-	Ávila et al. (2005)
Met. musicola	CBS 110960 ^T	DQ008127	DQ008153	-	Ávila et al. (2005)
Minimelanolocus clavatus	DLU 3022 ^T	MT271774	MT271772	MT271777	Wan et al. (2021)
Mi. yunnanensis	MFLUCC 16-0764 ^T	KX258781	KX258782	KX258783	Tian et al. (2016)
Neosorocybe pini	CBS 146085 ^T	MT223824	MT223916	-	Crous et al. (2020b)
Neostrelitziana acaciigena	CBS 139903 ^T	KR476730	KR476765	_	Crous et al. (2015)
Petriomyces obovoidisporus	SDBR-CMU478 ^T	OQ991180	OQ979610	OR141870	This study
Pe. obovoidisporus	SDBR-CMU479	OQ991181	OQ979611	OR141871	This study
Phialophora chinensis	CBS 140326 ^T	KF881964	KJ930093	KM658060	Li et al. (2017)
Phia. ellipsoidea	CBS 286.47 ^T	AF050282	AF050282	_	Untereiner and Naveau (1999)
Phia. expanda	BMU 02323 ^T	KF881937	MH878677	_	Li et al. (2017); Vu et al. (2019)
Phia. macrospora	CBS 273.37 ^T	AF050281	AF050281	_	Untereiner and Naveau (1999)
Phia. verrucosa	CBS 140325 ^T	KF881960	KJ930073	KM658059	Li et al. (2017)
Rhinocladiella amoena	CBS 138590 ^T	KU705840	KU705857	-	Madrid et al. (2016)
Rhin. anceps	CBS 181.65 ^T	EU041805	EU041862	AY554292	Haase et al. (1999); Arzanlou et al. (2007)
Rhin. atrovirens	CBS 317.33 ^T	AB091215	MH866906	-	Abliz et al. (2003); Vu et al. (2019)
Rhin. basitona	CBS 101460 ^T	EU041806	EU041863	_	Arzanlou et al. (2007)
Rhin. coryli	CBS 141407 ^T	KX306768	KX306793	_	Hernández-Restrepo et al. (2016)
Rhin. mackenziei	CBS 650.93 ^T	AY857540	AF050288	_	Untereiner and Naveau (1999); Prenafeta-Boldú et al. (2006)
Rhin. phaeophora	CBS 496.78 ^T	EU041811	EU041868	EF137366	Arzanlou et al. (2007); Scott et al. (2007)
Rhin. pyriformis	CBS 469.94 ^T	MH862476	-	-	Vu et al. (2019)
Rhin. quercus	CBS 141448 ^T	KX306769	KX306794	_	Hernández-Restrepo et al. (2016)
Rhin. similis	CBS 111763 ^T	EF551461	_	_	Zeng and de Hoog (2008)
Sorocybe oblongispora	DAOMC 251618 ^T	MN114116	MN114118	_	Crous et al. (2019c)
So. resinae	DAOM 239134	EU030275	EU030277	_	Seifert et al. (2007)
Strelitziana africana	CBS 120037 ^T	DQ885895	DQ885895	_	Arzanlou and Crous (2006)
St. albiziae	CBS 126497 ^T	HQ599584	HQ599585	_	de Hoog (2010).
St. australiensis	CBS 124778 ^T	GQ303295	GQ303326	-	Cheewangkoon et al. (2009)
Thysanorea cantrelliae	CBS 145909 ^T	MN794376	MN794353	MN794382	Hernández-Restrepo et al. (2010)
Th. papuana	CBS 212.96 ^T	MH862572	MH874198	_	Vu et al. (2019)
Th. seifertii	CBS 145910 ^T	MN794377	MN794354	MN794383	Hernández-Restrepo et al. (2010)
Th. thailandensis	MFLUCC 15-0971 ^T	MG922573	MG922577	MG922581	Dong et al. (2018)
Th. yunnanensis	MFLUCC 15-0414 ^T	KR215607	KR215612	KR215617	Liu et al. (2015)
Trichomerium dioscoreae	CBS 138870 ^T	KP004468	KP004496	-	Crous et al. (2014)
Tr. foliicola	MFLUCC 10-0078 ^T	JX313655	JX313661	-	Chomnunti et al. (2011)

Constant	Strains	GenBank Accession No.				
Species		ITS	nrLSU	nrSSU	References	
Tr. gloeosporum	MFLUCC 10-0087 ^T	JX313656	JX313662	-	Chomnunti et al. (2011)	
Uncispora sinensis	YMF 1.03683 ^T	KU173860	KU558914	KU558913	Yang et al. (2011)	
U. wuzhishanensis	YMF 1.04080 ^T	KU173859	KU558912	KU558911	Liu et al. (2018)	
Valentiella maceioensis	BSS 376	MZ042488	MZ042486	-	Bezerra et al. (2022)	
Va. maceioensis	CBS 141892	KY305141	KX348014	-	Bezerra et al. (2022)	
Veronaea botryosa	CBS 254.57 ^T	MH857711	MH869255	JN856021	de Hoog et al. (2011); Vu et al. (2019)	
Ve. japonica	CBS 776.83 ^T	EU041818	EU041875	-	Arzanlou et al. (2007)	

Species obtained in this study are in bold. Superscript "T" represents ex-type species. "-" represents the absence of sequence data in GenBank database.

TABLE 2 GenBank accession numbers of Cladophialophora in the family Herpotrichiellaceae used in the molecular phylogenetic analysis.

Constant	Churcher -	GenBank /	Accession N	Deferrer			
species	Strains	ITS	nrLSU	nrSSU	tub2	tef1- $lpha$	References
Cladophialophora abundans	CBS 126736 ^T	KC776592	KC812100	-	-	-	Feng et al. (2014)
Cl. abundans	MFLUCC 21-0105	MT864354	MT860432	-	-	_	Boonmee et al. (2021)
Cl. aquatica	MFLUCC 21-0108 ^T	MT864355	MT860433	-	-	-	Boonmee et al. (2021)
Cl. arxii	CBS 306.94 ^T	EU103986	KX822320	AJ232948	_	EU140593	Haase et al. (1999); Badali et al. (2009); Vasse et al. (2017)
Cl. arxii	IFM 52022	AB109181	LT883516	-	-	-	Abliz et al. (2004)
Cl. australiensis	CBS 112793 ^T	EU035402	EU035402	KX822275	-	-	Crous et al. (2007); Vasse et al. (2017)
Cl. bantiana	CBS 173.52 ^T	EU103989	KF155189	AY554284	_	EU140585	Haase et al. (1999); Badali et al. (2009); Vicente et al. (2014)
Cl. bantiana	CBS 119719	EU103991	-	-	-	EU140589	Badali et al. (2009)
Cl. boppii	CBS 110029	EU103998	-	-	-	EU140597	Badali et al. (2009)
Cl. boppii	CBS 126.86 ^T	EU103997	FJ358233	FJ358301	-	EU140596	Gueidan et al. (2008); Badali et al. (2009)
Cl. bromeliacearum	URM 8085 ^T	MW794272	MW794274	-	MW810487	_	Nascimento et al. (2021)
Cl. bromeliacearum	FCCUFG 04	MW794273	MW794275	-	MW810488	-	Nascimento et al. (2021)
Cl. cabanerensis	CBS 146718 ^T	MN310213	MN308512	-	-	-	Crous et al. (2020a)
Cl. cabanerensis	P6479	-	MN308510	-	-	-	Crous et al. (2020a)
Cl. carrionii	CBS 114393	EU137268	KF928516	_	EU137151	EU137212	de Hoog et al. (2007); Attili-Angelis et al. (2014)
Cl. carrionii	CBS 160.54 ^T	EU137266	KF928517	FJ358302	EU137201	EU137210	de Hoog et al. (2007); Gueidan et al. (2008); Attili-Angelis et al. (2014)
Cl. chaetospira	CBS 491.70 ^T	EU035405	EU035405	KX822276	-	-	Crous et al. (2007); Vasse et al. (2017)
Cl. chaetospira	CBS 114747	EU035403	EU035403	-	KF928578	-	Crous et al. (2007); Attili-Angelis et al. (2014)
Cl. devriesii	CBS 147.84 ^T	EU103985	KC809989	AJ232947	-	EU140595	Badali et al. (2009); Vicente et al. (2014)
Cl. devriesii	CBS 127019	MH864392	MH875832	-	-	_	Vu et al. (2019)
Cl. emmonsii	CBS 640.96	EU103995	KC809995	_	_	EU140584	Feng et al. (2014); Vicente et al. (2014)

c .	<i>c.</i> .	GenBank /	Accession N				
Species	Strains	ITS	nrLSU	nrSSU	tub2	tef1- $lpha$	References
Cl. emmonsii	CBS 979.96 ^T	EU103996	-	-	-	EU140583	Vicente et al. (2014)
Cl. exuberans	CMRP1219	KY680430	KY570930	-	KY689827	-	Nascimento et al. (2017)
Cl. exuberans	CMRP1227 ^T	KY680429	KY570931	-	KY689826	-	Nascimento et al. (2017)
Cl. floridana	NRRL 66282 ^T	AB986343	AB986343	-	-	-	Obase et al. (2016)
Cl. floridana	NRRL 66283	AB986344	AB986344	-	-	-	Obase et al. (2016)
Cl. immunda	CBS 110551	FJ385274	-	-	EU137207	EU137261	Badali et al. (2008)
Cl. immunda	CBS 834.96 ^T	EU137318	KC809990	KF155194	EU137203,	EU137257	Badali et al. (2008); Feng et al. (2014); Vicente et al. (2014)
Cl. inabaensis	EUCL1 ^T	LC128795	LC128795	-	-	-	Usui et al. (2016)
Cl. lanosa	KNU16-032 ^T	LC387460	LC387461	-	-	-	Das et al. (2019)
Cl. matsushimae	MFC-1P384 ^T	FN549916	FN400758	-	-	-	Koukol (2010)
Cl. matsushimae	CMRP1198	KY680416	-	-	-	-	Nascimento et al. (2017)
Cl. minourae	CBS 556.83 ^T	AY251087	FJ358235	FJ358303	_	EU140598	Braun et al. (2003); Badali et al. (2008); Gueidan et al. (2008)
Cl. multiseptata	CBS 136675 ^T	HG003668	HG003671	-	-	-	Crous et al. (2013)
Cl. multiseptata	dH21520	-	KX712345	_	_	_	Teixeira et al. (2017)
Cl. mycetomatis	CBS 122637 ^T	FJ385276	KX822321	KX822278	_	_	Badali et al. (2008); Vasse et al. (2017)
Cl. mycetomatis	CBS 454.82	EU137293	KC809991	KX822279	EU137176	EU137235	Badali et al. (2008); Feng et al. (2014); Vasse et al. (2017)
Cl. nyingchiensis	CGMCC 3.17329	MG012700	MG197825	MG012729	MG012748	MG012707	Sun et al. (2020)
Cl. nyingchiensis	CGMCC 3.17330 ^T	MG012699	MG197824	MG012728	MG012747	MG012706	Sun et al. (2020)
Cl. parmeliae	CBS 129337	JQ342180	JQ342182	-	-	-	Diederich et al. (2013)
Cl. parmeliae	CBS 132232	-	JX081671	-	-	-	Diederich et al. (2013)
Cl. potulentorum	CBS 115144 ^T	DQ008141	-	-	-	-	Crous et al. (2007)
Cl. potulentorum	CBS 112222	EU035409	-	-	-	-	Badali et al. (2008)
Cl. psammophila	CBS 110553 ^T	AY857517	KX712346	_	_	_	Prenafeta-Boldú et al. (2006); Teixeira et al. (2017)
Cl. pseudocarrionii	CBS 138591 ^T	KU705827	KU705844	-	-	-	Madrid et al. (2016)
Cl. recurvata	CBS 143843 ^T	LT985878	LT985879	-	-	-	Rodríguez-Andrade et al. (2019)
Cl. rupestricola	SDBR-CMU446 ^T	OP903465	OP903502	OR141860	OR139230	OP923695	This study
Cl. rupestricola	SDBR-CMU447	OP903466	OP903503	OR141861	OR139231	OP923696	This study
Cl. rupestricola	SDBR-CMU448	OP903467	OP903504	OR141862	OR139232	OP923697	This study
Cl. samoensis	CBS 259.83 ^T	EU137291	KC809992	KX822281	EU137174	EU137233	Badali et al. (2008); Feng et al. (2014); Vasse et al. (2017)
Cl. saturnica	CBS 102230	AY857508	KC809993	KX822282	_	EU140600	Prenafeta-Boldu et al. (2006); Badali et al. (2008); Feng et al. (2014); Vasse et al. (2017)
Cl. saturnica	CBS 118724 ^T	EU103984	-	-	-	EU140602	Badali et al. (2009)
Cl. sribuabanensis	SDBR-CMU476 ^T	OQ991178	OQ979608	OR141868	OR139238	OR139226	This study
Cl. sribuabanensis	SDBR-CMU477	OQ991179	OQ979609	OR141869	OR139239	OR139227	This study
Cl. subtilis	CBS 122642 ^T	FJ385273	KX822322	KX822283	-	-	Badali et al. (2008); Vasse et al. (2017)

Creation	c	GenBank A	Accession No				
species	Strains	ITS	nrLSU	nrSSU	tub2	tef1-α	References
Cl. tengchongensis	CGMCC3.15201 ^T	MG012702	MG197827	MG012731	MG012750	MG012709	Sun et al. (2020)
Cl. tengchongensis	CGMCC3.15204	MG012703	MG197828	MG012732	MG012751	MG012710	Sun et al. (2020)
Cl. thailandensis	SDBR-CMU449	OP903468	OP903505	OR141863	OR139233	OP923698	This study
Cl. thailandensis	SDBR-CMU450	OP903469	OP903506	OR141864	OR139234	OP923699	This study
Cl. thailandensis	SDBR-CMU451 ^T	OP903470	OP903507	OR141865	OR139235	OP923700	This study
Cl. thailandensis	SDBR-CMU452	OP903471	OP903508	OR141866	OR139236	OP923701	This study
Cl. thailandensis	SDBR-CMU453	OP903472	OP903509	OR141867	OR139237	OP923702	This study
Cl. tortuosa	ATCC TSD-9 ^T	AB986424	AB986424	-	-	_	Obase et al. (2016)
Cl. tumbae	JCM 28749 ^T	LC192107	LC192072	_	-	_	Kiyuna et al. (2018)
Cl. tumbae	JCM 28753	LC192108	LC192073	-	-	_	Kiyuna et al. (2018)
Cl. tumulicola	JCM 28766 ^T	LC192098	LC192063	_	-	_	Kiyuna et al. (2018)
Cl. tumulicola	JCM 28758	LC192094	LC192059	-	-	_	Kiyuna et al. (2018)
Cl. yegresii	CBS 114405 ^T	EU137322	KX822323	KX822284	EU137209	EU137262	de Hoog et al. (2007); Vasse et al. (2017)
Cl. yegresii	CBS 114406	EU137323	-	-	EU137208	EU137263	de Hoog et al. (2007)
Bradymyces alpinus	CCFEE 5493 ^T	HG793052	GU250396	GU250354	LN589970	_	Hubka et al. (2014)
Br. oncorhynchi	CCF 4369 ^T	HG426062	HG426063	HG426064	HG426060	-	Hubka et al. (2014)

Species obtained in this study are in bold. Superscript "T" represents ex-type species. "-" represents the absence of sequence data in GenBank database.

one-celled and hyaline and by forming conidial chains. Initially, these 10 fungal strains were identified as *Cladophialophora* species according to their micromorphological features. However, they were divided into three different groups on the basis of their colony characteristics on culture media, micromorphological, and growth temperature profiles (Table 3). In addition, two fungal strains (SDBR-CMU478 and SDBR-CMU479) appeared similar in their characteristics with produced sympodial conidial formation on conidiogenous loci and by appearing one-celled, hyaline to subhyaline, and obovoidal conidia. On the basis of morphological characteristics, these two fungal strains could not be assigned to any genera. Therefore, multi-gene phylogenetic analyses were used to identify their species-level and phylogenetic placement.

The observation of fungal growth at various temperatures (4°C –40°C) revealed that temperature had a strong influence on the fungal growth of the obtained fungi. The average colony diameter of each fungal strain is presented in Table 3. The results indicate that all 12 fungal strains could not grow at 4°C, 37°C, and 40°C. Three strains (SDBR-CMU446, SDBR-CMU447, and SDBR-CMU448) could not grow at 10°C but grew at temperatures ranging from 25°C to 30°C. Five strains (SDBR-CMU452, and SDBR-CMU450, SDBR-CMU451, SDBR-CMU452, and SDBR-CMU453) exhibited the highest average colony diameter at 28°C. Two strains (SDBR-CMU477) could not grow at 10°C and 35°C, yet they showed the greatest average colony diameter at 28°C. Two fungal strains (SDBR-CMU478 and SDBR-CMU479) grew at temperatures ranging from 10°C to 30°C and grew well at 28°C.

Phylogenetic study

For analysis I, a phylogenetic tree of the family Herpotrichiellaceae was constructed from a combined ITS, nrLSU, and nrSSU sequence dataset. The dataset comprised 159 sequence strains from representatives in the families Herpotrichiellaceae and Trichomeriaceae, including the new strains that were proposed in this study. Epibryon interlamellare CBS 126286 and Ep. turfosorum CBS 126587 (famliy Epibryaceae) were selected as the outgroup. The concatenated dataset comprised 3,022 positions (ITS, 1-928 base pair (bp); nrLSU, 929-1,842 bp; and nrSSU, 1,843-3,022 bp) including gaps. RAxML analysis of the integrated dataset yielded the best scoring tree with a final ML optimization likelihood value of -45,154.8753. The matrix contained 1,610 distinct alignment patterns with 38.67% undetermined characters or gaps. The estimated base frequencies were recorded as follows: A = 0.2716, C = 0.2009, G = 0.2559, and T = 0.2714; whereas the substitution rates were established as AC = 0.9883, AG = 1.7181, AT = 0.9613, CG = 0.7406, CT = 2.9999, and GT = 1.0000. The gamma distribution shape parameter alpha value was equal to 0.1267, whereas the tree length was equal to 17.4438. At the end of the total MCMC generations, the final average standard deviation of the split frequencies was calculated to be 0.009866 through BI analysis. According to the topological results, ML and BI phylogenetic analyses produced similar topologies. Therefore, only the phylogenetic tree constructed from the ML analysis is shown in Figure 1. The phylogenetic tree clearly separates the family

Fundal taxa	Colony diameter (mm)*									
Fungai taxa	10°C	15°C	20°C	25°C	28°C	30°C	35°C			
Cladophialophora rupestricola										
SDBR-CMU446	_	7.58 ± 0.67	7.83 ± 0.72	10.56 ± 1.85	10.67 ± 0.98	10.75 ± 0.62	8.25 ± 0.62			
SDBR-CMU447	-	6.92 ± 0.29	7.58 ± 0.67	10.17 ± 1.62	10.25 ± 0.87	10.50 ± 0.67	7.17 ± 0.58			
SDBR-CMU448	-	7.25 ± 0.87	8.08 ± 1.08	9.50 ± 0.92	9.75 ± 0.97	9.83 ± 0.58	7.33 ± 0.78			
Cl. thailandensis										
SDBR-CMU449	6.67 ± 0.52	13.67 ± 0.52	18.50 ± 0.55	28.75 ± 1.60	34.33 ± 0.52	22.33 ± 0.82	8.83 ± 0.41			
SDBR-CMU450	6.12 ± 0.44	13.82 ± 0.72	17.87 ± 0.94	27.92 ± 1.22	32.36 ± 0.71	21.74 ± 0.65	8.79 ± 0.63			
SDBR-CMU451	6.25 ± 0.45	16.67 ± 1.15	18.58 ± 0.67	26.22 ± 1.35	31.00 ± 0.82	23.00 ± 0.60	8.92 ± 0.29			
SDBR-CMU452	6.45 ± 0.61	15.78 ± 1.12	18.37 ± 0.95	28.52 ± 1.34	33.74 ± 0.64	22.26 ± 0.67	8.11 ± 0.74			
SDBR-CMU453	6.42 ± 0.51	14.33 ± 1.56	18.75 ± 0.87	28.06 ± 1.06	33.17 ± 0.94	25.50 ± 1.68	8.50 ± 0.80			
Cl. sribuabanensis										
SDBR-CMU476	-	5.33 ± 0.49	8.50 ± 0.71	12.89 ± 0.76	17.17 ± 1.04	14.06 ± 0.94	_			
SDBR-CMU477	_	5.44 ± 0.51	8.61 ± 0.61	13.06 ± 0.94	17.28 ± 1.02	13.94 ± 0.94	_			
Petriomyces obovoidi	sporus									
SDBR-CMU478	7.00 ± 0.43	10.17 ± 0.39	12.92 ± 0.90	17.50 ± 0.86	17.33 ± 0.65	7.58 ± 0.90	_			
SDBR-CMU479	7.08 ± 0.51	9.67 ± 0.49	12.25 ± 0.97	17.28 ± 0.83	17.33 ± 0.98	7.42 ± 0.79	-			

TABLE 3 Colony diameter of obtained fungi cultured on MEA at various temperatures for 28 days in the dark.

*The results are average colony diameter \pm standard deviation, and "–" represents no growth.

Herpotrichiellaceae from the family Trichomeriaceae with strong support (100% BS and 1.00 PP). In this study, all fungal strains obtained belonged to the family Herpotrichiellaceae and were separated from the previously known species (Figure 1). Cladophiophora rupestricola (SDBR-CMU446, SDBR-CMU447, and SDBR-CMU448) forms a distinct lineage sister clade to Cl. sribuabanensis (SDBR-CMU476 and SDBR-CMU477) with 100% BS and 1.00 PP support values. Accordingly, five fungal strains (SDBR-CMU449, SDBR-CMU450, SDBR-CMU451, SDBR-CMU452, and SDBR-CMU453) of Cl. thailandensis form a distinct lineage closely related to Cl. inabaensis (EUCL1) and Cl. lanosa (KNU 16032). In addition, two fungal strains of Petriomyces obovoidisporus (SDBR-CMU478 and SDBR-CMU479) formed a well-resolved clade (100% BS and 1.00 PP; Figure 1) in Herpotrichiellaceae, with Atrokylindriopsis setulose (HMAS245592) and Exophiala siamensis (SDBR-CMU417) as the sister clade.

In our phylogenetic tree for clarifying the family Herpotrichiellaceae (Figure 1), 15 previously known herpotrichiellaceous genera (Aculeata, Atrokylindriopsis, Capronia, Cladophialophora, Exophiala, Fonsecaea, Marinophialophora, Melanoctona, Minimelanolocus, Phialophora, Rhinocladiella, Thysanorea, Uncispora, Valentiella, and Veronaea) and a new genus (Petriomyces) identified in this study were assigned to the Herpotrichiellaceae clade. The genera Brycekendrickomyces and Metulocladosporiella were placed in the Trichomeriaceae clade. The clade of genera Neosorocybe and Sorocybe was clearly separated from the clade of the families Herpotrichiellaceae and *Trichomeriaceae* with strong support of 100% BS and 1.00 PP (Figure 1).

For analysis II, the phylogenetic placement of the genus Cladophialophora within Herpotrichiellaceae was established by combining five gene sequence datasets (ITS, nrLSU, nrSSU, tub2, and $tef1-\alpha$ from a total of 71 taxa. The concatenated dataset comprised 3,931 positions including gaps (ITS, 1-692 bp; nrLSU, 693-1,512 bp; nrSSU, 1,513-3,185 bp; tub2, 3,186-3,698; and tef1- α , 3,699–3,931 bp). RAxML analysis of the integrated dataset yielded the best scoring tree with a final ML optimization likelihood value of -21,115.8911. The matrix contained 1,300 distinct alignment patterns with 48.15% undetermined characters or gaps. The estimated base frequencies were recorded as follows: A = 0.2256, C = 0.2775, G = 0.2336, and T = 0.2632; whereas the substitution rates were established as AC = 1.0546, AG = 2.0969, AT = 0.9937, CG = 0.5923, CT = 3.1988, and GT = 1.0000. The gamma distribution shape parameter alpha value was equal to 0.4693, whereas the tree length was equal to 4.6134. The final average standard deviation of split frequencies at the end of total MCMC generations was calculated as 0.007796 through the BI analysis. The phylogram demonstrated that all three new species of Cladophialophora discovered in this study were distinctly separate from the previously known species. Cladophialophora rupestricola and Cl. sribuabanensis remained a sister group with strong support (100% BS and 1.00 PP), which was consistent with the findings of analysis I. Furthermore, Cl. thailandensis was a distinct lineage that is still related to Cl. inabaensis and Cl. lanosa.

Phylogenetic tree generated from maximum likelihood analysis of 159 fungal strains based on a combined ITS, nrLSU, and nrSSU sequence dataset. *Epibryon interlamellare* CBS 126286 and *Ep. turfosorum* CBS 126587 were used as the outgroup. The numbers above branches show bootstrap percentages (left) and Bayesian posterior probabilities (right). Bootstrap values ≥75% and Bayesian posterior probabilities ≥0.95 are shown. The scale bar reflects the estimated number of nucleotide substitutions per site. The newly generated sequences are in blue. The ex-type species are in bold.

Taxonomic descriptions

New genus

Petriomyces, T. Thitla and N. Suwannarach, gen. nov.

MycoBank number: MB849334

Etymology: "*Petriomyces*" refers to the fungus that dwells in rocks.

Mycelium: hyaline, smooth, branched, and septate hyphae. *Conidiophores*: semi-micronematous, arising vertically from creeping hyphae at right angles, straight, branched, subhyaline to pale brown, smooth, thin-walled, and septate. *Conidiogenous cells*: integrated, intercalary or terminal, sympodial, polyblastic, subconspicuous to conspicuous conidiogenous loci, subcylindrical, subdenticulate, smooth, and thin-walled. *Conidia*: obovoid or pyriform, aseptate, hyaline to subhyaline, smooth, and hilum conspicuous.

Habitat and distribution: sandstone on natural forest; known from Sukhothai province, Thailand.

Type species: *Petriomyces obovoidisporus*, T. Thitla, J. Kumla, and N. Suwannarach

Petriomyces obovoidisporus, T. Thitla, J. Kumla, and N. Suwannarach, sp. nov. (Figure 2)

MycoBank number: MB849367

Etymology: "obovoidisporus" refers to the obovoid shape of the conidia.

Holotype: Thailand, Sukhothai province, Si Satchanalai District, 17°32′58″N 99°29′49″E, elevation at 153 m, isolated from the sandstone of natural forest, June 2021, T. Thitla; dried culture, SDBR-SKT3-6; ex-type culture, SDBR-CMU478.

GenBank number: OQ991180 (ITS), OQ979610 (nrLSU), OR141870 (nrSSU), OR139228 (*tef1-α*), and OR139240 (*tub2*)

Culture characteristics: Colonies on PDA at 25°C: attaining 20mm to 25-mm diameter in 28 days, restricted, circular, flat, slimy, and grayish green to dull green with grayish green and entire margin; dark green in reverse; on MEA: attaining 16-mm to 20mm diameter, restricted, circular, convex, slimy, and dark green with grayish green and entire margin; reverse grayish green to deep green; and on OA: attaining 18-mm to 22-mm diameter, restricted, circular, flat, velvety, and greenish gray with black and entire margin; reverse greenish gray. No diffusible pigment produced on any media. *Submerged hyphae* smooth, thin-walled, hyaline to light brown, 1- μ m to 2- μ m wide, and aerial hyphae subhyaline to pale brown with branched hyphae. *Conidiophores*: semi-micronematous, arising vertically from hyphae at right angles, straight, sometimes branched, thin-walled, subhyaline to pale brown, 1–3 septate, cylindrical, and 8–35.5 μ m × 1–2 μ m (mean = 18.3 μ m × 1.5 μ m,

FIGURE 2

Petriomyces obovoidisporus (SDBR-CMU478, ex-type). (A) Colonies at 25°C for 28 days on PDA, MEA, and OA, respectively. (B–G) Conidiophore, conidiogenous cells, and conidia. (B–H) Conidia. Scale bars: (A) 2 cm and (B–G) 10 μm.

n = 30). *Conidiogenous cell*: integrated, intercalary or terminal, polyblastic, subconspicuous to conspicuous conidiogenous loci, subcylindrical, subdenticulate, smooth, thin-walled, cylindrical, slightly paler than conidiophore, and 13–65 µm × 1–2 µm (mean = 27.3 µm × 1.5 µm, n = 30). *Conidia*: one-celled, smooth, hyaline to subhyaline, obovoid or pyriform, 2–4 µm × 1–2 µm (mean = 2.8 µm

 \times 1.7 µm, n = 50), and hilum conspicuous. Chlamydospores and sexual morph were not produced on media.

Growth temperature: minimum at 10°C, optimum at the range of 25°C–28°C, maximum at 30°C, and no growth at 4°C and 35°C

Additional specimens examined: Thailand, Sukhothai province, Si Satchanalai District, 17°32′58″N 99°29′49″E, elevation at 153 m,

isolated from the rock of natural forest, June 2021, T. Thitla: SDBR-CMU479 [GenBank number: OQ991181 (ITS), OQ979611 (nrLSU), OR141871 (nrSSU),OR139229 ($tef1-\alpha$), and OR139241 (tub2)].

Habitat and distribution: sandstone; collected from Sukhothai province, Thailand.

Notes: Some herpotrichiellacious fungi are known to be rockinhabiting fungi, including Cladophialophora, Exophiala, Phialophora, and Rhinocladiella (Coleine and Selbmann, 2021; Liu et al., 2022). Cladophialophora is characterized by the production of branched or unbranched chains of one-cell conidia (Badali et al., 2008). Exophiala produced annellidic conidiogenesis and yeast-like states (de Hoog et al., 2011). Phialophora exhibited the basic morphological characteristics of conidial production through large phialidic conidiogenesis (Li et al., 2017). Rhinocladiella and Petriomyces share morphological characteristics of being polyblastic, as well as sympodial conidial formation on conidiogenous loci and aseptate conidia (Arzanlou et al., 2007). In addition, the conidia of Rhinocladiella appears in various shapes, including subglobose, ellipsoidal, obovoid, and subcylindrical to clavate, and is similar to Petriomyces, which appears obovoid or pyriform conidia. However, Rhinocladiella commonly produces thick-walled and brown conidiophores (Arzanlou et al., 2007), whereas Petriomyces has semi-micronematous, thin-walled, subhyaline, and pale brown conidiophores.

A multi-gene phylogenetic study revealed that Petriomyces formed a unique monophyletic clade in Herprotrichiellaceae with strong support values (100% BS and 1.00 PP) and formed a sister clade to Atrokylindriopsis setulose (HMAS245592) and Exophiala siamensis (SDBR-CMU417) (Figure 1). Atrokylindriopsis setulose was isolated from dead branches of an unidentified broadleaf tree and produced monophialidic conidiogenesis with setulate conidia (Ma et al., 2015). On the other hand, Petriomyces was isolated from rocks and produced a sympodial conidial formation with obovoidal conidia. Petriomyces obovoidisporus and Ex. siamensis were also isolated from rocks. However, Ex. siamensis produces short conidiophores, subspherical conidia, and pale brown chlamydospores, whereas Pe. obovoidisporus produces long conidiophores and obovoidal conidia and does not produce chlamydospores (Thitla et al., 2022). In addition, a pairwise nucleotide comparison of ITS and nrLSU sequencing data between Petriomyces obovoidisporus and Atrokylindriopsis setulose revealed different values of 12.5% (76/607 bp) and 2.7% (15/548 bp) including gaps. Notably, Pe. obovoidisporus and Ex. siamensis revealed pairwise nucleotide comparison values of 12.3% (75/609 bp) for ITS, 0.7% (7/1,007 bp) for nrSSU, 26.4% (58/220 bp) for tef1- α , and 25.8% (132/512 bp) for tub2 genes.

New species

Cladophialophora rupestricola, T. Thitla, J. Kumla, and N. Suwannarach, sp. nov. (Figure 3)

MycoBank number: MB846945

Etymology: "*rupestricola*" refers to the rock, where the habitat of the fungus.

Holotype: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, 18°32'11"N 99°07'22"E, elevation at 444 m, isolated from the sandstone of dipterocarp forest, July 2021, T. Thitla; dried culture, CMULPN5-5; ex-type culture, SDBR-CMU446.

GenBank number: OP903465 (ITS), OP903502 (nrLSU), OR141860 (nrSSU), OP923695 (*tef1-α*), and OR139230 (*tub2*)

Culture characteristics: Colonies on PDA, MEA, and OA were described after 28 days of incubation at 25°C in darkness: on PDA: attaining 15-mm to 17-mm diameter, restricted, circular, convex, velvety, gray in the center with black, and undulate margin; black in reverse; on MEA: attaining 8-mm to 13-mm diameter, restricted, circular, velvety, and dull green with dark green and entire margin; reverse dark green; on OA: attaining 36-mm to 40-mm diameter, restricted, circular, raised centrally, and gray aerial mycelium with greenish gray and entire margin; reverse dark green. A soluble olive and dull green pigment were observed around the fungal colonies on PDA and MEA, respectively. Hyphae smooth-walled, septate, hyaline to brown, 1.5-µm to 3-µm wide. Conidiophores reduced to conidiogenous cells, lateral or terminal on undifferentiated hyphae, smooth, hyaline to pale olivaceous, cylindrical, and 2.5-µm to 5-µm wide. Conidia spherical to ellipsoidal, aseptate, smooth, subhyaline to hyaline, forming branched acropetal chains at hyphae and conidiophore, 6–13.5 μ m × 3–6 μ m (mean = 9.5 μ m × 4.6 μ m, *n* = 50); Chlamydospores absent. Sexual morph was not produced on media.

Growth temperature: minimum at 15°C, optimum at the range of 25°C–30°C, maximum at 35°C, and no growth at 10°C and 37°C.

Additional specimens examined: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, $18^{\circ}32'11''N 99^{\circ}$ 07'22"E, elevation at 444 m, isolated from the rock of dipterocarp forest, July 2021, isolated by T. Thitla: SDBR-CMU447 [GenBank number: OP903466 (ITS), OP903503 (nrLSU), OR141861 (nrSSU), OP923696 (*tef1-* α), and OR139231 (*tub2*)] and SDBR-CMU448 [GenBank: OP903467 (ITS), OP903504 (nrLSU), OR141862 (nrSSU), OP923697 (*tef1-* α), and OR139232 (*tub2*)].

Habitat and distribution: sandstone; collected from Lamphun province, Thailand.

Notes: The colony characteristics of Cl. rupestricola resembled those of Cl. chaetospira and Cl. floridana that were isolated from the decaying bamboo and sclerotia of Cenococcum geophilum, respectively. However, the conidial size of Cl. rupestricola differs from that of Cl. chaetospira and Cl. floridana. Specifically, the conidia of Cl. rupestricola (6–13.5 μ m × 3–6 μ m) were significantly shorter than that of Cl. chaetospira (20–45 μ m × 3–5 μ m) and slightly broader than that of *Cl. floridana* (3.5–8 μ m × 2.0 -3µm) (Crous et al., 2007; Obase et al., 2016). In addition, these three species also exhibit distinct conidiophore and conidial characteristics. Cladophialophora floridana displayed narrower conidiophores (2-µm to 3-µm wide) than Cl. repestricola, which produced broader cylindrical, 2.5-µm- to 5-µm-wide conidiophores (Obase et al., 2016). In terms of conidial characteristics, Cl. chaetospira produced 1-3 septate of conidia that is in contrast to Cl. repestricola, which produced aseptate conidia (Crous et al., 2007). The multi-gene phylogenetic analyses indicated that Cl. rupestricola is a distinct species in Cladophialophora and it is

FIGURE 3

Cladophialophora rupestricola (SDBR-CMU446, ex-type). (A) Colonies at 25°C for 28 days on PDA, MEA, and OA, respectively. (B–D) Conidiophore and conidial chains. (E–I) Conidial chains on hyphae. Scale bars: (A) 2 cm and (B–I) 10 μm.

closely related to *Cl. sribuabanensis* (Figure 4). *Cladophialophora rupestricola* differs from *Cl. sribuabanensis* in terms of the temperature growth profile. *Cladophialophora rupestricola* has a maximum temperature of 35°C, whereas *Cl. sribuabanensis* has a maximum temperature of 30°C. In addition, *Cl. rupestricola* produced a soluble pigment on PDA and MEA, whereas *Cl. sribuabanensis* did not produce any pigment. Furthermore, a

pairwise nucleotide comparison of *Cl. rupestricola* and *Cl. sribuabanensis* resulted in differences of 7.0% (45/642 bp) in ITS, 0.2% (2/903 bp) in nrLSU, 0.3% (3/1037 bp) in nrSSU, 9.8% (20/205 bp) in *tef1-* α , and 10.6% (54/509 bp) in *tub2* sequences including gaps.

Cladophialophora sribuabanensis, T. Thitla, N. Suwannarach, and S. Lumyong, sp. nov. (Figure 5).

FIGURE 4

Phylogenetic relationships of *Cladophialophora* within the family *Herpotrichiellaceae* reconstructed by maximum likelihood analysis based on a combined dataset of ITS, nrLSU, nrSSU, *tub2*, and *tef1-* α genes. *Bradymyces alpinus* CCFEE 5493 and *Br. oncorhynchi* CCF 4369 were used as the outgroup. The values presented above branches represent the bootstrap percentages (left) and Bayesian posterior probabilities (right). Bootstrap values \geq 75% and Bayesian posterior probabilities \geq 0.95 are displayed. The scale bar indicates the estimated number of nucleotide substitutions per site. The newly generated sequences are in blue, whereas the ex-type species are indicated in bold.

MycoBank number: MB849333

Etymology: "*sribuabanensis*" refers to Sribuaban Subdistrict, Lamphun province, Thailand, where the rock samples were collected.

Holotype: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, 18°32'11"N 99°07'22"E, elevation at 444 m, isolated from the sandstone of dipterocarp forest, July 2021, T. Thitla; dried culture, CMULPN5-9; ex-type culture, SDBR-CMU476.

GenBank number: OQ991178 (ITS), OQ979608 (nrLSU), OR141868 (nrSSU), OR139226 (*tef1-α*), and OR139238 (*tub2*)

Culture characteristics: Colonies on PDA and MEA at 25°C extremely slow growing: on PDA: attaining 8-mm to 15-mm diameter; and on MEA: attaining 12-mm to 14-mm diameter in

28 days. The colony character on PDA spreading, circular, flat, olive brown, and undulate margin; brown in reverse; on MEA: circular, spreading, flat, velvety, and grayish green to olive with entire margin; reverse grayish green; on OA: attaining 32-mm to 38mm diameter, restricted, circular, flat, velvety, and olive brown to olive gray with entire margin; reverse olive gray. No diffusible pigment produced on any media. *Hyphae*: thin and smoothwalled, hyaline to light brown, 2-µm to 3-µm wide. *Conidiophores*: reduced to conidiogenous cells, semimicronematous, lateral or terminal, smooth, thin-walled, hyaline to pale brown, sub-cylindrical, and 2-µm to 4-µm wide. *Conidia*: subglobose to fusiform, aseptate, guttules, smooth, thin-walled, hyaline to pale brown, forming to unbranched conidial chain at hyphae and conidiophore, and 7–16 µm × 3–6 µm (mean = 11.2 µm

FIGURE 5

Cladophialophora sribuabanensis (SDBR-CMU446, ex-type). (A) Colonies at 25°C for 28 days on PDA, MEA, and OA, respectively. (B–D) Conidiophore and conidia. (E–F) Conidia on hyphae. Scale bars: (A) 2–cm and (B–F) 10 μm.

× 3.8 μ m, *n* = 50). *Chlamydospores* and sexual structures were not produced on any media.

Growth temperature: minimum at 15°C, optimum at the range of 28°C, maximum at 30°C, and no growth at 10°C and 35°C.

Additional specimens examined: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, $18^{\circ}32'11''N 99^{\circ}$ 07'22"E, elevation at 444 m, isolated from the rock of dipterocarp forest, July 2021, isolated by T. Thitla: SDBR-CMU477 [GenBank number: OQ991179 (ITS), OQ979609 (nrLSU), OR141869 (nrSSU), OR139227 (*tef1-a*), and OR139239 (*tub2*)].

Habitat and distribution: sandstone; collected from Lamphun province, Thailand.

Notes: *Cladophialophora sribuabanensis* was isolated from rock samples along with several other species, including *Cl. nyingchiensis*, *Cl. rupestricola*, *Cl. tengchongensis*, *Cl. thailandensis*, *Cl. tumbae*, and *Cl. tumulicola*, all of which were also isolated from rocks (Kiyuna et al., 2018; Sun et al., 2020). However, the conidial size of *Cl. sribuabanensis* (7–16 μ m × 3–6 μ m) was obviously larger than that of *Cl. tumbae* (4.5–6 μ m × 2–2.5 μ m) and longer than that of *Cl. tumulicola* (5–7 μ m × 3–4 μ m).

Furthermore, Cl. nyingchiensis produced septate conidia, which differs from Cl. sribuabanensis, which produced aseptate conidia. Cladophialophora sribuabanensis showed an exceptionally slow growth rate, reaching only 8-15 mm and 12-14 mm in diameter at 25°C for 28 days on PDA and MEA, respectively. In contrast, both Cl. tumbae and Cl. tumulicola achieved significantly larger diameters of 15-16 mm and 22-25 mm on PDA, respectively, within just 14 days at 25°C (Kiyuna et al., 2018). Cladophialophora nyingchiensis, Cl. tengchongensis, and Cl. thailandensis also displayed faster growth rates on MEA, attaining diameters of 21 mm, 28 mm, and 23-30 mm, respectively, compared to Cl. sribuabanensis at the same temperature (Sun et al., 2020). Cladophialophora sribuabanensis also differs from Cl. thailandensis, which does not produce chlamydospores on any media, whereas Cl. thailandensis produces subspherical chlamydospores (7.5–17 μ m × 4.5–14 μ m). The temperature profile of growth revealed that Cl. sribuabanensis has a minimum growth temperature of 15°C, whereas Cl. nyingchiensis and Cl. tengchongensis could grow at 4°C. In addition, the maximum growth temperature of Cl. sribuabanensis is 30°C, whereas Cl.

rupestricola has a maximum growth temperature of 35° C. Phylogenetically, *Cl. sribuabanensis* forms a sister clade to *Cl. rupestricola* (Figure 4). *Cladophialophora sribuabanensis* differs from *Cl. rupestricola* at different maximum growth temperatures (as mentioned above). Moreover, *Cl. sribuabanensis* does not produce any pigments in contrast to *Cl. rupestricola*, which produces olive and dull green pigments on PDA and MEA, respectively. Also, a pairwise nucleotide comparison of *Cl. rupestricola* and *Cl. sribuabanensis* revealed differences of 7.0% (45/642 bp) in the ITS, 0.2% (2/903 bp) in nrLSU, 0.3% (3/1,037 bp) in nrSSU, 9.8% (20/205 bp) in *tef1-α*, and 10.6% (54/509 bp) in *tub2* sequences including gaps.

Cladophialophora thailandensis, T. Thitla, J. Kumla, and N. Suwannarach, sp. nov. (Figure 6)

MycoBank number: MB846946

Etymology: "*thailandensis*" referring to Thailand, where the new species was found.

Holotype: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, 18°32'13"N 99°07'31"E, elevation at 432 m, isolated from the sandstone of dipterocarp forest, July 2021, T. Thitla; dried culture, CMULPN13-12; ex-type culture, SDBR-CMU451.

GenBank number: OP903470 (ITS), OP903507 (nrLSU), OR141865 (nrSSU), OP923700 (*tef1-α*), and OR139235 (*tub2*).

Culture characteristics: Colonies on PDA, MEA, and OA were described at 25°C in the dark after 28 days: on PDA: attaining 28mm to 34-mm diameter, irregularly circular, flat, center velvety gray to black with grayish green and entire to undulate margin; black to grayish green in reverse; on MEA: attaining 23-mm to 30-mm diameter, spreading, circular, velvety, and greenish gray to dark green with gravish green and entire margin; reverse black to gravish green; on OA: attaining 32-mm to 39-mm diameter, restricted, circular, convex, and olive brown aerial mycelium with dark green and entire margin; reverse dark green to dull green. No diffusible pigment produced on any media. Hyphae smooth-walled, septate, hyaline to pale brown, 1.5-µm to 4-µm wide. Conidiophores: reduced to conidiogenous cells, lateral on undifferentiated hyphae, producing long chains conidia, smooth, pale olivaceous, cylindrical to subcylindrical, and 2-µm to 4-µm wide. Conidia: subspherical to fusiform, aseptate, subhyaline to hyaline, smooth, acropetal, catenulate, and 5–11 μ m × 3–4 μ m (mean = 7.3 μ m × 3.3 μ m, n = 50). *Chlamydospores*: subspherical, smooth, light to dark brown, and 7.5–17 μ m × 4.5–14 μ m (mean = 10.7 μ m × 7.2 μ m, *n* = 20). Sexual morph was not produced on media.

Growth temperature: minimum at 10°C, optimum at 28°C, maximum at 35°C, and no growth at 4°C and 37°C.

Additional specimens examined: Thailand, Lamphun province, Mueang Lamphun District, Sribuaban Subdistrict, $18^{\circ}32'13''N 99^{\circ}$ 07'31"E, elevation at 432 m, isolated from the rock of dipterocarp forest, July 2021, isolated by T. Thitla SDBR-CMU449 [GenBank number: OP903468 (ITS), OP903505 (nrLSU), OR141863 (nrSSU), OP923698 (*tef1-* α), and OR139233 (*tub2*)], SDBR-CMU450 [GenBank number: OP903469 (ITS), OP903506 (nrLSU), OR141864 (nrSSU), OP923699 (*tef1-* α), and OR139234 (*tub2*)], and SDBR-CMU452 [GenBank number: OP903471 (ITS), OP903508 (nrLSU), OR141866 (nrSSU), OP923701 (*tef1-\alpha*), and OR139236 (*tub2*)]; rock from dipterocarp forest, August 2022, isolated by T. Thitla SDBR-CMU453 [GenBank number: OP903472 (ITS), OP903509 (nrLSU), OR141867 (nrSSU), OP923702 (*tef1-\alpha*), and OR139237 (*tub2*)].

Habitat and distribution: sandstone; known from Lamphun province, Thailand.

Notes: Cladophialophora thailandensis produced a greenish gray colony on MEA. This outcome was similar to that of Cl. eucalypti, Cl. immunda, Cl. mycetomatis, and Cl. pseudocarrionii. Nevertheless, Cl. thailandensis has distinct habitats from these species. Cladophialophora eucalypti was isolated from leaves of Eucalyptus dunnii, whereas Cl. pseudocarrionii originated from soil, and both Cl. immunda and Cl. mycetomatis were isolated from humans (Badali et al., 2008; Madrid et al., 2016; Crous et al., 2019a). Furthermore, the conidial size of Cl. thailandensis (5-11 µm \times 3–4 µm) is shorter than that of *Cl. eucalypti* (8–20 µm \times 2.5–3 µm) (Crous et al., 2019a) but longer than that of Cl. immunda (3 -4.5 μ m × 2.5-4 μ m) and *Cl. mycetomatis* (2.5-3 μ m × 2-3 μ m) (Badali et al., 2008). Cladophialophora thailandensis can be distinguished from Cl. pseudocarrionii by having a subspherical chlamydospore, whereas the chlamydospore production of Cl. pseudocarrionii was not observed (Madrid et al., 2016). In terms of the growth temperature, Cl. thailandensis also differs from Cl. immunda, Cl. mycetomatis, and Cl. pseudocarrionii, as Cl. thailandensis is unable to grow at 37°C (Badali et al., 2008; Madrid et al., 2016).

The multi-gene phylogenetic analyses indicated that Cl. thailandensis formed a distinct monophyletic clade within Cladophialophora and was closely related to Cl. inabaensis and Cl. lanosa isolated from soil samples (Figure 4). However, the absence of chlamydospore formation in Cl. inabaensis is differentiated from Cl. thailandensis (Usui et al., 2016). In contrast to Cl. thailandensis, which exhibited a maximum growth temperature of 35°C, Cl. inabaensis could grow at 37°C, indicating a higher tolerance to elevated temperatures (Usui et al., 2016). Moreover, the conidia of Cl. thailandensis are longer than those of Cl. lanosa (2–4 μ m × 2–3 μm) (Das et al., 2019). A pairwise nucleotide comparison between the ITS sequence data of Cl. thailandensis to Cl. inabaensis and Cl. lanosa indicated base pair differences of 8.8% (45/510 bp) and 6.9% (36/515 bp), respectively. In addition, a pairwise nucleotide comparison of nrLSU data also indicated that Cl. thailandensis differs from Cl. lanosa by 0.5% (4/764 bp) including gaps.

Discussion

Herpotrichiellaceae is one of the well-known families in the order Chaetothyriales (Wijayawardene et al., 2020; Tian et al., 2021; Bezerra et al., 2022; Wijayawardene et al., 2022). Presently, four genera in Herpotrichiellaceae have been discovered on rocks, viz., Cladophialophora, Exophiala, Phialophora, and Rhinocladiella (Sun et al., 2020; Liu et al., 2022; Thitla et al., 2022). In this study, we introduced new taxa of rock-inhabiting fungi in the family Herpotrichiellaceae that were collected from northern Thailand. These taxa comprised a novel genus, named Petriomyces and three new species of Cladophialophora. The genus Petriomyces has been

FIGURE 6

Cladophialophora thailandensis (SDBR-CMU451, ex-type), (A) Colonies at 25°C for 28 days on PDA, MEA, and OA, respectively. (B–E) Conidiophore and conidial chains. (F, G) Chlamydospores. Scale bars: (A) 2 cm and (B–G) 5 µm.

introduced on the basis of its fungal habitat, morphological characteristics, growth temperature, and phylogenetic analysis. Consequently, the number of rock-inhabiting fungal genera in the family *Herpotrichiellaceae* has increased to five genera.

Prior to this study, 20 genera (Aculeata, Atrokylindriopsis, Brycekendrickomyces, Capronia, Cladophialophora, Exophiala, Fonsecaea, Marinophialophora, Melanoctona, Metulocladosporiella, Minimelanolocus, Neosorocybe, Phialophora, Pleomelogramma, Rhinocladiella, Sorocybe, Thysanorea, Uncispora, Valentiella, and Veronaea) have been accepted into the family Herpotrichiellaceae (Wijayawardene et al., 2020; Tian et al., 2021; Bezerra et al., 2022; Wijayawardene et al., 2022). However, the number of genera in Herpotrichiellaceae has been a subject of debate in previous studies due to the variability of their morphological characteristics (Quan et al., 2020; Tian et al., 2021). Therefore, molecular phylogeny has been recognized as a valuable tool for researchers in the identification of fungi within Herpotrichiellaceae. Consequently, the aim of this study was to inspect and update the members of this family through molecular phylogeny using combined ITS, nrLSU, and nrSSU sequences. In our phylogenetic tree (Figure 1)

indicated that species of herpotrichiellaceous fungi are paraphyletic and polyphyletic within the family *Herpotrichiellaceae* and *Trichomeriaceae* and this is concurred with previous studies (Quan et al., 2020; Wan et al., 2021).

A new genus (Petriomyces) obtained from this study formed within Herpotrichiellaceae (Figure 1). Regarding species Brycekendrickomyces and Metulocladosporiella, which were previously placed in the family Herpotrichiellaceae (Crous et al., 2006; Crous et al., 2009; Wijayawardene et al., 2020; Tian et al., 2021; Bezerra et al., 2022; Wijayawardene et al., 2022), our phylogenetic analysis placed their type sequences within the family Trichomeriaceae. Morphologically, these two species were reported from asexual characters, whereas the members of family Trichomeriaceae are predominantly known for their sexual characters. Although, there have been reports of asexual reproduction in certain species within family Trichomeriaceae, the specific asexual characters vary within the family. Because of the variability of asexual characters within the family Trichomeriaceae, we have tentatively transferred genera Brycekendrickomyces and Metulocladosporiella to the family Trichomeriaceae based solely on

their phylogenetic placement. However, further studies, including additional collections and the linkage of sexual and asexual morphs for these two species, are necessary to confirm their phylogenetic placement and to gain a better understanding of the diversity of asexual characters within the family Trichomeriaceae. Furthermore, Neosorocybe and Sorocybe were also previously classified into Herpotrichiellaceae (Crous et al., 2020b; Wijayawardene et al., 2022). However, the phylogenetic analysis in this study revealed that these genera formed a unique clade to be clearly distinct from Herpotrichiellaceae and Trichomeriaceae (Figure 1). These two genera should be excluded from the family Herpotrichiellaceae. Therefore, we propose that the family Herpotrichiellaceae should contain 17 fungal genera (Table 4). However, there is still a need for the molecular data of the genus Pleomelogramma (Spegazzini, 1909) to confirm its phylogenetic placement. Most herpotrichiellaceous fungi still have a broadly paraphyletic and polyphyletic relationship. Therefore, further resolutions and characterizations are required to achieve a better understanding of their taxonomic classification within Herpotrichiellaceae.

In this study, the phylogenetic results indicate that Cladophialophora is a polyphyletic group, as is consistent with the findings of previous studies that reported the polyphyletic nature of the Cladophialophora species (Badali et al., 2008; Teixeira et al., 2017; Quan et al., 2020). Our three new species of Cladophialophora (Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis) were established on the basis of comprehensive analyses of morphological characteristics, growth temperature, and multi-gene phylogeny. Furthermore, the nucleotide comparisons of the ITS, tef1- α , or *tub2* genes with phylogenetically related species revealed nucleotide differences that were greater than 1.5%. This is in line with the suggestion made by Jeewon and Hyde (2016) that nucleotide differences above 1.5% are necessary to justify the recognition of a new species. Therefore, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis can be considered new species, whereas the total number of accepted Cladophialophora species globally has increased to 52. On the basis of our phylogenetic analysis, a total of 38 Cladophialophora species were classified as members of Herpotrichiellaceae. Three species (Cl. eucalypti, Cl. proteae, and Cl.

TABLE 4 Comparison of fungal genera belonging to the family Herpotrichiellaceae from previous reports and this study. .

			Fungal Family*		
Fungal Genus					This study (2023)
Aculeata	•			•	•
Atrokylindriopsis	▲	•	▲	•	
Brycekendrickomyces	•	•	•	•	•
Capronia	-	-	-	-	-
Cladophialophora	•		•		
Exophiala	•	•	•	•	
Fonsecaea	•	•	•	•	
Marinophialophora	-	•	•	•	•
Melanoctona	•		•		
Metulocladosporiella	•	•	•	•	•
Minimelanolocus	•	•	•	•	
Neosorocybe	NR	NR		NR	
Petriomyces	NR	NR	NR	NR	
Phialophora	•	•	•	•	
Pleomelogramma	•	•	•	•	
Rhinocladiella	•	•		•	
Sorocybe	•	•	•	•	
Thysanorea	•	•	•	•	
Uncispora	A		A		
Valentiella	NR	NR	NR	•	
Veronaea					

The fungal family is represented by a color symbol; *Herpotrichiellaceae* is shown by **T**, *Trichomeriaceae* is indicated by **O**, incertae sedis in class *Chaetothyriales* is indicated by **A**, and not reported is indicated by "NR."

pucciniophila) were placed in Trichomeriaceae, which is consistent with the study of Quan et al. (2020). Moreover, Quan et al. (2020) reported that *Cl. humicola, Cl. minutissima*, and *Cl. sylvestris* were placed in *Epibryaceae*. Accordingly, *Cl. behniae*, *Cl. modesta, Cl. scillae*, and *Cl. hostae* have been assigned in an incertae sedis clade *Chaetothyriales* (Quan et al., 2020; Crous et al., 2021). However, the phylogenetic placements of the remaining four species (*Cl. cladoniae*, *Cl. hawksworthii, Cl. megalosporae*, and *Cl. normandinae*) are uncertain and the acquisition of further molecular data will be necessary.

An investigation of fungal grown at variant temperatures indicates that our fungi could grow under a wide range of temperature conditions. Three new species of Cladophialophora could thrive at temperatures ranging from 10°C to 35°C. Moreover, a new genus Pe. obovoidisporus could thrive at temperatures ranging between 10°C and 30°C. Accordingly, these temperatures were within a range of 10°C-38°C in the dipterocarp forest in Lamphun and Sukhothai provinces, Thailand, respectively. As has become evident, both fungi have adapted to survive in their respective environments. Remarkably, growth temperature is one of the factors that can limit fungal ability to infect human and animal bodies due to their high body temperatures (Garcia-Solache and Casadevall, 2010). Some herpotrichiellaceous fungi that are known to infect humans and animals can grow at high temperatures. For example, Cl. arxii, Cl. carrionii, Phia. chinensis, and Phia. expanda can grow at temperatures of 37°C or higher (de Hoog et al., 1995; Li et al., 2017). The growth temperature of herpotrichiellaceous fungi is often associated with clinical predilections with the species growing at 40°C often causing systemic infections (de Hoog et al., 2000; Badali et al., 2008). Three new species of Cladophialophora and Petriomyces identified in this study may not be the source pathogen in humans and animals because they cannot grow at temperatures above 37°C. However, their ability to be the causal agents of infections in humans and animals needs to be further investigated. Currently, global temperatures are rising because of climate change, which can affect all aspects of a given ecosystem (Gadre et al., 2022). As a result, this environment may have an impact on the global diversity and distribution of herpotrichiellaceous fungi. Some herpotrichiellace fungi can survive and grow at high temperatures, but others cannot survive at higher temperatures and die.

In conclusion, we investigated the rock-inhabiting fungi belonged to the family Herpotrichiellaceae collected from northern Thailand. Three new species of Cladophialophora (Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis) and a new genus (Petriomyces) were identified on the basis of the relevant morphological characteristics, growth temperature, and multi-gene phylogeny. Furthermore, the relevant data on the genera in Herpotrichiellaceae have been updated. In this study, we propose that Herpotrichiellaceae consists of 17 genera, including Aculeata, Atrokylindriopsis, Capronia, Cladophialophora, Exophiala, Fonsecaea, Marinophialophora, Melanoctona, Minimelanolocus, Petriomyces, Phialophora, Pleomelogramma, Rhinocladiella, Thysanorea, Uncispora, Valentiella, and Veronaea. However, the classification of several genera in this family is still problematic due to variabilities in some of the morphological characteristics, their existing polyphyletic relationships, and the limited amount of molecular data, especially protein coding genes. Therefore, further studies involving morphology, ecology, and molecular investigations, as well as in-depth evolutionary studies, should be conducted to further clarify the family *Herpotrichiellaceae*.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

NS and SL: conceptualization in this study. TT, JK, and NS: methodology. TT, JK, SH, CS, and NS: software. TT, JK, and NS: validation. TT, SK, and JK: formal analysis. TT, JK, and NS: investigation. TT, SK, JK, and NS: resources. TT and JK: data curation. TT, JK, and NS: writing—original draft preparation. TT, JK, SH, CS, SK, SL, and NS: writing—review and editing. JK, SH, and NS: visualization. SL and NS: supervision. NS and JK: project administration. SL and NS: funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by Fundamental Fund 2023 (grant number: FF66/065), Chiang Mai University, Thailand. Saisamorn Lumyong thanks National Research Council of Thailand for the support (grant number: N42A650198).

Acknowledgments

The authors gratefully acknowledge the TA & RA Scholarship, graduate school, Chiang Mai University, Thailand. The authors are grateful to Russell Kirk Hollis for the English correction of this manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abliz, P., Fukushima, K., Takizawa, K., Nieda, N., Miyaji, M., and Nishimura, K. (2003). Rapid identification of the genus *Fonsecaea* by PCR with specific oligonucleotide primers. *J. Clin. Microbiol.* 41, 873–876. doi: 10.1128/JCM.41.2.873-876.2003

Abliz, P., Fukushima, K., Takizawa, K., and Nishimura, K. (2004). Specific oligonucleotide primers for identification of *Cladophialophora carrionii*, a causative agent of chromoblastomycosis. *J. Clin. Microbiol.* 42, 404–407. doi: 10.1128/JCM.42.1.404-407.2004

Arzanlou, M., and Crous, P. W. (2006). "Strelitziana africana," in *Fungal Planet No. 8* (Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre).

Arzanlou, M., Groenewald, J. Z., Gams, W., Braun, U., Shin, H. D., and Crous, P. W. (2007). Phylogenetic and morphotaxonomic revision of *Ramichloridium* and allied genera. *Stud. Mycol.* 58, 57–93. doi: 10.3114/sim.2007.58.03

Attili-Angelis, D., Duarte, A. P. M., Pagnocca, F. C., Nagamoto, N. S., de Vries, M., Stielow, J. B., et al. (2014). Novel *Phialophora* species from leaf-cutting ants (tribe *Attini*). *Fungal Divers*. 65, 65–75. doi: 10.1007/s13225-013-0275-0

Aureli, L., Pacelli, C., Cassaro, A., Fujimori, A., Moeller, R., and Onofri, S. (2020). Iron ion particle radiation resistance of dried colonies of *Cryomyces antarcticus* embedded in Martian Regolith Analogues. *Life* 10, 306. doi: 10.3390/life10120306

Ávila, A., Groenewald, J. Z., Trapero, A., and Crous, P. W. (2005). Characterisation and epitypification of *Pseudocercospora cladosporioides*, the causal organism of Cercospora leaf spot of olives. *Mycol. Res.* 109, 881–888. doi: 10.1017/S0953756205003503

Badali, H., Carvalho, V. O., Vicente, V., Attili-Angelis, D., Kwiatkowski, I. B., Gerrits Van Den Ende, A. H., et al. (2009). *Cladophialophora saturnica* sp. nov., a new opportunistic species of Chaetothyriales revealed using molecular data. *Med. Mycol.* 47, 51–62. doi: 10.1080/13693780802291452

Badali, H., Gueidan, C., Najafzadeh, M. J., Bonifaz, A., Gerrits van den Ende, A. H. G., and de Hoog, G. S. (2008). Biodiversity of the genus *cladophialophora*. *Stud. Mycol.* 61, 175191. doi: 10.3114/sim.2008.61.18

Badali, H., Prenafeta-Boldu, F. X., Guarro, J., Klaassen, C. H., Meis, J. F., and de Hoog, G. S. (2011). *Cladophialophora psammophila*, a novel species of *Chaetothyriales* with a potential use in the bioremediation of volatile aromatic hydrocarbons. *Fungal Biol.* 115, 1019–1029. doi: 10.1016/j.funbio.2011.04.005

Bezerra, J. D. P., Navarro, H. M. C., Almeida, J. H., Félix, C. R., and Landell, M. F. (2022). Valentiella maceioensis gen. et sp. nov. (*Herpotrichiellaceae, Chaetothyriales*), a new black yeast-like fungus isolated from bromeliads in Brazil. *Mycol. Prog.* 21, 30. doi: 10.1007/s11557-022-01783-3

Boonmee, S., Wanasinghe, D. N., Calabon, M. S., Huanraluek, N., Chandrasiri, S. K. U., Jones, G. E. B., et al. (2021). Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers*. 111, 1–335. doi: 10.1007/s13225-021-00489-3

Borelli, D. (1980). "Causal agents of chromoblastomycosis (Chromomycetes)," in Proceedings of the 5th International Conference on Mycoses: Superficial, cutaneous and subcutaneous infections, Scientific Publication No. 396, Pan American Health Organization, Caracas.

Braun, U. (1998). A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic hyphomycetes) Vol. 2 (IHW-Verlag, Eching, Germany). 493 pp.

Braun, U., Crous, P. W., Dugan, F., Groenewald, J. Z., and de Hoog, G. S. (2003). Phylogeny and taxonomy of *Cladosporium*-like hyphomycetes, including *Davidiella* gen. nov., the teleomorph of Cladosporium s. str. *Mycol. Prog.* 2, 3–18. doi: 10.1007/s11557-006-0039-2

Carbone, I., and Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91, 553–556. doi: 10.1080/00275514.1999.12061051

Cassaro, A., Pacelli, C., and Onofri, S. (2022). Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. *Front. Microbiol.* 13. doi: 10.3389/fmicb.2022.992077

Cheewangkoon, R., Groenewald, J. Z., Summerell, B. A., Hyde, K. D., To-Anun, C., and Crous, P. W. (2009). Myrtaceae, a cache of fungal biodiversity. *Persoonia* 23, 55–85. doi: 10.3767/003158509X474752

Chomnunti, P., Schoch, C. L., Aguirre-Hudson, B., Ko-Ko, T. W., Hongsanan, S., Jones, E. B., et al. (2011). Capnodiaceae. *Fungal Divers.* 51, 103–134. doi: 10.1007/s13225-011-0145-6

Coleine, C., and Selbmann, L. (2021). "2.1 Black fungi inhabiting rock surfaces," in *Life at Rock Surfaces: Challenged by Extreme Light, Temperature and Hydration Fluctuations.* Eds. B. Büdel and T. Friedl (Berlin, Boston: De Gruyter), 57–86. doi: 10.1515/9783110646467-003

Crous, P. W., Braun, U., Wingfield, M. J., Wood, A. R., Shin, H. D., Summerell, B. A., et al. (2009). Phylogeny and taxonomy of obscure genera of microfungi. *Persoonia* 22, 139–161. doi: 10.3767/003158509X461701

Crous, P. W., Carnegie, A. J., Wingfield, M. J., Sharma, R., Mughini, G., Noordeloos, M. E., et al. (2019a). Fungal Planet description sheets: 868–950. *Persoonia* 42, 291–473. doi: 10.3767/persoonia.2019.42.11

Crous, P. W., Cowan, D. A., Maggs-Kölling, G., Yilmaz, N., Thangavel, R., Wingfield, M. J., et al. (2021). Fungal planet description sheets: 1182-1283. *Persoonia* 46, 313–528. doi: 10.3767/persoonia.2021.46.11

Crous, P. W., Schroers, H. J., Groenewald, J. Z., Braun, U., and Schubert, K. (2006). *Metulocladosporiella* gen. nov. for the causal organism of *Cladosporium* speckle disease of banana. *Mycol. Res.* 110, 264–275. doi: 10.1016/j.mycres.2005.10.003

Crous, P. W., Schubert, K., Braun, U., de Hoog, G. S., Hocking, A. D., Shin, H. D., et al. (2007). Opportunistic, human-pathogenic species in the *Herpotrichiellaceae* are phenotypically similar to saprobic or phytopathogenic species in the *Venturiaceae*. *Stud. Mycol.* 58, 185–217. doi: 10.3114/sim.2007.58.07

Crous, P. W., Schumacher, R. K., Akulov, A., Thangavel, R., Hernández-Restrepo, M., Carnegie, A. J., et al. (2019b). New and interesting fungi. 2. *Fungal Syst. Evol.* 3, 57–134. doi: 10.3114/fuse.2019.03.06

Crous, P. W., Schumacher, R. K., Wingfield, M. J., Akulov, A., Denman, S., Roux, J., et al. (2018a). New and interesting fungi. 1. *Fungal Syst. Evol.* 1, 169–216. doi: 10.3114/fuse.2018.01.08

Crous, P. W., Wingfield, M. J., Burgess, T. I., Hardy, G. E., Crane, C., Barrett, S., et al. (2016). Fungal Planet description sheets: 469–557. *Persoonia* 37, 218–403. doi: 10.3767/003158516X694499

Crous, P. W., Wingfield, M. J., Burgess, T. I., Hardy, G. E. S. J., Gené, J., Guarro, J., et al. (2018b). Fungal Planet description sheets: 716–784. *Persoonia* 40, 240–393. doi: 10.3767/persoonia.2018.40.10

Crous, P. W., Wingfield, M. J., Chooi, Y. H., Gilchrist, C. L. M., Lacey, E., Pitt, J. I., et al. (2020a). Fungal Planet description sheets: 1042–1111. *Persoonia* 44, 301–459. doi: 10.3767/persoonia.2020.44.11

Crous, P. W., Wingfield, M. J., Guarro, J., Cheewangkoon, R., van der Bank, M., Swart, W. J., et al. (2013). Fungal Planet description sheets: 154–213. *Persoonia* 31, 188– 296. doi: 10.3767/003158513X675925

Crous, P. W., Wingfield, M. J., Guarro, J., Hernández-Restrepo, M., Sutton, D. A., Acharya, K., et al. (2015). Fungal Planet description sheets: 320–370. *Persoonia* 34, 167–266. doi: 10.3767/003158515X688433

Crous, P. W., Wingfield, M. J., Lombard, L., Roets, F., Swart, W. J., Alvarado, P., et al. (2019c). Fungal Planet description sheets: 951–1041. *Persoonia* 43, 223–425. doi: 10.3767/persoonia.2019.43.06

Crous, P. W., Wingfield, M. J., Schumacher, R. K., Akulov, A., Bulgakov, T. S., Carnegie, A. J., et al. (2020b). New and interesting fungi. 3. *Fungal Syst. Evol.* 6, 157–231. doi: 10.3114/fuse.2020.06.09

Crous, P. W., Wingfield, M. J., Schumacher, R. K., Summerell, B. A., Giraldo, A., Gené, J., et al. (2014). Fungal Planet description sheets: 281–319. *Persoonia* 33, 212–289. doi: 10.3767/003158514X685680

Das, K., Lee, S. Y., and Jung, H. Y. (2019). *Cladophialophora lanosa* sp. nov., a new species isolated from soil. *Mycobiology* 47, 173-179. doi: 10.1080/12298093.2019.1611242

de Hoog, G. S. (2010). Persoonial Reflections, Beware of your dishwasher! *Persoonia* 25, 117–159. doi: 10.3767/003158510X552636

de Hoog, G. S., Guarro, J., and Gené, J. (2000). Atlas of Clinical Fungi. 2nd edn (Washington, DC: American Society for Microbiology Press).

de Hoog, G. S., Guého, E., Masclaux, F., Gerrits van den Ende, A. H. G., Kwon-Chung, K. J., and McGinnis, M. R. (1995). Nutritional physiology and taxonomy of human-pathogenic *Cladosporium-Xylohypha* species. *J. Med. Vet. Mycol.* 33, 339–347. doi: 10.1080/02681219580000661

de Hoog, G. S., Nishikaku, A. S., Fernandez-Zeppenfeldt, G., Padín-González, C., Burger, E., Badali, H., et al. (2007). Molecular analysis and pathogenicity of the *Cladophialophora carrionii* complex, with the description of a novel species. *Stud. Mycol.* 58, 219–234. doi: 10.3114/sim.2007.58.08

de Hoog, G. S., Vicente, V., Caligiorne, R. B., Kantarcioglu, S., Tintelnot, K., Gerrits van den Ende, A. H., et al. (2003). Species diversity and polymorphism in the *Exophiala spinifera* clade containing opportunistic black yeast-like fungi. *J. Clin. Microbiol.* 41, 4767–4778. doi: 10.1128/JCM.41.10.4767-4778.2003

de Hoog, G. S., Vicente, V. A., Najafzadeh, M. J., Harrak, M. J., Badali, H., and Seyedmousavi, S. (2011). Waterborne *Exophiala* species causing disease in coldblooded animals. *Persoonia* 27, 46–72. doi: 10.3767/003158511X614258

Diederich, P., Ertz, D., Lawrey, J. D., Sikaroodi, M., and Untereiner, W. A. (2013). Molecular data place the hyphomycetous lichenicolous genus *Sclerococcum* close to *Dactylospora* (*Eurotiomycetes*) and *S. parmeliae* in *Cladophialophora* (*Chaetothyriales*). *Fungal Divers*. 58, 61–72. doi: 10.1007/s13225-012-0179-4

Dong, W., Hyde, K. D., Bhat, D. J., and Zhang, H. (2018). Introducing Aculeata aquatica gen. et sp. nov., Minimelanolocus Thailandensis sp. nov. and Thysanorea aquatica sp. nov. (Herpotrichiellaceae, Chaetothyriales) from freshwater in northern Thailand. Mycol. Prog. 17, 617–629. doi: 10.1007/s11557-018-1389-2

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinform*. 5, 113. doi: 10.1186/1471-2105-5-113

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39, 783–791. doi: 10.2307/2408678

Feng, P. Y., de Hoog, G. S., Najafzadeh, M. J., Gerrits van den Ende, A. H. G., Stielow, J. B., Badali, H., et al. (2014). *Cladophialophora abundans*, a novel species of

Chaetothyriales isolated from the natural environment. Mycol. Prog. 13, 381-391. doi: 10.1007/s11557-013-0924-4

Gadre, A., Enbiale, W., Andersen, L. K., and Coates, S. J. (2022). The effects of climate change on fungal diseases with cutaneous manifes-tations: a report from the international society of dermatology climate change committee. *J. Clim. Change Health* 6, 100156. doi: 10.1016/j.joclim.2022.100156

Garcia-Solache, M. A., and Casadevall, A. (2010). Global warming will bring new fungal diseases for mammals. *MBio* 1, 00061–00010. doi: 10.1128/mBio.00061-10

Geiser, D. M., Gueidan, C., Miadlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., et al. (2006). *Eurotiomycetes: eurotiomycetidae* and *chaetothyriomycetidae*. *Mycologia* 98, 1053–1064. doi: 10.3852/mycologia.98.6.1053

Glass, N. L., and Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microbiol.* 61, 1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995

Glynou, K., Ali, T., Buch, A. K., Haghi Kia, S., Ploch, S., Xia, X., et al. (2016). The local environment determines the assembly of root endophytic fungi at a continental scale. *Environ. Microbiol.* 18, 2418–2434. doi: 10.1111/1462-2920.13112

Gorbushina, A. A. (2007). Life on the rocks. *Environ. Microbiol.* 9, 1613–1631. doi: 10.1111/j.1462-2920.2007.01301.x

Gostinčar, C., Zalar, P., and Gunde-Cimerman, N. (2022). No need for speed: slow development of fungi in extreme environments. *Fungal Biol. Rev.* 39, 1–14. doi: 10.1016/j.fbr.2021.11.002

Gueidan, C., Aptroot, A., da Silva Cáceres, M. E., Badali, H., and Stenroos, S. (2014). A reappraisal of orders and families within the subclass *Chaetothyriomycetidae* (*Eurotiomycetes, Ascomycota*). *Mycol. Prog.* 13, 990. doi: 10.1007/s11557-014-0990-2

Gueidan, C., Villaseñor, C. R., de Hoog, G. S., Gorbushina, A. A., Untereiner, W. A., and Lutzoni, F. (2008). A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. *Stud. Mycol.* 61, 111–119. doi: 10.3114/sim.2008.61.11

Haase, G., Sonntag, L., Melzer-Krick, B., and de Hoog, G. S. (1999). Phylogenetic inference by SSU gene analysis of members of the *Herpotrichiellaceae*, with special reference to human pathogenic species. *Stud. Mycol.* 43, 80–97.

Hall, T. (2004) *Bioedit Version 6.0.7*. Available at: http://www.mbio.ncsu.edu/bioedit/bioedit (Accessed 28 March 2023).

Hernández-Restrepo, M., Giraldo, A., van Doorn, R., Wingfield, M. J., Groenewald, J. Z., Barreto, R. W., et al. (2010). The genera of fungi - G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis. Fungal Syst. Evol. 6, 1–24. doi: 10.3114/ fuse.2020.06.01

Hernández-Restrepo, M., Schumacher, R. K., Wingfield, M. J., Ahmad, I., Cai, L., Duong, T. A., et al. (2016). Fungal systematics and evolution: FUSE 2. Sydowia 68, 193–230. doi: 10.12905/0380.sydowia68-2016-0193

Hubka, V., Réblová, M., Rehulka, J., Selbmann, L., Isola, D., de Hoog, S. G., et al. (2014). *Bradymyces* gen. nov. (*Chaetothyriales, Trichomeriaceae*), a new ascomycete genus accommodating poorly differentiated melanized fungi. *Antonie van Leeuwenhoek* 106, 979–992. doi: 10.1007/s10482-014-0267-4

Hyde, K. D., Norphanphoun, C., Chen, J., Dissanayake, A. J., Doilom, M., Hongsanan, S., et al. (2018). Thailand's amazing diversity: up to 96% of fungi in northern Thailand may be novel. *Fungal Divers.* 93, 215–239. doi: 10.1007/s13225-018-0415-7

Index Fungorum. (2023). Available at: http://www.indexfungorum.org (Accessed 20 February 2023).

Isola, D., Zucconi, L., Onofri, S., Caneva, G., de Hoog, G. S., and Selbmann, L. (2016). Extremotolerant rock inhabiting black fungi from Italian monumental sites. *Fungal Divers*. 76, 75–96. doi: 10.1007/s13225-015-0342-9

James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. *Nature* 443, 818–822. doi: 10.1038/nature05110

Jeewon, R., and Hyde, K. D. (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. *Mycosphere* 7, 1669–1677. doi: 10.5943/mycosphere/7/11/4

Khuna, S., Kumla, J., Thitla, T., Nuangmek, W., Lumyong, S., and Suwannarach, N. (2022). Morphology, molecular identification, and pathogenicity of two novel *Fusarium* species associated with postharvest fruit rot of cucurbits in northern Thailand. *J. Fungi* 8, 1135. doi: 10.3390/jof8111135

Kiyuna, T., An, K. D., Kigawa, R., Sano, C., and Sugiyama, J. (2018). Two new *Cladophialophora* species, *C. tumbae* sp. nov. and *C. tumulicola* sp. nov., and chaetothyrialean fungi from biodeteriorated samples in the Takamatsuzuka and Kitora Tumuli. *Mycoscience* 59, 7584. doi: 10.1016/j.myc.2017.08.008

Koukol, O. (2010). Revision of "Septonema ochraceum" revealed three new species of Venturiaceae and *Herpotrichiellaceae. Mycol. Prog.* 9, 369–378. doi: 10.1007/s11557-009-0645-x

Li, D. M., de Hoog, G. S., Saunte, D. M., van den Ende, A. H., and Chen, X. R. (2008). *Coniosporium epidermidis* sp. nov., a new species from human skin. *Stud. Mycol.* 61, 131–136. doi: 10.3114/sim.2008.61.13

Li, J., Jeewon, R., Phookamsak, R., Bhat, D. J., Mapook, A., Chukeatirote, E., et al. (2018). *Marinophialophora garethjonesii* gen. et sp. nov.: a new hyphomycete associated with *Halocyphina* from marine habitats in Thailand. *Phytotaxa* 345, 001–012. doi: 10.11646/phytotaxa.345.1.1

Li, Y., Xiao, J., de Hoog, G. S., Wang, X., Wan, Z., Yu, J., et al. (2017). Biodiversity and human-pathogenicity of *Phialophora verrucosa* and relatives in *Chaetothyriales*. *Persoonia* 38, 1–19. doi: 10.3767/003158517X692779

Libert, X., Chasseur, C., Packeu, A., Bureau, F., Roosens, N. H., and De Keersmaecker, S. C. J. (2019). Exploiting the advantages of molecular tools for the monitoring of fungal indoor air contamination: first detection of *Exophiala jeanselmei* in indoor air of air-conditioned offices. *Microorganisms* 7, 674. doi: 10.3390/microorganisms7120674

Lima, B. J. F. S., Voidaleski, M. F., Gomes, R. R., Fornari, G., Soares, J. M. B., Bombassaro, A., et al. (2020). Selective isolation of agents of chromoblastomycosis from insect-associated environmental sources. *Fungal Biol.* 124, 194–204. doi: 10.1016/j.funbio.2020.02.002

Lin, L., and Xu, J. (2020). Fungal pigments and their roles associated with human health. J. Fungi $6,\,280.$ doi: 10.3390/jof6040280

Liu, L. N., Abdul, R., Atri, N. S., Bau, T., Belbahri, L., Bouket, A. C., et al. (2018). Fungal systematics and evolution: FUSE 4. *Sydowia* 70, 211–286. doi: 10.12905/ 0380.sydowia70-2018-0211

Liu, B., Fu, R., Wu, B., Liu, X., and Xiang, M. (2022). Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. *Mycology* 13, 131. doi: 10.1080/21501203.2021.2002452

Liu, X. Y., Udayanga, D., Luo, Z. L., Chen, L. J., Zhou, D. Q., Su, H. Y., et al. (2015). Backbone tree for *Chaetothyriales* with four new species of *Minimelanolocus* from aquatic habitats. *Fungal Biol.* 119, 1046–1062. doi: 10.1016/j.funbio.2015.08.005

Lumbsch, H. T., Mangold, A., Lücking, R., García, M. A., and Martín, M. P. (2004). Phylogeneticposition of the genera *Nadvornikia* and *Pyrgillus (Ascomycota)* based on molecular data. *Symb. Bot. Ups.* 34, 9–17.

Lumbsch, H. T., Schmitt, I., Lindemuth, R., Miller, A., Mangold, A., Fernandez, F., et al. (2005). Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (*Leotiomyceta*). *Mol. Phylogenet. Evol.* 34, 512–524. doi: 10.1016/j.ympev.2004.11.007

Ma, Y. R., Xia, J. W., Gao, J. M., Li, X. Y., Castañeda Ruíz, R. F., Zhang, X. G., et al. (2015). *Atrokylindriopsis*, a new genus of hyphomycetes from Hainan, China, with relationship to *Chaetothyriales. Mycol. Prog.* 14, 77. doi: 10.1007/s11557-015-1071-x

Maciá-Vicente, J. G., Glynou, K., and Piepenbring, M. (2016). A new species of *Exophiala* associated with roots. *Mycol. Prog.* 15, 18. doi: 10.1007/s11557-016-1161-4

Madrid, H., Hernández-Restrepo, M., Gené, J., Cano, J., Guarro, J., and Silva, V. (2016). New and interesting chaetothyrialean fungi from Spain. *Mycol. Prog.* 15, 1179–1201. doi: 10.1007/s11557-016-1239-z

Marincowitz, S., Crous, P. W., Groenewald, J. Z., and Wingfield, M. J. (2008). *Microfungi Occurring on Proteaceae in the Fynbos* (Utrecht, the Netherlands: CBS Fungal Biodiversity Centre). 166 pp.

Mattoon, E. R., Cordero, R. J. B., and Casadevall, A. (2021). Fungal melanins and applications in healthcare, bioremediation and industry. *J. Fungi* 7, 488. doi: 10.3390/ jof7060488

Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., et al. (2009) *The CIPRES Portals*. Available at: http://www.phylo.org/sub_sections/portal (Accessed 12 June 2023).

Müller, E., Petrini, O., Fisher, P. J., Samuels, G. J., and Rossman, A. Y. (1987). Taxonomy and anamorphs of the *Herpotrichiellaceae* with notes on generic synonymy. *Trans. Br. Mycol. Soc* 88, 63–74. doi: 10.1016/S0007-1536(87)80186-9

Munk, A. (1953). The system of the pyrenomycetes. Dansk Botanisk Arkiv Udgivet af Dansk Botanisk Forening 15, 1–163.

Mycobank Database. Available at: https://www.mycobank.org/ (Accessed 29 June 2023).

Nai, C., Wong, H. Y., Pannenbecker, A., Broughton, W. J., Benoit, I., de Vries, R. P., et al. (2013). Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the *Chaetothyriales* (Ascomycetes). *Fungal Genet. Biol.* 56, 54–66. doi: 10.1016/j.fgb.2013.04.001

Najafzadeh, M. J., Gueidan, C., Badali, H., Van Den Ende, A. H., Xi, L., and de Hoog, G. S. (2009). Genetic diversity and species delimitation in the opportunistic genus *Fonsecaea. Med. Mycol.* 47, 17–25. doi: 10.1080/13693780802527178

Najafzadeh, M. J., Vicente, V. A., Sun, J., Meis, J. F., and de Hoog, G. S. (2011). *Fonsecaea multimorphosa* sp. nov., a new species of *Chaetothyriales* isolated from a feline cerebral abscess. *Fungal Biol.* 115, 1066–1076. doi: 10.1016/j.funbio.2011.06.007

Nascimento, S. S., Ferro, L. O., Freire, K. T. L. S., Barbosa, R. N., Paiva, L. M., Souza-Motta, C. M., et al. (2021). *Cladophialophora bromeliacearum (Herpotrichiellaceae, Chaetothyriales)*, a novel endophytic species from the Brazilian tropical dry forest. *Phytotaxa* 509, 211–224. doi: 10.11646/phytotaxa.509.2.4

Nascimento, M. M. F., Selbmann, L., Sharifynia, S., Al-Hatmi, A. M. S., Voglmayr, H., Vicente, V. A., et al. (2016). *Arthrocladium*, an unexpected human opportunist in *Trichomeriaceae* (*Chaetothyriales*). *Fungal Biol.* 120, 207–218. doi: 10.1016/j.funbio.2015.08.018

Nascimento, M. M. F., Vicente, V. A., Bittencourt, J. V. M., Gelinski, J. M. L., Prenafeta-Boldú, F. X., Romero-Güiza, M., et al. (2017). Diversity of opportunistic black fungi on babassu coconut shells, a rich source of esters and hydrocarbons. *Fungal Biol.* 121, 488–500. doi: 10.1016/j.funbio.2017.01.006

Nishimura, D. (2000). Sequencher 3.1.1. Biotech softw. Internet Rep. 1, 24–30. doi: 10.1089/152791600319231

Obase, K., Douhan, G. E., Matsuda, Y., and Smith, M. E. (2016). *Cladophialophora floridana* and *Cladophialophora tortuosa*, new species isolated from sclerotia of *Cenococcum geophilum* in forest soils of Florida, USA. *Mycoscience* 57, 26–34. doi: 10.1016/j.myc.2015.07.005

Park, M. J., and Shin, H. D. (2011). Cladophialophora pucciniophila, a new hyphomycete parasitizing a rust fungus. Mycotaxon 116, 449–456. doi: 10.5248/116.449

Phookamsak, R., Hyde, K. D., Jeewon, R., Bhat, D. J., Jones, E. B. G., Maharachchikumbura, S. S. N., et al. (2019). Fungal diversity notes 929-1035: taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Divers.* 95, 1–273. doi: 10.1007/s13225-019-00421-w

Phukhamsakda, C., Nilsson, R. H., Bhunjun, C. S., de Farias, A. R. G., Sun, Y. R., Wijesinghe, S. N., et al. (2022). The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding. *Fungal Divers*. 114, 327–386. doi: 10.1007/s13225-022-00502-3

Prenafeta-Boldú, F. X., Summerbell, R., and de Hoog, G. S. (2006). Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard? *FEMS Microbiol. Rev.* 30, 109–130. doi: 10.1111/j.1574-6976.2005.00007.x

Quan, Y., Muggia, L., Moreno, L. F., Wang, M., Al-Hatmi, A. M. S., Menezes, N. D. S., et al. (2020). A re-evaluation of the *Chaetothyriales* using criteria of comparative biology. *Fungal Divers*. 103, 47–85. doi: 10.1007/s13225-020-00452-8

Rakeman, J. L., Bui, U., Lafe, K., Chen, Y. C., Honeycutt, R. J., and Cookson, B. T. (2005). Multilocus DNA sequence comparisons rapidly identify pathogenic molds. *J. Clin. Microbiol.* 43, 3324–3333. doi: 10.1128/JCM.43.7.3324-3333.2005

Rambaut, A. (2019) FigTree tree figure drawing tool version 131; Institute of Evolutionary 623 Biology (Edinburgh, Scotland: University of Edinburgh). Available at: http://treebioedacuk/software/figtree/ (Accessed 12 June 2023).

Réblová, M., Hubka, V., Thureborn, O., Lundberg, J., Sallstedt, T., Wedin, M., et al. (2016). From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the *Chaetothyriales. PloS One* 11, 163396. doi: 10.1371/journal.pone.0163396

Rehner, S. A., and Samuels, G. J. (1994). Taxonomy and phylogeny of gliocladium analyzed from nuclear large subunit ribosomal DNA sequences. *Mycol. Res.* 98, 625–634. doi: 10.1016/S0953-7562(09)80409-7

Rodríguez-Andrade, E., Stchigel, A. M., Guarro, J., and Cano-Lira, J. F. (2019). Fungal diversity of deteriorated sparkling wine and cork stoppers in Catalonia, Spain. *Microorganisms* 8, 12. doi: 10.3390/microorganisms8010012

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–1574. doi: 10.1093/ bioinformatics/btg180

Saccardo, P. A. (1883). "Sylloge Pyrenomycetum, Vol. II," in *Sylloge Fungorum*, vol. 2, Johnson Reprint Corperation, New York.1–288.

Sánchez, R. M., Miller, A. N., and Bianchinotti, M. V. (2019). New species of *Capronia (Herpotrichiellaceae, Ascomycota)* from Patagonian forests, Argentina. *Plant Fungal Syst.* 64, 81–90. doi: 10.2478/pfs-2019-0009

Scott, J. A., Untereiner, W. A., Ewaze, J. O., Wong, B., and Doyle, D. (2007). *Baudoinia*, a new genus to accommodate *Torula compniacensis*. *Mycologia* 99, 592-601. doi: 10.3852/mycologia.99.4.592

Seifert, K. A., Hughes, S. J., Boulay, H., and Louis-Seize, G. (2007). Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, *Sorocybe resinae*, *Seifertia azaleae* and the *Hormoconis* anamorph of *Amorphotheca resinae*. *Stud. Mycol.* 58, 235–245. doi: 10.3114/sim.2007.58.09

Selbmann, L., Isola, D., Egidi, E., Zucconi, L., Gueidan, C., de Hoog, G. S., et al. (2014). Mountain tips as reservoirs for new rock-fungal entities: *Saxomyces* gen. nov. and four new species from the Alps. *Fungal Divers*. 65, 167–182. doi: 10.1007/s13225-013-0234-9

Seyedmousavi, S., Badali, H., Chlebicki, A., Zhao, J., Prenafeta-Boldú, F. X., and de Hoog, G. S. (2011). *Exophiala sideris*, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. *Fungal Biol.* 115, 1030–1037. doi: 10.1016/j.funbio.2011.06.004

Shen, M., Zhang, J. Q., Zhao, L. L., Groenewald, J. Z., Crous, P. W., and Zhang, Y. (2020). Venturiales. *Stud. Mycol.* 96, 185–308. doi: 10.1016/j.simyco.2020.03.001

Spegazzini, C. (1909). Mycetes argentinenses. Series IV. Anales Mus. Nac. Hist. Nat. Buenos Aires 3, 257–458.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Sun, W., Su, L., Yang, S., Sun, J., Liu, B., Fu, R., et al. (2020). Unveiling the hidden diversity of rock-inhabiting fungi: *Chaetothyriales* from China. *J. Fungi* 6, e187. doi: 10.3390/jof6040187

Tanabe, H., Kawasaki, M., Mochizuki, T., and Ishizaki, H. (2004). Species identification and strain typing of *Fonsecaea pedrosoi* using ribosomal RNA gene internal transcribed spacer regions. *Jpn. J. Med. Mycol.* 45, 105–112. doi: 10.3314/ jjmm.45.105

Teixeira, M. M., Moreno, L. F., Stielow, B. J., Muszewska, A., Hainaut, M., Gonzaga, L., et al. (2017). Exploring the genomic diversity of black yeasts and relatives (*Chaetothyriales*, *Ascomycota*). *Stud. Mycol.* 86, 1–28. doi: 10.1016/j.simyco.2017.01.001

Tesei, D. (2022). Black fungi research: out-of-this-world implications. *Encyclopedia* 2, 212–229. doi: 10.3390/encyclopedia2010013

Thitla, T., Kumla, J., Khuna, S., Lumyong, S., and Suwannarach, N. (2022). Species diversity, distribution, and phylogeny of *Exophiala* with the addition of four new species from Thailand. *J. Fungi* 8, 766. doi: 10.3390/jof8080766

Tian, Q., Chomnunti, P., Lumyong, S., Liu, J. K., and Hyde, K. D. (2021). Phylogenetic relationships and morphological reappraisal of *Chaetothyriales*. *Mycosphere* 12, 1157–1261. doi: 10.5943/mycosphere/12/1/15

Tian, Q., Doilom, M., Luo, Z., Chomnunti, P., Bhat, J. D., Xu, J., et al. (2016). Introducing *Melanoctona tectonae* gen. et sp. nov. and *Minimelanolocus yunnanensis* sp. nov. (*Herpotrichiellaceae*, *Chaetothyriales*). *Cryptogam. Mycol.* 37, 477–492. doi: 10.7872/crym/v37.iss4.2016.477

Tran-Ly, A. N., Reyes, C., Schwarze, F. W. M. R., and Ribera, J. (2020). Microbial production of melanin and its various applications. *World J. Microbiol. Biotechnol.* 36, 170. doi: 10.1007/s11274-020-02941-z

Tsuneda, A., Hambleton, S., and Currah, R. S. (2011). The anamorph genus *Knufia* and its phylogenetically allied species in *Coniosporium*, *Sarcinomyces*, and *Phaeococcomyces*, *Botany* 89, 523–536. doi: 10.1139/b11-041

Untereiner, W. A. (1997). Taxonomy of selected members of the ascomycete genus *Capronia* with notes on anamorph-teleomorph connections. *Mycologia* 89, 120–131. doi: 10.2307/3761181

Untereiner, W. A., and Naveau, F. A. (1999). Molecular systematics of the *Herpotrichiellaceae* with an assessment of the phylogenetic positions of *Exophiala dermatitidis* and *Phialophora americana*. *Mycologia* 91, 67–83. doi: 10.1080/00275514.1999.12060994

Untereiner, W. A., Straus, N. A., and Malloch, D. (1995). A molecularmorphotaxonomic approach to the systematics of the *Herpotrichiellaceae* and allied black yeasts. *Mycol. Res.* 99, 897–913. doi: 10.1016/s0953-7562(09)80748-x

Usui, E., Takashima, Y., and Narisawa, K. (2016). *Cladophialophora inabaensis* sp. nov., a new species among the dark septate endophytes from a secondary forest in Tottori, Japan. *Microbes Environ.* 31, 357–360. doi: 10.1264/jsme2.ME16016

Vasse, M., Voglmayr, H., Mayer, V., Gueidan, C., Nepel, M., Moreno, L., et al. (2017). A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (*Ascomycota: Chaetothyriales*). *Proc. R. Soc B* 284, 20162519. doi: 10.1098/rspb.2016.2519

Vicente, V. A., Najafzadeh, M. J., Sun, J., Gomes, R. R., Robl, D., Marques, S. G., et al. (2014). Environmental siblings of black agents of human chromoblastomycosis. *Fungal Divers*. 65, 47–63. doi: 10.1007/s13225-013-0246-5

Vicente, V. A., Orélis-Ribeiro, R., Najafzadeh, M. J., Sun, J., Guerra, R. S., Miesch, S., et al. (2012). Black yeast-like fungi associated with Lethargic Crab Disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Vet. Microbiol. 158, 109–122. doi: 10.1016/j.vetmic.2012.01.031

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J. Bacteriol.* 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990

Vitale, R. G., and de Hoog, G. S. (2002). Molecular diversity, new species and antifungal susceptibilities in the *Exophiala spinifera* clade. *Med. Mycol.* 40, 545–556. doi: 10.1080/mmy.40.6.545.556

Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. *Stud. Mycol.* **92**, 135–154. doi: 10.1016/j.simyco.2018.05.001

Wan, Y., Bao, D. F., Luo, Z. L., Bhat, D. J., Xu, Y. X., Su, H. Y., et al. (2021). Two new species of *Minimelanolocus (Herpotrichiellaceae, Chaetothyriales)* from submerged wood in Yunnan, China. *Phytotaxa* 480, 45–56. doi: 10.11646/phytotaxa.480.1.4

White, T. J., Bruns, T., Lee, S., and Taylor, J. W. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in *PCR Protocols: A Guide to Methods and Applications*. Eds. M. A. Innes, D. H. Gelfand, J. J. Sninsky and T. J. White (San Diego, CA, USA: Academic Press), 315–322.

Wijayawardene, N. N., Hyde, K. D., Al-Ani, L. K. T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K. C., et al. (2020). Outline of Fungi and fungus-like taxa. *Mycosphere* 11, 1060–1456. doi: 10.5943/mycosphere/11/1/8

Wijayawardene, N. N., Hyde, K. D., Dai, D. Q., Sánchez-García, M., Goto, B. T., Saxena, R. K., et al. (2022). Outline of Fungi and fungus-like taxa – 2021. *Mycosphere* 13, 53–453. doi: 10.5943/mycosphere/13/1/2

Wollenzien, U., de Hoog, G. S., Krumbein, W. E., and Urzí, C. (1995). On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. *Sci. Total Environ.* 167, 1–3. doi: 10.1016/0048-9697(95)04589-S

Woo, P. C., Ngan, A. H., Tsang, C. C., Ling, I. W., Chan, J. F., Leung, S. Y., et al. (2013). Clinical spectrum of exophiala infections and a novel *Exophiala* species, *Exophiala hongkongensis. J. Clin. Microbiol.* 51, 260–267. doi: 10.1128/JCM.02336-12

Yang, X. Q., Feng, M. Y., and Yu, Z. F. (2021). *Exophiala pseudooligosperma* sp. nov., a novel black yeast from soil in southern China. *Int. J. Syst. Evol. Microbiol.* 71, 5116. doi: 10.1099/ijsem.0.005116

Yang, G. Z., Lu, J., Yu, Z., Zhang, K., and Qiao, M. (2011). Uncispora sinensis, a new species from China. Mycotaxon 116, 171–174. doi: 10.5248/116.171

Zeng, J. S., and de Hoog, G. S. (2008). *Exophiala spinifera* and its allies: diagnostics from morphology to DNA barcoding. *Med. Mycol.* 46, 193–208. doi: 10.1080/13693780701799217