Literature Search on Adaptive Radar Transmit Waveforms

Simon Haykin
McMaster University

Brian Currie
McMaster University

Thia Kirubarajan
McMaster University

McMaster University
1280 Main Street West, Hamilton, Ontario, L8S 4L8

Contractor Report Number: Technical Report #02-01

Contract Number: W7714-020643/001/SV

Contract Scientific Authority: Alan D. Thomson (613) 991-1877

The scientific or technical validity of the Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada

Defence R&D Canada – Ottawa

Contract Report
DRDC Ottawa CR 2003-094
December 2002
Adaptive Systems Laboratory
Institute for Life-related Systems
McMaster University

Technical Report #02-01
December, 2002

Literature Search on Adaptive Radar Transmit Waveforms

Simon Haykin
Brian Currie
Thia Kirubarajan
Adaptive Radar

In what follows, we present critical discussions of the literature that we have reviewed on adaptive radar. The discussion is presented under three headings:

- Controllable parameters for adaptive radar
- Physical aspects of radar transmission
- Detection, Tracking, and Classification

I. Controllable Parameters for Adaptive Radar

There are two major classes of adaptivity:

- **Adaptive-receive**: adaptive changes in the parameters and/or processing in the receiver in response to changes in the received signal

- **Adaptive-transmit**: adaptive changes in the transmitted signal based on feedback from the receiver in response to changes in the received signal

The class of adaptive transmit can be further divided into:

- **Transmit-select**: selection from among a set of predefined transmitted signal configurations

- **Transmit-create**: crafting of the transmitted signal in real-time

There can be overlap between transmit-select and transmit-create when the parameters of the transmit signal to be created are drawn from a finite set of possibilities due to hardware constraints.

There are two papers in the adaptive-transmit class. Wong (1998) was concerned with adaptively controlling the form of the radar ambiguity surface. He proposed a cost metric to be used in the optimization procedure for selecting the next pulse compression waveform based on the current received signal. He generated optimization procedures for two cases: phase-only modulation and frequency-only modulation. His application was battlefield surveillance. The applicability of ambiguity surface manipulation to the case of maritime surveillance requires further consideration. However, this paper presents a principled approach to the development of a suitable on-line parameter selection methodology.

The second paper, Davies and Hughes (2002) addressed the issue of PRF selection in an airborne medium PRF radar. In such a radar, there are ambiguities in range and Doppler that can only be resolved by processing returns taken at three or more different PRFs. Also, there are blind areas in both range and Doppler whose location are a function of the PRF. Through suitable selection of a set of (typically eight) PRFs, the range-Doppler area in which at least three PRFs are clear for each
location can be maximized. This paper proposes the use of evolutionary computation algorithms (motivated by biological considerations) for on-line selection of the PRF set, chosen to maximize detection performance in the environment currently being encountered. Again there is identification of a clear performance metric to be maximized in real-time.

Most of the remaining papers are of the class adaptive-receive. Some were concerned with the use of dual-polarized returns to try to distinguish target and clutter echoes based on their polarimetric properties. The proposed polarization discontinuity detector of Park et al (1994) was based on the generalized likelihood ratio test principle, but worked only in Gaussian clutter. One point of note from Watts 2001 is his proposed probability of detection display. Using the currently chosen values of the parameters of the radar, one can estimate the sensitivity and/or performance capability of the radar as a function of range and azimuth. In this way, the operator develops some sense for the effects of on-line adaptation.

In terms of technology, McPherson et al (2001) reported on an IQ modulator that permits direct digital modulation of a W-band carrier signal, allowing arbitrary waveform generation. This would be a key element to a fully adaptive-transmit system. Leatherwood et al (2000) pointed out the effects of the signal distribution considerations in a phased-array radar. The differential signal delays in the feed network can increase the length of the impulse response of the antenna, potentially modifying the transit and receive signals.

II. Physical Aspects of Radar Transmission: Wavelets and Atomic Decomposition

Conventional radars employ linear frequency modulated chirp signals to detect targets over some range of transmitted frequencies. Unfortunately, for any target to be detected, classified or tracked, such generic waveforms do not make optimal use of the transmit bandwidth or energy in order to accomplish the prescribed radar mission.

Another issue of concern is that the target of interest may be experiencing some form of rotational motion. For example, in the tracking of a spaceborne target, its motion can be quite complex in comparison with airborne targets (e.g., aircraft) in that the target can tumble. Closer to the issue at hand, that of designing an adaptive radar for maritime surveillance, the challenge is to deal with small targets such as a small piece of ice (i.e., growler) or a human body floating in the water. In situations of this kind, the target motion van be quite complex due to the external forces exerted on the target by the continuous motion of the ocean waves.

In a pair of papers, Clark (2000) and Bonneau (2001), the use of wavelets is proposed for the design of the transmit waveforms. The wavelet transform provides an optimum basis for the time-frequency representation of stationary signals for fixed energy. Moreover, the wavelet transform provides additional dimensions that enable the individual scattering surfaces of the targets to be tracked in range as they progress during the radar's dwell time on the target. In particular, not only the linear motion of the target can be estimated but also the rotational motion of the target can be seen as a characteristic feature of the target. Hence, the use of wavelets may also provide a method for enhanced classification of radar targets.
The use of atomic decomposition, based on the idea of projection pursuit, provides a further generalization of the wavelet transform by adding several degrees of freedom to the design of the transmit waveform.

Few words of caution are however in order:

- In the papers cited here, no account is taken of the background clutter.
- Computational complexity may also be a practical factor when it comes to practical considerations.

In the context of the latter issue, it may be argued that with the ever-increasing improvements in computers and digital signal processing, computational complexity my not be a major issue of concern in the long run. However, the issue of clutter cannot be ignored. Indeed, the use of wavelets for radar transmission in an ocean environment mandates that we take sea clutter into account, hence a new research problem in itself.

III. Detection, Tracking, and Classification

The key motivation for adaptive radar is to improve one or more of the detection, classification and tracking (data processing) performances. Thus, it is critical to adapt the parameters of the radar with feedback from the detector, classifier or the tracker. **The sensor and the data processor cannot be considered as two independent entities and adaptation cannot be accomplished by considering fixed (static) scenarios.** For example, in a tracking system, the tracker’s output in terms of state estimates, covariances or prediction errors need to be fed back into the adaptive radar.

Some of the performance metrics used in the literature are

1. Target detection probability
2. False alarm probability
3. Correct classification probability
4. Time for detection, classification and confirmation
5. Detection, classification range
6. Length of false tracks
7. Tracking accuracy
8. Track purity and track breakage
9. Performance limits (e.g., in terms of the lowest SNR for acceptable performance)
10. Radar energy
11. Radar revisit interval
12. Computational complexity
Adaptation of different radar parameters (e.g., waveform, frequency, polarization) will affect different performance metrics and it is important to quantify the effect in terms of one or more of the above performance metrics. Then, a suitable mechanism needs to be used to adapt the parameters of the radar at design time or in real-time.

From the literature, we have identified the following tools (or techniques) for performance evaluation combined with tracking, detection and classification.

1. Hybrid conditional averaging (HYCA)

 This technique is useful in predicting the performance of a single model (e.g., Kalman filter) or multiple model (e.g., Interacting Multiple Model --- IMM) estimator. HYCA will be useful in selecting radar parameters at design time based on expected tracking performance.

2. Posterior Cramer-Rao lower bound (PCRLB)

 This technique is useful in quantifying the limits of performance in uncertain (with false alarms and missed detections) dynamic environments and in adapting the radar parameters in real-time. For example, this will be valuable in accounting for the dynamics of the boat or the periscope the radar is trying to detect and track.

3. Kullback-Leibler information number

 This is useful in quantifying classification performance. Waveforms can be designed or selected in real-time to maximize discrimination capability.

IV. Abstracts

 Electronic versions of the abstracts of all the papers listed in the Bibliography are recorded in a compact disk (CD), a copy of which accompanies this Report.
References Listed in the Report

Radar Resource Management

Adaptive Radar Management

Radar Waveform Selection

17. Wilson, J.J.W., "A design procedure for the design of advanced coded pulse radar waveforms generated from a finite set of samples", Recent Developments in Image Processing: Applications in Remote Sensing, IEE Colloquium on , 1990, Page(s): 6/1 -6/7. 00190014.pdf

Adaptive Radar Transmitters

Adaptive Radar Waveforms

Adaptive Target Filtering in Clutter

Matched Illumination

Multifunction Radar Control

Radar Waveform Design
Adaptive Polarization

Clutter Mitigation

Adaptive PRF

Adaptive Antenna

10. Young, R., "Antenna pattern control by phase-only weighting", Phased Arrays, IEE Colloquium on, Page(s): 5/1 - 5/7.
DOCUMENT CONTROL DATA

1 **ORIGINATOR** (the name and address of the organization preparing the document. Organizations for whom the document was prepared, e.g. Establishment sponsoring a contractor's report, or tasking agency, are entered in section 8.)
 Adaptive Systems Laboratory
 Institute for Life-related Systems, McMaster University
 1230 Main Street West, Hamilton, Ontario, L8S 4L8

2 **SECURITY CLASSIFICATION** (overall security classification of the document, including special warning terms if applicable)
 UNCLASSIFIED

3 **TITLE** (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in parentheses after the title)
 Literature Search on Adaptive Radar Transmit Waveforms (U)

4 **AUTHORS** (Last name, first name, middle initial)
 Haykin, Simon, Currie, Brian; Kirubarajan, Thia

5 **DATE OF PUBLICATION** (month and year of publication of document)
 December, 2002

6a **NO. OF PAGES** (total containing information. Include Annexes, Appendices, etc.)
 18

6b **NO. OF REFS** (total cited in document)
 258

7 **DESCRIPTIVE NOTES** (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)
 Contractor report

8 **SPONSORING ACTIVITY** (the name of the department project office or laboratory sponsoring the research and development. Include the address)
 Defence R&D Canada – Ottawa
 3701 Carling Avenue, Ottawa, Ontario
 K1A 0Z4

9a **PROJECT OR GRANT NO** (if appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant)
 [Illegible]

9b **CONTRACT NO** (if appropriate, the applicable number under which the document was written)
 W7714-020643/001/SV

10a **ORIGINATOR’S DOCUMENT NUMBER** (the official document number by which the document is identified by the originating activity. This number must be unique to this document)
 Technical Report #02-01

10b **OTHER DOCUMENT NOS** (Any other numbers which may be assigned this document either by the originator or by the sponsor)
 DRDC Ottawa CR 2003-094

11 **DOCUMENT AVAILABILITY** (any limitations on further dissemination of the document, other than those imposed by security classification)
 (X) Unlimited distribution
 () Distribution limited to defence departments and defence contractors; further distribution only as approved
 () Distribution limited to defence departments and Canadian defence contractors, further distribution only as approved
 () Distribution limited to government departments and agencies, further distribution only as approved
 () Distribution limited to defence departments, further distribution only as approved
 () Other (please specify)

12 **DOCUMENT ANNOUNCEMENT** (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider announcement audience may be selected.)
13. **ABSTRACT** (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual.)

14. **KEYWORDS, DESCRIPTORS or IDENTIFIERS** (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

 adaptive transmit radar

519725
00222222