1 Topics

- Szemerédi’s Regularity Lemma
- Testing the property of triangle-freeness on dense graphs.

2 Triangle Counting in a Random Tripartite Graph

Consider a random tripartite graph with “density” η. More precisely, let $G = (V, E)$ be a graph with vertex partitions A, B and C. Between each pair of vertices from different partitions, there is an edge between the vertices with probability η (independently). We shall count the number of triangles in this random tripartite graph.

![Figure 1: a tripartite graph with vertex partitions A, B and C](image)

For $u \in A$, $v \in B$, and $w \in C$, define the indicator variable

$$
\sigma_{u,v,w} = \begin{cases}
1 & \text{if } (u, v), (u, w), (v, w) \in E \\
0 & \text{otherwise}
\end{cases}
$$

It follows that $E[\sigma_{u,v,w}] = \Pr[u,v,w \text{ forms a triangle}] = \eta^3$. Therefore,

$$
E[\text{number of triangles}] = E\left[\sum_{u \in A} \sum_{v \in B} \sum_{w \in C} \sigma_{u,v,w}\right] = \sum_{u \in A} \sum_{v \in B} \sum_{w \in C} E[\sigma_{u,v,w}] = \eta^3 \cdot |A||B||C|
$$

3 Triangle Counting in a Regular Dense Graph

Here, we achieve a similar bound to above without requiring the graph to be random. The graph has a more relaxed assumption based on density and regularity.

Definition 1 (Density and Regularity) For $A, B \in V$ such that $A \cap B = \emptyset$ and $|A|, |B| > 1$, let $e(A, B)$ denote the number of edges between A and B, and let $d(A, B) = \frac{e(A, B)}{|A||B|}$ be the density.

(A, B) is γ-regular if it has the following property: for all $A' \subseteq A$ and $B' \subseteq B$, if $|A'| \geq \gamma |A|$ and $|B'| \geq \gamma |B|$, then $|d(A', B') - d(A, B)| < \gamma$.

1
Figure 2: Density $d(A, B)$ and $d(A', B')$ should not differ by much.

Less formally, for large-enough subsets $A' \subseteq A$ and $B' \subseteq B$, the density between A' and B' should be close (within γ) to the density between A and B.

Lemma 2 (Komlós-Simonovits [2]) For all density $\eta > 0$, there exists a regularity parameter γ and number of triangles δ such that if A, B, C are disjoint subsets of V, each pair δ-regular with density greater than η, then G has at least $\delta \cdot |A||B||C|$ distinct triangles with vertices from each of A, B and C.

Both γ and δ are parameters of η only. For triangle counting in particular, we can choose parameters $\gamma = \gamma^\Delta(\eta) = \frac{1}{2}$ and $\delta = \delta^\Delta(\eta) = (1 - \eta) - \frac{a^2}{8}$. Note that if $\eta < \frac{1}{2}$, then $\delta \geq \frac{a^3}{16}$. Therefore, for $\eta < \frac{1}{2}$ the bound is within a factor of 16 of the random graph.

Proof (Alon, Fischer, Krivelevich, Szegedy [1]) Let A^* be a set of vertices in A with a lot of neighbors in B and C. More precisely, each vertex in A^* has at least $(\eta - \gamma)|B|$ neighbors in B and at least $(\eta - \gamma)|C|$ neighbors in C.

Claim 3 $|A^*| \geq (1 - 2\gamma)|A|

Proof of Claim Let A' be the “bad” nodes of A with respect to B, i.e. they have fewer than $(\eta - \gamma)|B|$ neighbors in B. Likewise, Let A'' be the “bad” nodes of A with respect to C, i.e. they have fewer than $(\eta - \gamma)|C|$ neighbors in C.

By definition, $A^* = A \setminus (A' \cup A'')$. We would like to show that A' and A'' cannot be too big. That is, we would like $|A'| \leq \gamma|A|$ and $|A''| \leq \gamma|A|$, which would imply that $|A^*| \geq |A| - 2\gamma|A| = (1 - 2\gamma)|A|$. To show that $|A'| \leq \gamma|A|$, we assume to the contrary that $|A'| > \gamma|A|$. Consider (A', B). Because of γ-regularity of (A, B), $d(A', B) \geq \eta - \gamma$. However, because each vertex in A' has fewer than $(\eta - \gamma)|B|$ neighbors, $d(A', B) < |A'| \cdot \frac{(\eta - \gamma)|B|}{|A||B|} \leq \eta - \gamma$, a contradiction. The same proof holds for A''. ■
For \(u \in A^* \), define \(B_u \) to be neighbors on \(u \) in \(B \), and define \(C_u \) to be neighbors on \(u \) in \(C \). Note that \(\sum_u \) (number of edges between \(B_u \) and \(C_u \)) gives a lower bound on the number of distinct triangles. Also, \(|B_u| \geq (\eta - \gamma)|B| \) and \(|C_u| \geq (\eta - \gamma)|C| \) by the definition of \(A^* \).

Since \(\gamma \) is chosen as \(\frac{\eta}{2} \), \(\eta - \gamma = \gamma \). Therefore, \(|B_u| \geq \gamma|B| \) and \(|C_u| \geq \gamma|C| \). Because \((B,C)\) is \(\gamma \)-regular with density at least \(\eta \),

\[
\begin{align*}
d(B, C) &\geq \eta \\
d(B_u, C_u) &\geq \eta - \gamma \\
e(B_u, C_u) &\geq (\eta - \gamma) \cdot |B_u||C_u| \\
e(B_u, C_u) &\geq (\eta - \gamma)^3 \cdot |B||C|
\end{align*}
\]

Thus, \((\eta - \gamma)^3 \cdot |B||C|\) is the lower bound on the number of triangles with \(u \in A^* \). Therefore, the total number of triangles in the graph can be lower-bounded by \(|A^*| \cdot (\eta - \gamma)^3 \cdot |B||C| = (1 - \eta)(\eta - \gamma)^3 \cdot |A||B||C|\).

4 Szemerédi’s Regularity Lemma

This lemma was first developed to prove properties of integer sets without arithmetic progressions [3]. The idea of the lemma is that every graph “large enough” can be “approximated” by a constant number of sets of random graphs.

Consider graph \(G = (V, E) \) with \(|V| = n\), where \(V \) is partitioned into \(k \) sets of almost equal size (differing by at most one). The edges internal to a partition is not important. Looking at edges across partitions, each pair of partitions is somewhat similar to a random bipartite graph. Partitioning is trivial for \(k = 1 \), where all edges become internal edges, and for \(k = n \), where each vertex has its own partition.

Figure 4: a graph divided into five partitions of equal size

Lemma 4 (Szemerédi’s Regularity Lemma [4]) For all \(m \) and \(\epsilon > 0 \), there exists \(T = T(m, \epsilon) \) such that given \(G = (V, E) \) where \(|V| > T\) and an equipartition \(A \) of \(V \) into \(m \) sets, there exists an equipartition \(B \) into \(k \) sets which refines \(A \) such that \(m \leq k \leq T \) and at most \(\epsilon(m^2) \) set pairs are not \(\epsilon \)-regular.

\(T(m, \epsilon) \) is actually quite big.

\[
T(m, \epsilon) \approx 2^{2^\epsilon}
\]

where there are \(\frac{1}{\epsilon} \) levels of exponents.
Proof Idea The following is a very rough idea of the actual proof. Let

$$\text{ind}(V_1, \ldots, V_k) = \frac{1}{k^2} \sum_{i=1}^{k} \sum_{j=i+1}^{k} d^2(V_i, V_j) \leq \frac{1}{2}$$

If a partition violates the property, we can refine into a new partition V'_1, \ldots, V'_k such that $\text{ind}(V'_1, \ldots, V'_k)$ grows significantly, by approximately ϵ^c. We achieve a good partition after $\frac{1}{\epsilon^c}$ refinements. \(\blacksquare\)

5 Testing Triangle-Freeness of a Dense Graph

This is an application of Szemerédi’s Regularity Lemma.

Given graph G in the adjacency matrix format, we would like a one-sided-error randomized algorithm that determines if G is triangle-free. In particular, if G is triangle-free, it should always output PASS. If G is ϵ-far from being triangle-free, i.e. at least $c\epsilon n^2$ edges must be removed from G for it to become triangle-free, it should output FAIL with probability at least $\frac{2}{3}$.

This can be achieved in $O(n^3)$ running time using naive matrix multiplication, or $O(n^\omega)$ with $\omega < 3$ using smarter matrix multiplication. However, this can actually be achieved in $O(1)$, or more accurately

$$O(2^{2^{2^{\cdots^{2}}}})$$

(with $\frac{1}{c}$ levels of exponents)

The following simple algorithm actually gives the desired bound.

1. for $O(\delta^{-1})$ times
2. do pick v_1, v_2, v_3
3. if v_1, v_2, v_3 forms a triangle
4. then output FAIL and halt
5. output PASS

Note that the algorithm always output PASS if the graph is triangle-free. However, it is not obvious that being ϵ-far from triangle-free implies that there are many triangles, enough for the algorithm to find at least one. The following theorem shows that this is actually the case.

Theorem 5 For all ϵ, there exists δ such that if G is a graph with $|V| = n$ and G is ϵ-far from triangle-free, then G has at least $\delta \binom{n}{3}$ distinct triangles.

The theorem implies that

$$\Pr[\text{the algorithm fails to find a triangle}] \leq (1 - \delta)^{c/\delta} \leq e^{-c}$$

which is less then $\frac{1}{3}$ for $c > \ln 3$.

Proof Let A be any equipartition of V into $\frac{5}{\epsilon}$.

We use the Szemerédi’s Regularity Lemma with $\epsilon' = \min \left\{ \xi, \gamma^{\Delta} (\xi) \right\}$ to get a refinement such that

$$\frac{5}{\epsilon} \leq k \leq T \left(\frac{5}{\epsilon}, \epsilon' \right)$$

That is, we use $m = \frac{5}{\epsilon}$. Equivalently,

$$\frac{en}{5} \geq \frac{n}{k} \geq T \left(\frac{5}{\epsilon}, \epsilon' \right)$$

In addition, the refined partitioning has at most $\epsilon' \left(\frac{n}{5} \right)$ set pairs not ϵ'-regular.

For simplicity, assume that $\frac{5}{\epsilon}$, the number of vertices per partition, is an integer. We define G' to be a cleaned-up version of G by doing the following to G:
• Delete edges internal to any \(V_i \). There are \(n \) vertices, each with at most \(\frac{n}{k} \) neighbors in the same partition. Therefore, the number of edges deleted is at most

\[
n \cdot \frac{n}{k} \leq \frac{\epsilon}{5} \cdot n^2
\]

• Delete edges between non-regular pairs. There are at most \(\epsilon' \binom{k}{2} \) pairs not \(\epsilon' \)-regular, each with at most \(\binom{n}{k} \) edges. Therefore, the number of edges deleted is at most

\[
\epsilon' \binom{k}{2} \binom{n}{k}^2 \leq \epsilon' \cdot \frac{k^2}{2} \cdot \frac{n^2}{k^2} \leq \frac{\epsilon}{10} \cdot n^2
\]

• Delete edges between low-density pairs, where density is less than \(\frac{\epsilon}{10} \). First, note that

\[
\sum_{\text{low density pair}} \binom{n}{k}^2 \leq \binom{n}{2}
\]

Therefore, the number of edges deleted is at most

\[
\sum_{\text{low density pair}} \frac{\epsilon}{5} \binom{n}{k}^2 \leq \frac{\epsilon}{5} \binom{n}{2} \leq \frac{\epsilon}{10} \cdot n^2
\]

If the partition sizes were not exactly equal, the number of vertices would be more safely bounded by \(\frac{n}{k} + 1 \). Nevertheless, the total number of edges deleted is less then \(cn^2 \). Because we assumed that \(G \) is \(\epsilon \)-far from triangle-free, \(G' \) still contains a triangle. In fact, \(G' \) has a triangle between \(V_i, V_j \) and \(V_k \), for distinct \(i, j \) and \(k \), where each pair is \(\epsilon' \)-regular with density at least \(\frac{\epsilon}{5} \).

The idea here is that the existence of one triangle in \(G' \) implies the existence of many more triangles because of density. From above, there exists distinct \(i, j \) and \(k \) such that \(x \in V_i, y \in V_j \) and \(z \in V_k \) where \(V_i, V_j \) and \(V_k \) all form pairs of density \(\eta \geq \frac{\epsilon}{5} \) and \(\gamma' \)-regular where \(\gamma' \geq \gamma \triangle \left(\frac{\epsilon}{5} \right) \geq \frac{\eta}{2} \geq \frac{\epsilon}{10} \).

By the triangle counting lemma, there are at least

\[
\delta \triangle \left(\frac{\epsilon}{5} \right) \cdot |V_i||V_j||V_k| \geq \frac{\delta \triangle \left(\frac{\epsilon}{5} \right) n^3}{\binom{\frac{\epsilon}{5}}{3}} > \delta' \binom{n}{3}
\]

triangles in \(G' \), and thus in \(G \), for \(\delta' = \frac{6\delta \left(\frac{\epsilon}{5} \right)}{\binom{T \left(\frac{\epsilon}{5}, \epsilon' \right)}} \).

6 Other Applications

The technique explained here can be used to test not only for triangles, but also for other constant-sized subgraphs. In addition, almost as-is, this can be used to test properties such as first-order graph properties.

References

