### Path-enhanced Explainable Recommendation with Knowledge Graphs

Yafan Huang, Feng Zhao†, Shihui Song, Xiangyu Gui, Hai Jin

Huazhong University of Science and Technology, Wuhan, China

May 13, 2020

• **Recommender system** helps us to obtain information/products that interest us more.







• A Triple combines two entities with one relation, e.g. :

(Michael Jackson, Born\_in, Indiana)

• Knowledge Graph (KG), composed of countless triples, is a wellstructured data form and has already used in recommender system, question answering, etc.



#### And what will happen with:

#### Recommender system + Knowledge Graph?

We give a toy example:

- One day, Tom listened to song "Billie Jean".
- Then, Tom was recommended a song "Scream".
- Tom did like "Scream"!
- Why?
- To explain this, we draw a music field Knowledge Graph, as shown in right side:





- Three extracted paths explain the recommend reason.
- **Explainability** is significantly enhanced compared with Collaborative Filtering (similar users tend to like similar items).

#### However, there are still two questions:

Like

Tom

Billie Jean

• Q1: How to extract paths from Knowledge Graph quickly and accurately?



Brotherof

Janet Jackson

SungBy Michael Jackson

• Q2. Which path here accounts for "Tom likes Scream" more?

#### To solve these, we introduce meta path.



• A Meta Path can represent a series of paths with the same structure.

### With meta path, here comes our solutions:

• Q1: How to extract paths from Knowledge Graph quickly and accurately?



Meta-path-aided **Path Extraction Algorithm**  • Q2. Which path here accounts for "Tom likes Scream" more?



Meta-path-based **Entropy Encoder** 

#### Overall framework of our proposed model:



#### Name: Path-enhanced Recurrent Network (PeRN)



Some explanations of this model:

- PeRN is an end-to-end recommendation model.
- Path Extraction Algorithm is used in "Extract Path" step.
- Meta path is abstracted from path.
- (Tom, Scream) here is defined as an user-item interaction.

# Methodology

- Path Extraction Algorithm
- Recurrent Network Encoder
- Entropy Encoder
- Weighted Pooling Layer
- Optimization

#### Path Extraction Algorithm

Some explanations:

- This algorithm is meta-path-aided.
- This algorithm mainly uses the idea of bi-directional search.
- We regard paths over six hops as noise.
- if *p<sub>l</sub> satisfies mp* indicates the condition when meta path of *p<sub>l</sub>* is same as *mp*.

Algorithm 1: Bidirectional Path Extraction **Input:** Knowledge graph  $\mathcal{KG} = \{(h, r, t) | h, t \in \mathcal{E}, r \in \mathcal{R}\},\$ user-item interaction set  $\mathcal{A} = \{a_1, a_2, \dots a_{|\mathcal{A}|}\},\$ meta path set  $\mathcal{M} = \{mp_1, mp_2, ..., mp_{|\mathcal{M}|}\}.$ **Output:** Path set  $\mathcal{P} = \{P_1, P_2, ..., P_{|\mathcal{A}|}\}.$ 1 Initialize:  $\mathcal{P} \leftarrow \emptyset$ ; <sup>2</sup> for each  $a_k = (u_m, i_n)$  in  $\mathcal{A}$  do  $P_k \leftarrow \emptyset;$ 3  $S_1 \leftarrow$  retrieve all paths by head =  $u_m$  within 3 hops; 4  $S_2 \leftarrow$  retrieve all paths by head =  $i_n$  within 3 hops; 5 for each meta path mp in  $\mathcal{M}$  do 6  $l \leftarrow \text{length of } mp;$ 7  $P_1 \leftarrow \emptyset // \text{ left sub path set;}$ 8  $P_2 \leftarrow \emptyset // \text{ right sub path set;}$ 9 for each  $p_1$  in  $S_1$  do 10 if  $p_l$  satisfies  $mp[0 \rightarrow 2 * \lfloor l/2 \rfloor]$  then 11 Add  $p_l$  to  $P_1$ ; 12 for each  $p_r$  in  $S_2$  do 13 if  $p_r$  satisfies  $mp[2 * \lfloor l/2 \rfloor \rightarrow 2 * l]$  then 14 Add  $p_r$  to  $P_2$ ; 15 for each  $p_1$ ,  $p_r$  in  $P_1$ ,  $P_2$  do 16 if  $p_l[tail] = p_r[tail]$  then 17  $p \leftarrow \text{combine } p_l \text{ and } \text{reverse}(p_r);$ 18 Add p to  $P_k$ ; 19 Add  $P_k$  to  $\mathcal{P}$ ; 2021 return  $\mathcal{P}$ 

#### Recurrent Network Encoder

Some explanations:

- An n-hop path is composed of n triples.
- The format of embedded vector is (entity, typeof(entity), relation), so an n-hop path will be embedded to n+1 vectors.
- Two fully-connected layers and activation function:

 $s = W_2^T \operatorname{ReLU}(W_1^T h)$ 



#### Entropy Encoder

$$w_i = \frac{\text{Gain}(D, E_g = mp_i)}{\sum_{j=1}^{|MP_k|} \text{Gain}(D, E_g = mp_j)}$$

Some explanations:

- $w_i$  is designed for weighting different paths in one user-item interaction.
- Each path in one user-item interaction holds its own weight w.
- In one user-item interaction  $a_k = (u, i)$ , there might be n paths which can be abstracted to m meta paths  $(n \ge m)$ . The type of meta path can be seen as a feature in  $a_k$ .
- Gain( $D, E_g = mp_i$ ) indicates the **information gain** from feature  $E_g$  (the type of meta path) to D (if this path is "right").

#### Weighted Pooling Layer

$$\widehat{y_k} = \sigma(\sum_{i=1}^{|P_k|} w_i \, s_i)$$

Some explanations:

- $P_k$  is the path set of user-item interaction  $a_k$ .
- $w_i$  and  $s_i$  is the weight and score of i-th path in  $P_k$ .
- $\sigma$  indicates sigmoid activation function.

#### Optimization

$$L = -\sum_{a \in A} (y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$

 $L_2$  regularization is conducted here, which is omitted for simplicity.

### Experiments

- Dataset Description
- Bi-classification Task
- Top-k Task
- Explainability Analysis

#### Dataset Description

### KKBox: A music recommendation dataset from Kaggle.

IM-1M: A movie recommendation dataset from IMDb and MovieLens-1M.

|             | Dataset              | KKBox      | IM-1M   |  |
|-------------|----------------------|------------|---------|--|
|             | #Users               | 34,403     | 6,040   |  |
| User-Item   | #Items               | 2,296,320  | 3,274   |  |
| Interaction | #Interactions        | 3,696,465  | 370,023 |  |
|             | Data Density         | 0.0047%    | 1.87%   |  |
|             | #Entities            | 2,562,937  | 15,439  |  |
| Knowledge   | #Entities Types      | 5          | 5       |  |
| Graph       | #Relation Types      | 8          | 9       |  |
|             | #Triples             | 16,237,068 | 442,409 |  |
|             | #Path                | 41,400,408 | 345,344 |  |
| Path        | Avg.Path.Length      | 5.11       | 4.74    |  |
|             | #Meta Path Types     | 21         | 46      |  |
|             | Avg.Meta.Path.Length | 5          | 5.37    |  |



Figure 3: Schema graphs of KKBox (left) and IM-1M (right). In KKBox, U: user, I: item (song), L: language, Ar: artist, G: genre. In IM-1M, U: user, I: item (movie), Ac: actor, D: director, G: genre.

Both music and movie field knowledge graphs are manually constructed. Here shows the schema graphs of KKBox and IM-1M knowledge graphs.

#### **Bi-classification Task**

Table 3: Summary of performance on binary classification recommendation task between all baselines and our proposed PeRN on KKBox and IM-1M datasetS. Bolded numbers indicate the best result of each columns, and '\*' indicates the arithmetic square root operation is performed on MSE for simplicity.

| Dataset   |       |       | KKBox                 |       |       |       |       | IM-1M                 |       |       |
|-----------|-------|-------|-----------------------|-------|-------|-------|-------|-----------------------|-------|-------|
| Metrics   | Р     | R     | <i>F</i> <sub>1</sub> | MSE*  | AUC   | P     | R     | <i>F</i> <sub>1</sub> | MSE*  | AUC   |
| MF        | 0.509 | 0.528 | 0.518                 | 0.496 | 0.511 | 0.612 | 0.608 | 0.610                 | 0.431 | 0.586 |
| AFM       | 0.517 | 0.533 | 0.525                 | 0.483 | 0.536 | 0.647 | 0.632 | 0.639                 | 0.413 | 0.601 |
| RippleNet | 0.699 | 0.732 | 0.715                 | 0.287 | 0.762 | 0.742 | 0.713 | 0.727                 | 0.284 | 0.694 |
| MEIRec    | 0.753 | 0.774 | 0.763                 | 0.242 | 0.819 | 0.792 | 0.804 | 0.798                 | 0.221 | 0.734 |
| KPRN      | 0.805 | 0.822 | 0.813                 | 0.206 | 0.834 | 0.843 | 0.826 | 0.834                 | 0.172 | 0.812 |
| PeRN      | 0.842 | 0.861 | 0.851                 | 0.195 | 0.866 | 0.835 | 0.871 | 0.853                 | 0.154 | 0.851 |

#### Top-k Task (on dealing cold-start issue)



Figure 4: Performance of PeRN in top-K task and cold-start costs, measured by NDCG@{3, 5, 10, 15} in KKBox and NDCG@{2, 6, 10, 12} in IM-1M. '\*' here indicates the PcKG of KPRN is constantly 50%.

PcKG: Percentage of interactions used to complete Knowledge Graph

#### Explainability Analysis



## References

- Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In *Proceedings of UAI*. 452–461.
- Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks. In *Proceedings of IJCAI*. 3119–3125.
- Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. In *Proceedings of CIKM*. 417–426.
- Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, and Yongliang Li. 2019. Metapathguided Heterogeneous Graph Neural Network for Intent Recommendation. In *Proceedings of SIGKDD*. 2478– 2486.
- Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable Reasoning over Knowledge Graphs for Recommendation. In *Proceedings of AAAI*. 5329–5336.

#### Thanks for reading!

Slides made by Yafan Huang & Shihui Song