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* Recommender system helps us to obtain information/products
that Iinterest us more.

TikTOK




* A Triple combines two entities with one relation, e.g. :

(Michael Jackson, Born_in, Indiana)

* Knowledge Graph (KG), composed of countless triples, is a well-
structured data form and has already used In recommender
system, question answering, etc.




And what will happen with:
Recommender system + Knowledge Graph?

We give a toy example:

* One day, Tom listened to song “Billie Jean”.

Then, Tom was recommended a song “Scream”.
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* Three extracted paths explain the recommend reason.

* Explainability is significantly enhanced compared with Collaborative
Filtering (similar users tend to like similar items).

Scream



However, there are still two questions:

* Q1: How to extract paths from
Knowledge Graph quickly and
accurately?

* Q2. Which path here accounts
for “Tom likes Scream”"more?
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To solve these, we introduce meta path.

Like SungBy IsBrotherof Sing
Path: Tom Billie Jean Michael Jackson Janet Jackson Scream
Abstract entities to entity types.
Like SungBy IsBrotherof Sing
Meta path: User Song Singer Singer Song

* A Meta Path can represent a series of paths with the same structure.



With meta path, here comes our solutions:

* Q1. How to extract paths from * Q2. Which path here accounts
Knowledge Graph quickly and for “Tom likes Scream”more?
accurately?

Meta-path-aided
Path Extraction
Algorithm

Meta-path-based
Entropy Encoder



Overall framework of our proposed model:
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Name:

Path-enhanced Recurrent Network (PeRN)
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Some explanations of this model:

* PeRN Is an end-to-end recommendation model.

* Path Extraction Algorithm is used in “Extract Path” step.
* Meta path Is abstracted from path.

* (Tom,Scream) here is defined as an user-item interaction.



Methodology

* Path Extraction Algorithm

* Recurrent Network Encoder
* Entropy Encoder

* Weighted Pooling Layer

* Optimization



Path Extraction Algorithm

Some explanations:
* This algorithm Is meta-path-aided.

* This algorithm mainly uses the i1dea
of bi-directional search.

* We regard paths over six hops as
noise.

 if p; satisfies mp indicates the
condition when meta path of p; Is
same as mp.

Algorithm 1: Bidirectional Path Extraction

Input: Knowledge graph KG = {(h.r.t)|h.t € E.r € R},
user-item interaction set A = {a1,a2....a 4|},
meta path set M = {mp1, mpa,....mp|pq}-

Output: Path set ¥ = {P1.Pa..... P 7)}.

[nitialize: P «— @ :

2 for each a = (um.ip) in A do

1
2

3 Py — &;

1 S1 « retrieve all paths by head = u, within 3 hops;
5 So «— retrieve all paths by head = i, within 3 hops;
6 for each meta path mp in M do

7 | « length of mp;

8 Py < @ // left sub path set;

9 Py < @ // right sub path set;
10 for each p; in 51 do
11 if p; satisfies mp[0 — 2% |[/2]] then
12 | Add p; to Py;
13 for each p, in 52 do
11 if p, satisfies mp[2 + |[1/2] — 2 =[] then
15 | Add py to Py;
16 for each p;, pr in P1, P2 do
17 if pytail] = py[tail] then
18 p < combine p; and reverse(p; );
19 Add p to Py;
20 Add Py to P;

21 return P




Recurrent Network Encoder
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Entropy Encoder

B Gain(D, E; = mp;)
Wi = ZSmMp k| ~ . -
ijl Gain(D, E; = mp;)

Some explanations:
* w; Is designed for weighting different paths in one user-item interaction.
* Each path in one user-item interaction holds its own weight w.

* |n one user-item interaction a; = (u, i), there might be n paths which can be
abstracted to m meta paths (n = m). The type of meta path can be seen as a
feature Iin ay.

* Gain(D, E; = mp;) indicates the information gain from feature E; (the type of
meta path) to D (if this path Is “right”) .



Welghted Pooling Layer

|Pg|

Vi = U(Z W; Si)
i=1

Some explanations:
* P, Is the path set of user-item interaction ay.
* w; and s; Is the weight and score of I1-th path In Py.

* 0 Indicates sigmoid activation function.



Optimization

L=— Z (ylogy + (1 — y)log(1 — ))

aceA

L, regularization is conducted here, which is omitted for simplicity.



Experiments

* Dataset Description
* Bi-classification Task

* Top-k Task
* Explainability Analysis



Dataset Description

KKBox: A music recommendation dataset
from Kaggle.

IM-1M: A movie recommendation
dataset from IMDb and MovielLens-1M.

Dataset KKBox IM-1M
#Users 34,403 6,040
User-Item  #Items 2,296,320 3,274
Interaction #Interactions 3,696,465 370,023
Data Density 0.0047% 1.87%
#Entities 2,562,937 15,439
Knowledge #Entities Types 5 5
Graph #Relation Types 8 9
#Triples 16,237,068 442,409
#Path 41,400,408 345,344
Avg.Path.Length 5.11 4.74
Path
#Meta Path Types 21 46
Avg.Meta.Path.Length 5 5.37
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Figure 3: Schema graphs of KKBox (left) and IM-1M (right). In KKBox, U: user, I: item (song), L: language, Ar: artist, G: genre.
In IM-1M, U: user, I: item (movie), Ac: actor, D: director, G: genre.

Both music and movie field knowledge graphs are manually constructed.

Here shows the schema graphs of KKBox and IM-1M knowledge graphs.



Bi-classification Task

Table 3: Summary of performance on binary classification recommendation task between all baselines and our proposed PeRN
on KKBox and IM-1M datasetS. Bolded numbers indicate the best result of each columns, and ‘*’ indicates the arithmetic square
root operation is performed on MSE for simplicity.

Dataset KKBox IM-1M
Metrics P R Fq MSE* AUC P R F MSE* AUC
MF 0.509 0.528 0.518 0.496 0.511 | 0.612 0.608 0.610 0.431 0.586

AFM 0.517 0.533  0.525 0.483 0.536 | 0.647 0.632 0.639 0.413 0.601
RippleNet | 0.699 0.732 0.715 0.287 0.762 | 0.742 0.713  0.727 0.284  0.694
MEIRec 0.753 0.774 0.763 0.242 0.819 | 0.792 0.804 0.798 0.221 0.734
KPRN 0.805 0.822 0.813 0.206 0.834 | 0.843 0.8320 0.834 0.172 0.812

PeRN 0.842 0.861 0.851 0.195 0.866 | 0.335 0.871 0.853 0.154 0.851




Top-k Task (on
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6, 10, 12} in IM-1M. “* here indicates the PcKG of KPRN is constantly 50%.

PcKG: Percentage of interactions used to complete Knowledge Graph
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Explainability Analysis
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Thanks for reading!
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