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Abstract

Abstract: The article proposes a computationally efficient procedure for bias adjustment
in the iterated bootstrap. The new technique replaces the need for successive levels of
bootstrap resampling by proposing an approximation for the double bootstrap “calibrating
coefficient” using only one draw from the second level probability distribution. Extensive
Monte Carlo evidence suggest that the proposed approximation performs better than the
ordinary bootstrap bias correction. The article evaluates the usefulness of the bootstrap
and fast bootstrap in reducing the bias of generalized method of moments estimators
under weak instruments. In identified models, this fast bootstrap bias correction leads to
estimators with lower variance than those based on the double bootstrap. The proposed
fast iterated bootstrap performs better than the double bootstrap in all scenarios and
especially when the model has the weakest instrument relevance and the highest degree of
endogeneity. However, when the estimators have no finite moments and the instruments
are weak, the bootstrap does not work well and iterating it makes things worse.

Key words: GMM estimation, Bootstrap, double-bootstrap, bias-correction, Monte
Carlo simulation, consumption-based asset-pricing model.
JEL Classification: C12;C13;C15

1. Introduction

This paper describes an alternative technique to the double bootstrap for bias correc-
tion. This technique uses results from the “fast double bootstrap” procedure introduced
by Davidson and MacKinnon [2007] to achieve bias reduction of order higher than the
single bootstrap with fraction of the computational cost of the iterated bootstrap.

The idea of iterating the principle of the bootstrap proves to achieve higher order
refinements for correction estimation bias and confidence bounds. Beran [1988] argued
than pre-pivoting reduces the dependence between the probability distribution of the
resample and the unknown data generating process. Therefore, resamples reinforce the
conditions under which the bootstrap performs the best: pivotal or asymptotically pivotal
statistics. As a result, the double bootstrap has typically higher order accuracy than the
ordinary single bootstrap. The higher order refinements of the double/iterated bootstrap
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appear in many studies, inter alia Beran [1988, 1987, 1990], Hall [1992, 1986], Hall and
Martin [1988], Lee and Young [2002] and Shi [1992].

In principle, the bootstrap can be iterated to reduce the bias by a factor of O(n−1)
successively. The general framework presented by Hall and Martin [1988] is based on the
idea of calculating an adjustment factor or “calibrating coefficient” to correct the single
bootstrap approximation to the quantities of interest such as estimation bias, confidence
interval bounds and nominal level.

In practice however, one seldom sees the iterated bootstrap beyond the second level
(double bootstrap) due to the increasing computational intensity. Indeed, depending on
the model and the estimation method, even the double bootstrap can be computationally
very demanding. This has prompted a number of authors to develop computationally
efficient and cheaper alternatives to compounded sampling. The common goal of these
studies is to find approximations to the iterated bootstrap which eliminate the need for
nested levels of resampling.

Davidson and MacKinnon [2007, 2002a] propose a technique they call fast double boot-
strap (FDB) to improve the reliability of bootstrap estimate for the error in rejection
probability and bootstrap P values while bypassing the computational cost that involves
the double bootstrap. They argue that the FDB modified P values “will tend to be similar
to the ordinary bootstrap P value when the latter is reliable but more accurate when it is
unreliable.” In other terms, the modified P value is both an improvement over the single
bootstrap P value approximation and a check of its accuracy.

In this paper, we demonstrate how we may obtain approximations of the adjustment
factor without the use of the full second level bootstrap sampling. Indeed, as in Davidson
and MacKinnon [2007], we only require one draw from the second level bootstrap distri-
bution. The number of computations required are only twice what is usually needed to
perform the single bootstrap.

We provide Monte Carlo evidence of finite sample properties of bias correction of the
proposed method in two examples. The first example is a simple linear instrumental
variables model as in Hahn and Hausman [2002] (also in Guggenberger [2008]). The sec-
ond example is the consumption capital market model (C-CAPM), a leading application
of a nonlinear-in parameters generalized method of moments model. The GMM in the
second example nests the linear IV model as a special case. Our aim is to evaluate the
new proposed efficient bootstrap bias correction technique in relation to the issue of weak
instrument and weak identification in these class of models. Research on weak identi-
fication in nonlinear models remains mostly based on large-sample approximations and
mainly focussed on robust tests and confidence sets. GMM and IV estimators are incon-
sistent and their limiting distributions are nonstandard. It is an open question whether
the (iterated) bootstrap is successful in reducing the bias in finite samples. We add to
the understanding of the consequences of GMM estimation under weak instruments in
two main ways. First, we provide finite sample evidence through Monte Carlo simulation
regarding point estimation and bootstrap bias correction in DGPs with varying degrees of
instruments relevance. Second, the usefulness and the consequences of the double boot-
strap as a method for achieving higher bias-reduction is evaluated. The results provide
guidelines on when the bootstrap and the more sophisticated FDB can be expected to
work well.
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The paper is organized as follows. Section two reviews the single and double bootstrap
methods for bias estimation. Section three defines the new fast double bootstrap method
and discusses its implementation. Section four describes the Monte Carlo environment for
the calibrated models in the linear IV and nonlinear GMM . It discusses the computational
considerations and simulation algorithms. Section five presents the Monte Carlo results.
Section six concludes with discussion of future research.

2. Alternative Bootstraps for Bias Estimation

2.1. Single Bootstrap Bias Correction

Let X be a random variable with unknown probability distribution function F0 indexed
by a parameter θ0. Consider a random sample from the data generating process µ0 of X
with realization x = (x1, x2, ..., xn). Let µ̂ be the data generating process determined by

F̂ , some estimate of the empirical distribution implied by x. A standard uniform choice
for is F̂ (y) = 1

n

∑n
i=1 I(Xi ≤ y) and I(.) stands for the indicator function which takes the

value of one if the statement in its argument is true. Other choices of F̂ are used to allow
nonuniform sampling from the data. The choice of F̂ does not affect the result in this
paper.

Let the random variable Rt(µ0) (µ̂, µ0) be some deterministic function of µ̂, µ0 and some
parameter t(µ0).

Many statistical problems can be formulated as specifying the statistical properties of
the random variableRt(.)(., .) such as its probability distribution, moments and percentiles.
For a given parameter of interest θ(µ0) and a consistent estimator θ(µ̂), the Root function
for the statistical problem of bias estimation is defined as1

Rt(µ0)(µ̂, µ0) = θ(µ̂)− θ(µ0) + t(µ0) (1)

where the bias t(µ0) in estimating θ(µ0) satisfies the population equation

E
{
Rt(µ0)(µ̂, µ0)|µ0

}
= 0. (2)

The aim is to compute the bias t(µ0). If we were able to repeatedly draw samples from
µ0 for a known θ(F0), then the theoretical bias corresponding to θ(µ̂) can be constructed as
β(µ0) = E {θ(µ̂)− θ(µ0)|µ0} and a bias corrected estimator is thus obtained by correcting
for the bias, θ(µ̂)c = θ(µ̂) + β(µ0).

Since we observe only one realization x = {x1, ..., xn} from the unknown DGP µ0, the
sampling from the unknown probability distribution is replaced by resampling from the
empirical distribution of the observed data.

Given a choice of F̂ a random bootstrap sample X∗ of size n with realization x∗ =
(x∗1, x

∗
2, ..., x

∗
n) is drawn with replacement from the original sample. 2

1In what follows Eµ(.) stands for the expectation under the probability distribution F . This is used
interchangeably with the notation E(.|µ).

2Here we abstract from the debate about the how much sampling of x from F̂ . Without loss of
generality, we set the bootstrap sample size equal to the original sample size.
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The bootstrap principle approximates the sampling distribution of Rt(µ0)(µ̂, µ0) by the
bootstrap distribution of Rt(µ̂)(µ̂

∗, m̂u). We use m̂u∗ to denote the data generating process

indexed by the bootstrap empirical distribution F̂ ∗ defined in analogous way as F̂ , that
is F̂ ∗(y) = 1

n

∑n
i=1 I(X∗i ≤ y).

Let µ̂∗ be the data generating process of the bootstrap sample and let θ(µ̂∗) be the
estimator θ(µ) applied to the bootstrap sample x∗ = {x∗1, ..., x∗n}.

To fix ideas, define a function H(x) which measures the amount of uncorrected bias in
θ(µ̂) that remains after accounting for x,

H(x) = E {θ(µ̂)− θ(µ0)− x|µ0} ; (3)

and let Ĝ(x) = E {θ(µ̂∗)− x|µ̂}.
To estimate the bias of θ(µ̂), we would like to find the value t0 such that

H(t0) = E {θ(µ̂)− θ(µ0) + t0|µ0} = 0. (4)

Efron’s bootstrap method for calculating bias corrected estimators replaces the population
equation (3) by the sample equation

Ĥ(x) = E {θ(µ̂∗)− θ(µ̂) + x|µ̂} . (5)

Definition 2.1. The single bootstrap bias corrected estimator is defined as θ(µ̂)bc = θ(µ̂)+

t̂∗ where t̂∗ = θ(µ̂)− Ĝ−1(0)

Proof 1. The theoretical bootstrap estimate for the bias in (4) is given by x∗

H(t∗) = E {θ(µ̂)− θ(µ0) + t∗|µ̂} = 0 (6)

However, since we observe only one realization x = (x1, ..., xn) from the unknown DGP
µ0, the theoretical bias can be estimated by t̂∗ by replacing the population equation in (6)
by the bootstrap equation

Ĥ(t̂∗) = E
{
θ(µ̂∗)− θ(µ̂) + t̂∗|µ̂

}
= 0 (7)

An estimate of t̂∗ is calculated using Monte Carlo methods. Given the original sample,
B bootstrap samples are generated from F̂ . For each bootstrap sample j, (j = 1, ..., B),

a realized value θ̂∗ of θ(F̂ ). Let t̂∗ be the estimate for the bias in (8) then,

˜̂t∗ = θ̂ − 1

n

n∑
j=1

θ̂∗j (8)

The bootstrap bias-corrected estimator for θ(µ0) is thus,

θ̂bc = θ(µ̂) + ˜̂t∗ = 2 · θ(µ̂)− Eµ̂θ(µ̂∗) (9)

The amount of uncorrected bias in θ̂bc is of order O(n−2), that is

Eµ0

{
θ̂bc − θ(µ0)

}
= O(n−2)
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An improvement compared to the original estimator θ(µ̂)

EF0 {θ(µ̂)− θ(µ0)} = O(n−1)

For a thorough analysis of the bootstrap refinements see among others, Horowitz Horowitz
[2001], Hall Hall and Horowitz [1996], Efron Efron [1987, 1979] and, Efron and Tibshirani
Efron and Tibshirani [1986].

2.2. Double Bootstrap Bias Correction

Beran [1988, 1987] introduced the idea of repeated prepivoting by mapping a test
statistic τn,j into the new test statistic τn,j+1 where τn,0 is the original sample statistic
and τn,1 is the first bootstrap statistic. Beran argued that the null distribution of τn,j is
less strongly dependent of the parameters indexing the unknown probability distribution
F0. This idea is similar to Hall [1986] iterated bootstrap. In estimating the P value of
a test statistic, he shows that the accuracy of the approximation using the rth (iterated)
bootstrap critical value is of order O(n−(r+1)/2).

In this section, we use results from Shi [1992] to derive a double bootstrap equation for
bias estimation. Shi showed that the double bootstrap principle can be used without the
need of a pivot. He showed that the the double bootstrap one sided confidence interval
has coverage probability O(n−1) which faster than the percentile bootstrap. We borrow
heavily from Shi’s notation as well as that of Hall [1992].

Although Shi outlines the treatment for P value and confidence limits, the results in
this section adapts and extends his double bootstrap equation to bias correction.

Let F̂ ∗∗ be the empirical distribution of the bootstrap sample X∗∗ randomly drawn
from the first level bootstrap distribution F̂ ∗ and let µ̂∗∗ be the DGP determined by F̂ ∗∗.

In the following we follow Hall Hall [1986] and Shi Shi [1992] notation and methodology
to describe the double bootstrap for estimating the bias.

Because the likelihood function of θ differs from the conditional density function of
θ(µ̂∗), the bootstrap bias estimator t̂∗ in Lemma (2.1) although it satisfies (6) does not
necessarily satisfy the population equation in (4),

E
{
θ(µ̂)− θ(µ0) + t̂∗|µ0

}
6= 0 (10)

The idea of the double bootstrap is to estimate the deviation from zero in (10) by using
a second level bootstrap. In other terms, by iterating the bootstrap principle a second
time, one is attempting to estimate the perturbation to t̂∗ needed to satisfy equation (4)
with equality.

Definition 2.2. Let Ĥ∗(t) = E {θ(µ̂∗∗)− θ(µ̂∗) + t|µ̂∗} and define β∗ = Ĥ∗(t∗β∗) where

t∗β∗ = Ĥ−1(0); the double bootstrap bias corrected estimator is defined as

θ(µ̂)Dbc = θ(µ̂) + t∗∗;

where t∗∗ = H−1(β∗) = θ(µ̂)− Ĝ−1(β∗)
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Proof 2. We want to estimate the deviation from zero of the population equation (10)
and use it as a bias adjustment. Ideally, we want to find the bias adjustment also called
the “calibrating coefficient” β such that,

E {θ(µ̂)− θ(µ0) + tβ|µ0} = 0 (11)

E {θ(µ̂∗)− θ(µ̂) + tβ|µ̂} = β (12)

In the first equation θ(µ̂) is random and depends upon µ0 and the chosen calibrating
coefficient β, while in the second equation θ(µ̂) is fixed and θ(µ̂∗) is random and depends
upon the DGP µ̂∗.

The purpose is to solve the system of equations for the value of β. To do so, the
bootstrap principle is used to provide an estimate β∗ that satisfies,

E
{
θ(µ̂∗)− θ(µ̂) + t∗β∗ |µ̂

}
= 0 (13)

E
{
θ(µ̂∗∗)− θ(µ̂∗) + t∗β∗|µ̂∗

}
= β∗ (14)

We can rewrite equation (14) as t∗β∗ = Ĥ∗−1(β∗) = θ(µ̂∗) − Ĝ∗−1(β∗). Solving for β∗ in
(13) gives,

E
{
θ(µ̂∗)− θ(µ̂) + θ(µ̂∗)− Ĝ∗−1(β∗)|µ̂

}
= 0 (15)

or equivalently, Ĥ
(
θ(µ̂∗)− Ĝ∗−1(β∗)

)
= 0. Finally,

β∗ = Ĝ∗ (2 · θ(µ̂∗)− θ(µ̂)) (16)

To find the double bootstrap estimate for the bias, we then solve for t∗∗ such that,

Ĥ(t∗∗) = β∗

t∗∗ = Ĥ−1(β∗) = θ(µ̂)− Ĝ−1(β∗)

Noting that Ĝ−1(β∗) = E(θ(µ̂∗)− β∗|µ̂) and β∗ = E {θ(µ̂∗∗)− 2θ(µ̂∗) + θ(µ̂)|µ̂∗}, we can
finally rewrite the double bootstrap bias correction as,

t∗∗ = 2 · θ(µ̂)− 3 · E {θ(µ̂∗)|µ̂}+ E {θ(µ̂∗∗)|µ̂}

The expression for the double bootstrap bias corrected estimator for θ(µ0) is therefore

θ(µ̂)Dbc = 3 · θ(µ̂)− 3 · E {θ(µ̂∗)|µ̂}+ E {θ(µ̂∗∗)|µ̂} (17)

In fact, Hall Hall [1992] showed that the rth iterated bootstrap bias corrected estimator
can be written as,

θ(µ̂)rbc =
r+1∑
j=1

(
r + 1
j

)
E {θ(µ̂r·∗)|µ̂} (18)

where µ̂r·∗ is the DGP for the rth bootstrap resample.
It is worth noting that the proof of Lemma 2.2 follows the treatment of confidence limits

in Shi Shi [1992]. Although it differs from Hall’s exposition of additive bias correction,
the two basically lead to the exact same bias correction. The proof of the equivalence of
the two is deferred to the appendix.
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2.3. Implementing the double bootstrap bias correction

If the first level bootstrap is accurate in estimating the distribution of the random
variable θ(µ̂) then the bias adjustment β∗ will be very small. In reality however, the
accuracy of the bias correction increases with the double bootstrap. Indeed Hall [1986]
argues that for the rth level bootstrap (r = 2 corresponds to the double bootstrap)
the increase of the accuracy of the iterated bootstrap is of order O(n−r). To implement
Hall’s double bootstrap bias correction, the Monte Carlo algorithm involves bootstrapping
within the first level bootstrap.

1. For each (first level) bootstrap replication j (j = 1, .., B1), a bootstrap sample x∗

is drawn using the empirical distribution F̂ . Calculate the bootstrap realized value
θ̂∗j of the statistic θ(F̂ ∗).
The simulated data x∗ is then used to construct a second level bootstrap data
generating process with CDF F̂ ∗.

2. For each (second level) bootstrap replication l (l = 1, .., B2), a bootstrap sample

x∗∗ is drawn from x∗ using F̂ ∗. Calculate the bootstrap realized value θ̂∗∗j,l of the

statistic θ(F̂ ∗∗). An estimate for the second level bias correction b̂∗∗ is

b̂∗∗j = θ̂∗j −
1

B2

B2∑
l=1

θ̂∗∗j,l . (19)

3. After all bootstrapping operations are complete, we can calculate an estimate for
the first level bootstrap bias,

b̂∗ = θ̂ − 1

B1

B1∑
j=1

θ̂∗j ; (20)

and an estimate for the bias adjustment b̃,

̂̃
b = θ̂ − 1

B1

B1∑
j=1

θ̂∗j −
1

B1

B1∑
j=1

b̂∗∗j = b̂∗ − 1

B1

B1∑
j=1

b̂∗∗j . (21)

The double bootstrap doesn’t come cheap. The algorithm makes a total of B1(B2 + 1)
(= 249500 for B2 = B1 = 499) visits to the statistic H(.). Depending on the model and
the estimation method indeed this can be computationally cumbersome.

3. Fast Double Bootstrap

3.1. Higher order refinements of the FDB

Davidson and MacKinnon [2007, 2002b] developed a new procedure for approximating
the bootstrap P values and rejection probabilities they called fast double bootstrap (FDB).
These approximations are more accurate than the single bootstrap estimates but are less
computationally demanding than the double bootstrap. The procedure proposed in this
study follows the same argument as in Davidson and MacKinnon [2007, 2002b]. Instead
of
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Definition 3.1. Let bθ(µ̂) be the bias associated with θ(µ̂) such that Ĥ[bθ(µ̂)] = 0. Let

x∗b(θ(µ̂)) = θ(µ̂∗) − Ĥ∗−1[bθ(µ̂)], then the fast double bootstrap bias corrected estimator for

θ(µ) is defined as,

θ(µ̂)Fbc = θ(µ̂) + b∗ + bθ(µ̂);

where b∗ = Ĥ[θ(µ̂)− x∗(bθ(µ̂))]

In this section we describe a technique to increase the accuracy of bootstrap bias estima-
tion in the same spirit of the FDB of Davidson and MacKinnon.

3.2. Implementing the fast double bootstrap bias correction

1. For each bootstrap replication j (j = 1, .., B1), a bootstrap sample x∗ is drawn

using the empirical distribution F̂ . Calculate the bootstrap realized value θ̂∗j of the

statistic θ(F̂ ∗).
The simulated data x∗ is then used to construct a second level bootstrap data
generating process with CDF F̂ ∗. One bootstrap sample x∗∗ is drawn from x∗ using
F̂ ∗. Calculate the bootstrap realized value θ̂∗∗j of the statistic θ(F̂ ∗∗).

2. After all bootstrapping operations are complete, we have two series of iterates, θ̂∗j
and θ̂∗∗j . The first level bootstrap bias is calculated in similar way as in (20).

3. Instead of using the mean of the distribution of θ̂∗j to calculate second level bias, we
compute a value Q∗∗ such as

x∗∗ =
1

B1

B1∑
j=1

θ̂∗∗j + b̂∗, (22)

and compute and estimate for η̃,

̂̃η = x∗∗ − 1

B1

B1∑
j=1

θ̂∗j (23)

As in Davidson and MacKinnon [2007, 2002b] , this algorithm requires only 2B1 visits
to the statistic of interest, in this case the estimator for θ(F ).

4. The Monte Carlo Environment

4.1. Linear IV model

Consider the simple linear IV model of Hahn and Hausman [2002] and as presented in
Guggenberger [2008]

yi = θxi + εi (24)

xi = ziπ + vi i = 1, ..., n (25)

(26)
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For simplicity, we assume that the endogenous variable in the left-hand side of (24) is
a scalar. The scalar regressor xi is endogenous and accepts the reduced form in (25).
The K − vector zi represents the predetermined/exogenous instruments which satisfies
exogeneity condition, E(ziεi) = 0. The random variables zi is IID normally distributed

random variables N(0, IK), and (ε, vi) are IID N(0,Ω) with Ω =

(
1 ρ
ρ 1

)
.

Two parameters are of special interest in this model and will affect the bias of the IV
estimator. First, the correlation parameter ρ which determines the degree of endogeneity
of xi. Secondly, the strength of the instruments π which measure the relevance of the
instruments. If the latter is zero, the IV estimator is neither consistent nor asymptotically
normal. To control for this parameter we use the R2 from the first stage regression which
is equal to, R2 = π′π

1+π′π
.

Assuming that all the instruments have the same strength η (See, Guggenberger [2008])
or alternatively if the total explanatory power of the first stage regression is equally
assigned among πj = η, j = 1 : K (Flores-Lagunes [2007]), the R2 is thus related to the
relevance of the instruments and to the number of instruments in the simple equation ,

R2 =
K.η2

1 +K.η2
(27)

The IV estimator is defined as

θ̂IV = (x′Pzx)−1x′Pzy (28)

where Pz is the linear projection matrix defined by Pz = z(z′z)−1z′. This estimator is
consistent and asymptotically normally distributed. The finite sample bias is however
dependent on ρ, π and K. Indeed, Rothenberg [1983] provides an expression for the
approximate bias which clearly shows how these parameters come into play:

bias(θ̂IV ) =
(K − 2).ρ

n.(π′z′zπ)−1
. (29)

The data are simulated to represent cases of weak instruments (low R2), and cases of severe
endogeneity (high ρ). The degree of overidentification (number of instruments) does also
play a role in the tradeoff between bias and efficiency for IV estimation. We simulate data
for the possible parameter combinations of n ∈ {100, 200}, K ∈ {1, 5, 20}, ρ ∈ {0.3, 0.9}
and R2 ∈ {0.001, 0.1}. In all the experiments, θ is set to zero. One important result in
the IV estimation is that the mth moment exists if and only if m < K. In the context
of our simulation experiments, for K = 1 the distribution of IV estimator for β does not
have any moments. In this case the results on the mean and standard errors need to
be interpreted cautiously. For these reasons, we will be reporting the Median bias for
analysis.

4.2. Nonlinear GMM

We investigate bias estimation properties of the fast method proposed in this paper in
the GMM estimation of nonlinear conditional moment model. As an example we study
the C-CAPM of Hansen [1982].
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Table 1: R2 = 0.10, n = 100
Panel A:ρ = 0.9 Panel B:ρ = 0.3

Mean Median Std RMSE Mean Median Std RMSE

K = 1 K = 1

β̂ -0.0095 0.0005 1.34 1.34 -0.0067 0.0254 0.4161 0.4162

β̂bc -0.1625 0.0579 5.400 5.40 -0.0365 0.0665 3.3422 3.342

β̂Dbc -0.3147 0.0989 11.03 11.03 -0.0668 0.1042 6.5972 6.597

β̂Fbc -0.5436 0.0971 18.52 18.53 -0.2727 0.0910 11.94 11.95

K = 5 K = 5

β̂ 0.0926 0.0994 0.1074 0.1418 0.0815 0.0924 0.2847 0.2961

β̂bc 0.0511 0.0682 0.1593 0.1673 0.0364 0.0586 0.3879 0.3896

β̂Dbc 0.0097 0.0366 0.2140 0.2142 -0.0086 0.0240 0.4978 0.4979

β̂Fbc 0.0294 0.0544 0.1973 0.1995 0.0190 0.0488 0.4548 0.4552

K = 20 K = 20

β̂ 0.1696 0.1719 0.0568 0.1789 0.1693 0.1692 0.1710 0.2406

β̂bc 0.1513 0.1583 0.0821 0.1722 0.1385 0.1400 0.2355 0.2732

β̂Dbc 0.1331 0.1426 0.1083 0.1716 0.1078 0.1107 0.3036 0.3222

β̂Fbc 0.1404 0.1506 0.0990 0.1718 0.1214 0.1258 0.2764 0.3019

The experimental design will borrow heavily from the extensive body of empirical work
investigating inference in the consumption asset pricing model using GMM methods.

The Euler equation in the C-CAPM for an economy with m assets and assuming that
the preferences are of the constant relative risk aversion type is

Et
{
α(ct+1)−γ ⊗Rt+1 − ιm

}
= 0 (30)

where ct is the growth rate of consumption, Rt is the m dimensional vector of gross stock
returns, γ is the risk aversion parameter (> 0), α is the impatience parameter, and ιm is
an m× 1 vector of ones. The one period gross return from holding one unit of stock j is
defined as:

Rj,t+1 =
Pj,t+1 +Dj,t+1

Pj,t

where Dj,t+1 is the dividend yield on stock j from period t to t+ 1.
Given a set zt of q instruments, available at time t, a family of population orthogonality

conditions can be constructed based on the following moments functions3:

gt(θ) =
(
α(ct+1)−γ ⊗Rt+1 − ιm

)
⊗ zt

g(θ) =
1

n

n∑
t=1

gt(θ)

The continuously updated GMM of Hansen et. al Hansen et al. [1996] is defined by,

θ̂ = arg min
θ
g(θ)′

[
1

n

n∑
t=1

gt(θ)gt(θ)
′

]−1

g(θ) (31)

3gt(θ0) = h(xt+1, θ0) ⊗ zt stands for the Kronecker product of the m × 1 vector h(xt+1, θ0) and the
q × 1 vector of instruments zt. The product is an mq × 1 vector.
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Table 2: R2 = 0.001, n = 100
Panel A:ρ = 0.9, Panel B:ρ = 0.3

Mean Median Std RMSE Mean Median Std RMSE

K = 1 K = 1

β̂ 0.2706 0.1837 17.51 17.51 1.1204 0.2753 15.92 15.96

β̂bc 0.2901 0.1798 35.23 35.23 2.2363 0.3581 38.30 38.36

β̂Dbc 0.3122 0.1992 53.19 53.19 3.3458 0.4183 63.39 63.48

β̂Fbc -0.4274 0.1584 58.83 58.83 2.5317 0.3965 84.19 84.22

K = 5 K = 5

β̂ 0.2203 0.2189 0.1345 0.2582 0.2663 0.2452 0.51 0.57

β̂bc 0.2237 0.2216 0.2207 0.3142 0.2661 0.2537 0.83 0.87

β̂Dbc 0.2270 0.2210 0.3087 0.3832 0.2659 0.2565 1.16 1.19

β̂Fbc 0.2267 0.2191 0.2926 0.3701 0.2666 0.2558 1.09 1.12

K = 20 K = 20

β̂ 0.2194 0.2184 0.0547 0.2262 0.2587 0.2556 0.1996 0.3268

β̂bc 0.2205 0.2203 0.0822 0.2353 0.2571 0.2626 0.3009 0.3958

β̂Dbc 0.2215 0.2215 0.1108 0.2477 0.2554 0.2651 0.4061 0.4797

β̂Fbc 0.2212 0.2208 0.1019 0.2436 0.2559 0.2608 0.3735 0.4528

To simulate series of consumption growth and stock returns which satisfy the set of
moments conditions in (30), we follow the approach of ?. This approach assumes that
the state variables (consumption growth ct, and dividend growths, Xj,t = Dj,t/Dj,t−1)
are jointly stationary first order Markov processes. An 9 − state Markov chain is fitted
to the consumption and dividends growth so as to approximate the first order vector
autoregression (V AR)

Xt = µ+ ΦXt−1 + εt

where Xt = (log(ct), log(X1,t), ..., log(Xm,t))
′ and εt are independent and identically dis-

tributed with Et−1(εt) = 0 and V (εt) = Ω. Our economy is similar to the one described
by Kocherlakota [1990] with complete and frictionless markets with three assets: the Risk
free Rf which pays one unit of consumption, the market portfolio MP which pays Ct
units of consumption in period t and the stock market SM with dividend payoffs Dt in
period t.

Wright [2003] addressed issues of identification in the C-CAPM and proposed a test
for detecting lack of identification. We use his Monte Carlo specifications in our problem
to detect the effect of identification on the ability of the bootstrap to approximate the
estimation bias. The models studied by Wright [2003] are presented in Table 5. Model
(FR) represent the case of fully identified model, NRF stands for the case where the
parameter γ is weakly identified and finally RF represent a situation where the model is
not fully identified.

5. Monte Carlo Results

The results reported in this section are based on 1, 000 simulation repetitions. There
are a number of studies which explored the choice of the number of bootstraps and how it
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Table 3: R2 = 0.1, n = 200
Panel A:ρ = 0.9, Panel B:ρ = 0.3

Mean Median Std RMSE Mean Median Std RMSE

K = 1 K = 1

β̂ -0.0200 0.0023 0.1207 0.1223 -0.0067 0.0254 0.4161 0.4162

β̂bc 0.0018 0.0350 0.3456 0.3456 -0.0365 0.0665 3.3422 3.3424

β̂Dbc 0.0241 0.0613 0.6498 0.6503 -0.0668 0.1042 6.5972 6.5976

β̂Fbc -0.0151 0.0469 1.1860 1.1861 -0.2727 0.0910 11.94 11.95
K = 5 K = 5

β̂ 0.0509 0.0603 0.0800 0.0948 0.1390 0.1472 0.1511 0.2053

β̂bc 0.0147 0.0331 0.1120 0.1129 0.0968 0.1097 0.2050 0.2267

β̂Dbc -0.0213 0.0062 0.1465 0.1481 0.0545 0.0686 0.2606 0.2662

β̂Fbc 0.0021 0.0267 0.1321 0.1321 0.0743 0.0866 0.2361 0.2476

K = 20 K = 20

β̂ 0.1241 0.1253 0.0455 0.1322 0.1264 0.1249 0.1459 0.1930

β̂bc 0.0920 0.0942 0.0633 0.1117 0.0858 0.0858 0.1946 0.2127

β̂Dbc 0.0600 0.0646 0.0820 0.1017 0.0452 0.0500 0.2452 0.2493

β̂Fbc 0.0748 0.0792 0.0745 0.1056 0.0656 0.0659 0.2212 0.2307

affects the theoretical predictions abut the bootstrap approximation. Most of these studies
considered the case of bootstrap tests and confidence intervals. Davidson and MacKinnon
[2000] argue that the outcome of the bootstrap test will depend on the sequence of random
numbers used to generate the bootstrap samples, and it necessarily results in some loss
of power. They propose a data dependent pretest procedure for choosing the number of
bootstrap samples so as to minimize power loss. This procedure also depends on the the
nominal level π.

The choice of the number of inner bootstraps is equally important. Lee and Young
[2002] studied the effect of experimental randomness on coverage error of double bootstrap
confidence intervals. They show that to ensure that the coverage error in the Monte Carlo
remains of the same order as that of the theoretical one, B1 and B2 must be of larger
order than the sample size n, of order n4 and n2 respectively in the two-sided case and of
order n2 and n respectively in the one-sided case.

Our choice of B1 and B2 is not justified by any data dependent measure of optimality.
Because of the computational cost involved with increased number of bootstraps, we
restrict our selves to the choice of B1 = 499 and B2 = 399 (considered as reasonable in
Davidson and MacKinnon [2007]).

For both the linear IV and nonlinear GMM, we calculate the mean bias, median bias,
standard errors (std)and root mean square error (RTMSE ) of the estimator θ̂, the single

bias corrected (SBBC ) estimator θ̂bc, the double bootstrap bias-corrected (DBBC ) estima-

tor θ̂Dbc (Lemma 2.2) and the proposed fast bootstrap bias-corrected (FBBC ) estimator

θ̂Fbc (Lemma 3.1)

5.1. Linear IV

In this section, we discuss the performance of the proposed bootstrap bias-correction
relative to the single and double bootstrap corrected estimators. We also discuss the effect
of n, R2 and K on the performance of each of the estimators.
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Table 4: R2 = 0.001, n = 200
Panel A:ρ = 0.9, Panel B:ρ = 0.3

Mean Median Std RMSE Mean Median Std RMSE

K = 1 K = 1

β̂ -0.4543 0.2047 27.74 27.74 2.810 0.2123 44.76 44.85

β̂bc -1.0148 0.2066 55.76 55.77 6.993 0.2090 102.13 102.37

β̂Dbc -1.5765 0.2014 83.98 83.99 11.18 0.1475 166.54 166.91

β̂Fbc -1.3936 0.1888 85.24 85.25 12.66 0.1997 200.89 201.29

K = 5 K = 5

β̂ 0.2146 0.2179 0.1515 0.2627 0.2471 0.2781 0.4819 0.5415

β̂bc 0.2137 0.2197 0.2587 0.3356 0.2463 0.2801 0.7790 0.8170

β̂Dbc 0.2129 0.2187 0.3679 0.4251 0.2456 0.2872 1.0821 1.1094

β̂Fbc 0.2132 0.2199 0.3534 0.4128 0.2486 0.2839 1.0199 1.0498

K = 20 K = 20

β̂ 0.2181 0.2176 0.0590 0.2259 0.2727 0.2617 0.1775 0.3254

β̂bc 0.2191 0.2185 0.0901 0.2369 0.2765 0.2641 0.2643 0.3825

β̂Dbc 0.2202 0.2207 0.1217 0.2516 0.2804 0.2663 0.3533 0.4511

β̂Fbc 0.2199 0.2197 0.1123 0.2469 0.2793 0.2651 0.3248 0.4284

Tables 1-4 contain the simulation results for all the combinations of n ∈ {100, 200},
R2 ∈ {0.001, 0.1}, K ∈ {1, 5, 10} and ρ ∈ {0.3, 0.9}. The columns of each table report

the sample mean, median,4 std and RTMSE of β̂, β̂bc, β̂Dbc and β̂Fbc.
The results for the linear IV estimator β̂ are conventional. As the degree of overidenti-

fication increases (higher K), there is an increase in the mean and median bias while the
standard errors go down. The bias and RTMSE are higher for models with high endo-
geneity ( high ρ in Panel A versus low ρ in Panel B). The bias is especially pronounced
for As expected from the theoretical predictions in the existing literature about the iter-
ated bootstrap, the mean bias of the double bootstrap is smaller than that of the single
bootstrap. However, this gain in bias does not offset the higher levels of standard errors
and therefore increased RTMSE.

Phillips [1980] derived the exact probability distribution function for the IV estimator
in simultaneous equations models. The leading term in the density is proportional to a
multivariate t-distribution and reveals that the integer moments of the IV estimator exist
up to the degree of over-identification. For the just identified case (K = 1), the first and
second moments of the IV estimator do not exist. This suggest additional finite sample
problems with the just identified model.

Results in Table 1 show that the proposed fast bias corrected estimator β̂Fbc outper-
forms the single bootstrap bias corrected β̂ in terms of mean and median bias. The double
bootstrap estimator β̂Dbc further shrinks this bias outperforming the proposed estimator.
Our estimator although less precise than β̂ outperforms β̂Dbc in terms of std and RTMSE.

The results are even more promising for the FBBC estimator when the sample size is
increased from n = 100 to n = 200. Table 3 shows that for models where instruments’

4Because the true value of β in the DGP is zero, the mean and median are also a measure of the mean
and median bias.
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Table 5: Parameter Settings for the monte Carlo experiments: γ = 1.30, α = .97.

Model Φ Ω µ

FR

(
−.50 0

0 −.50

) (
.01 .00
.00 .01

) (
.00
.00

)

NRF

(
−.161 .017
.414 .117

) (
.00120 .00177
.00177 .01400

) (
0.021
0.004

)

RF

(
0 0
0 0

) (
.00120 .00177
.00177 .0146

) (
0.018
0.013

)

Note: The VAR model is Xt = µ+ ΦXt−1 + εt, where Xt = (log(ct), log(xt))
′ and V (εt) = Ω. The economy is calibrated

with coefficient of relative risk aversion γ, and discount factor β. M1 and M2 are benchmark models where the serial
autocorrelation in the VAR is weak and the dividinds and consumption growth series are uncorrelated. M3 and M5 are
considered by Kocherlakota [1990],Hansen et al. [1996] and Wright [2003] . also considers models Models M4 and M6
introduce relatively strong serial correlation in the dividends series. These models are discusses further in the text.

Table 6: Monte Carlo results for γ
Panel A: n = 100 Panel B: n = 200

Model γ̂ γ̂bc γ̂Fbc γ̂ γ̂bc γ̂Fbc

FR Mean 1.8568 1.1706 0.8509 1.5680 1.2013 1.0372
Median 1.3918 1.0803 0.9531 1.3376 1.1782 1.2706

Std 2.2604 3.2156 4.4741 1.2723 2.0983 3.2560
RMSE 2.9252 3.4220 4.5543 2.0192 2.4179 3.4172

RF Mean 0.0938 -0.0221 -0.1518 0.0794 -0.0713 -0.1794
Median 0.0018 0.0243 -0.0135 -0.0011 -0.0867 -0.0968

Std 1.7980 2.8409 4.1745 0.7828 1.4191 2.1654
RMSE 1.8005 2.8409 4.1773 0.7869 1.4209 2.1728

NRF Mean 6.6182 6.9244 6.5954 7.6538 8.3402 8.8194
Median 7.6569 8.7511 8.5980 7.8630 8.3627 8.4250

Std 4.3968 8.0732 12.3990 2.7785 4.8951 7.5716
RMSE 0.1691 0.2152 14.0440 0.1691 0.2152 14.0440

relevance is not an issue, our proposed bias corrected estimator not only outperforms the
single bootstrap in terms of mean bias but also surpasses the DBBC. FBBC outperformed
the double bootstrap in terms of mean bias for the model with the highest degree of
endogeneity (Panel A, case of K = 5). For the model with the largest number of (relevant)
instruments, the precision of FBBC is even higher than that of the SBBC estimator (Panel
A, case of K = 20).

For models with weak instrument problems, the main lesson from the simulation results
is that the bootstrap does not help in reducing the finite sample bias. Tables 2-4 suggest
that iterating the bootstrap DBBC is worse than the SBBC , which in terns does not
improve upon the uncorrected estimator β̂. The proposed FBBC does not achieve any
bias reduction but also does not do any worse than the DBBC. Increasing the sample
size does not offset the lack of relevance of the instruments. However, the simulation
results suggest that weak instruments are less of a problem when endogeneity is more
pronounced.

For the just identified model, the results suggest that iterating the bootstrap principle
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Table 7: Monte Carlo results for α
Panel A: n = 100 Panel B: n = 200

Model α̂ α̂bc α̂Fbc α̂ α̂bc α̂Fbc

FR Mean 0.0237 0.0117 0.0053 0.0158 0.0085 0.0068
Median 0.0136 0.0051 0.0062 0.0120 0.0087 0.0104

Std 0.0370 0.0588 0.0910 0.0169 0.0339 0.0599
RMSE 0.0440 0.0599 0.0911 0.0231 0.0349 0.0603

RF Mean 0.0035 0.0005 0.0003 0.0018 -0.0013 -0.0032
Median 0.0000 -0.0001 0.0003 -0.0000 -0.0016 -0.0017

Std 0.0277 0.0465 0.0714 0.0142 0.0257 0.0400
RMSE 0.0279 0.0465 0.0714 0.0143 0.0257 0.0401

NRF Mean 0.1442 0.1491 0.1417 0.1634 0.1754 0.1838
Median 0.1587 0.1772 0.1812 0.1658 0.1743 0.1725

Std 0.0883 0.1552 0.2384 0.0555 0.0931 0.1411
RMSE 0.1691 0.2152 0.2773 0.1725 0.1986 0.2317

is not a good idea. The mean and median bias of the DBBC estimator is higher than
that of the SBBC. The same is true for the RTMSE of the two estimators. The proposed
FDBC estimator outperforms the DBBC in terms of median bias but still worse than the
SBBC.

5.2. Non-linear GMM

6. Conclusion

This paper has presented a new computationally efficient technique for bias correction
which can be used instead of the computationally intensive double bootstrap. The theory
predicts that iterating the bootstrap principle increases the accuracy of the bootstrap.
This increased accuracy comes at an enormous computational cost. With B1 first level
bootstraps and B2 second level bootstraps, the double bootstrap bias correction requires
the computation of B1B2 + B1 + 1 statistic. Our proposed estimator improves on the
single bootstrap and is more precise than the double bootstrap and requires computing
only 2B1 + 1 statistic.

We compare the relative performance of the single bootstrap (SBBC ), the double boot-
strap (DBBC ) and the new proposed fast bootstrap (FBBC ) bias-corrected estimators
in terms of mean and median bias, standard errors and root mean square errors.

The DBBC has the lowest mean bias compared to SBBC and FBBC at a high cost
of low precision due to increase noise introduced in the second level resampling. Our
proposed FBBC has a mean bias slightly higher than DBBC but significantly lower than
SBBC. Furthermore, the FBBC estimator is significantly more precise than the double
bootstrap.

We also find that the performance of all the bootstrap estimators is not affected by the
degree of endogeneity across the models with relevant instruments.

In terms of the ability of the bootstrap bias correction to remedy the problem of weak
instruments, the finding for the linear IV show that the bootstrap is not successful in
recentering the density of the estimator towards the true value. We find that in the case
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of weak identification, models with high degree of endogeneity have lower level of mean
and median bias. This result warrants further investigation.
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Appendix: Equivalence of Hall and Shi double-bootstrap

In what follows, we restate the results from Hall Hall [1992] for bias correction and
compare the double bootstrap adjustment from both methods.

Hall’s argument starts from the population equation

Eµ0 {θ(µ̂)− θ(µ0) + T (µ0)} = 0 (32)

The solution t̂∗ to the sample equation Eµ̂ {θ(µ̂∗)− θ(µ̂) + t(µ̂)} = 0 does not necessarily
satisfy (32) with equality. To improve the approximation, Hall introduces an additive5

5The perturbation can also be multiplicative.
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perturbation to t̂∗ in the form, U(µ0, t̂0) = t̂∗ + T (µ0) such that the population equation
holds,

Eµ0

{
θ(µ̂)− θ(µ0) + U(µ0, t̂

∗)
}

= 0 (33)

The sample equation corresponding to (33),

Eµ̂
{
θ(µ̂∗)− θ(µ̂) + t̂∗∗ + t̃

}
= 0 (34)

where t̂∗∗ solves

Eµ̂∗
{
θ(µ̂∗∗)− θ(µ̂∗) + t̂∗∗

}
= 0 (35)

The perturbation t̃ will improve the approximation and therefore U(µ̂, t̂∗) = t̂∗ + t̃ is a
better approximation for the bias than t̃∗. Hall’s double bootstrap bias corrected estimator
is given by,

θ̃Dbc = θ(µ̂) + t̂∗ + t̃ (36)

Noting that, t̂∗∗ = Ĥ∗−1(0) = θ(µ̂) (from (35)), t̂∗ = Ĥ−1(0), and that t̃ = Ĥ−1(−t̂∗∗) =

θ(µ̂)− Ĝ−1(−t̂∗∗), it is easy to find that equation (36) is exactly equal to the expression
of double bias corrected estimator in Lemma 2.2.

Basically Hall’s method makes the adjustment on T = Ĥ−1(0) while Shi’s methodology

applies the adjustment on Ĥ(t̂∗). Here the two are equal because the function H is linear
both through the root function Rt(.)(., .) and through the expectation operator. In the case

of confidence limits. Hall’s methodology finds the perturbation to the critical value t̂ such
that Ĥ = P (θ̂∗ ≤ t̂+ t̃) = α while Shi’s methodology, corrects the probability value that

corresponds to t̂ by finding β such that Ĥ = P (θ̂ ≤ t̂∗) = α and Ĥ∗ = P (θ̂∗∗ ≤ t̂∗) = β.
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