Valency of Distance-regular Antipodal Graphs with Diameter 4

ŠTEFKO MIKLAVIČ

Let G be a non-bipartite strongly regular graph on n vertices of valency k. We prove that if G has a distance-regular antipodal cover of diameter 4, then $k \leq \lfloor (2n + 1)/5 \rfloor$, unless G is the complement of a triangular graph $T(7)$, the folded Johnson graph $J(8, 4)$ or the folded halved 8-cube. However, for these three graphs the bound $k \leq \lfloor (n - 1)/2 \rfloor$ holds. This result implies that only one of a complementary pair of strongly regular graphs can be the antipodal quotient of an antipodal distance-regular graph.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Let H be an antipodal distance-regular graph of diameter 4 or 5. Its antipodal quotient is a connected strongly regular graph of diameter 2 according to Brouwer et al. [2, Proposition 4.2.2]. Let us denote it by G and its parameters with (n, k, λ, μ), i.e., G is a connected graph on n vertices with valency k, any two adjacent (resp. non-adjacent) vertices having λ (resp. μ) common neighbours. We also say that H is a distance-regular antipodal cover of G or that G is a folded graph of H. Let r be the antipodal class size of H. The intersection array of H is $\{k, k - \lambda - 1, (r - 1)\mu/r, 1; 1, \mu/r, k - \lambda - 1, k\}$ by Brouwer et al. [2, Proposition 4.2.2.], so $\mu \neq 0$. If $\mu = k$, then G is a complete bipartite graph according to Jurišić [7, Proposition 2.7], in which case many examples of their distance regular antipodal covers are known, see, for example, [4, 5]. We study the case $\mu < k$. It is well known that if H has diameter 5, then $k \leq \lfloor (n - 1)/2 \rfloor$, see [1]. But if the diameter of H is 4, then the best known bound has been weaker: $k \leq \lfloor r(n - 1)/(2r - 1) \rfloor$. There were no known examples attaining this bound, so there was a conjecture that $k \leq \lfloor (n - 1)/2 \rfloor$ also for this case, see [6, p. 56] or [8]. In this paper we prove that this conjecture is indeed true. In our main theorem we prove that even sharper bound holds:

THEOREM 1.1. Let H be an antipodal distance-regular graph with diameter 4 and G its antipodal quotient. If (n, k, λ, μ) are the parameters of G and $\mu < k$, then $k \leq \lfloor 2(n + 1)/5 \rfloor$, unless G is the complement of a triangular graph $T(7)$, the folded Johnson graph $J(8, 4)$ or folded halved 8-cube.

This result implies that only one of a complementary pair of strongly regular graphs can be the antipodal quotient of an antipodal distance-regular graph. See [1], where they determine almost all antipodal distance-regular covering graphs of classical distance-regular graphs if diameter $d \geq 2$, cf. [11]. Another application of our result is an alternative proof of the fact that the Krein parameter $q_{\mu \lambda}^2 \neq 0$ in H as mentioned in [8], cf. [3].

After some preliminaries in Section 2 we prove the main result in Section 3. The reader can find all notions, which are not explicitly defined in this paper, in [2] or [8].

2. PRELIMINARIES

Let us review some basic feasibility conditions of a strongly regular graph which has a distance-regular antipodal cover. Let G be a strongly-regular graph and v its vertex. By counting the edges between neighbours and non-neighbours of v, we obtain the following

\begin{align*}
0195–6698/02/100845 + 05 & $35.00/0 c © 2002 Elsevier Science Ltd. All rights reserved.
expression for the number of vertices of the graph G:

$$n = 1 + k + \frac{k(k - \lambda - 1)}{\mu},$$

(1)

hence $k(k - \lambda - 1)/\mu$ must be an integer.

Let H be a distance-regular antipodal cover of G with diameter 4. It has five distinct eigenvalues $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$ with multiplicities $1 = m_0, \ldots, m_4$ and $\theta_2 > 0 > \theta_3$. Eigenvalues of G are k, θ_2 and θ_4 with multiplicities $1, m_2$ and m_4, see [2, p. 142]. Eigenvalues θ_2 and θ_4 are the roots of $x^2 - (\lambda - \mu)x - (k - \mu) = 0$, thus $\theta_2\theta_4 = k - \mu$ and $\theta_2 + \theta_4 = \lambda - \mu$.

The multiplicities are $m_2 = (\theta_4 + 1)k(k - \theta_3)/(\mu(\theta_4 - \theta_2))$ and $m_4 = n - m - 1$. If $m_2 \neq m_4$, then θ_2 and θ_4 are integral, see [2, Theorem 1.3.1]. The other case, i.e., when $m_2 = m_4$, is usually called the half-case and the corresponding graph G is called a conference graph. It is known that conference graphs do not have distance-regular antipodal covers, except for the pentagon, which is covered by the decagon that has diameter 5, see [2, p. 180]. Therefore, we will consider only non-conference strongly regular graphs, i.e., the case $m_2 \neq m_4$.

Furthermore, by integrality of multiplicities, we will consider only non-conference strongly regular graphs, i.e., the case $m_2 \neq m_4$.

Let X be a set with n elements. The Johnson graph, denoted by $J(n, k)$, has as vertex set all subsets of X with k elements, and two vertices a, b adjacent whenever $a \cap b$ has cardinality $k - 1$. The graphs $J(n, 2)$ are known as the triangular graphs and are also denoted by $T(n)$. The direct product of d cliques of size 2 is called the d-cube.

3. THE INEQUALITY

In this section we prove the main result. First we need three lemmas.

Lemma 3.1. Let H be an antipodal tight distance-regular graph with diameter 4 and G its antipodal quotient. If (n, k, λ, μ) are parameters of G, then $\lambda < k/4$, unless G is the complement of triangular graph $T(7)$, the folded Johnson graph $J(8, 4)$, the folded halved 8-cube, strongly regular graphs with parameters $(126, 45, 12, 18)$ or $(378, 117, 36, 36)$, or possible strongly regular graphs with parameters $(250, 81, 24, 27)$, $(638, 189, 60, 54)$ or $(900, 261, 84, 72)$.

Proof. Let us suppose, that \(\lambda \geq k/4 \), i.e., \(4pq + 4p \geq pq^2 + pq + q^2 \). Thus \(p(q - 4)(q + 1) \leq -q^2 < 0 \), so \(q \in \{2, 3\} \).

Case \(q = 2 \). From divisibility conditions for \(p + q \) and \(p + q^2 \) we obtain \(p \in \{1, 2, 4\} \). For \(p = 1 \) we get the complement of triangular graph \(T(7) \), which is the folded Conway–Smith graph. For \(p = 2 \) we have the folded Johnson graph \(J(8, 4) \) and for \(p = 4 \) we get the folded halved 8-cube.

Case \(q = 3 \). From divisibility conditions for \(p + q \) and \(p + q^2 \) we get \(p \in \{1, 3, 6, 9, 15, 21\} \). The case \(p = 1 \) is ruled out by Jurišić and Koolen [8, Theorem 6.4]. For \(p = 3 \) and 9 we get strongly regular graphs with parameters \((126, 45, 12, 18) \) and \((378, 117, 36, 36) \), respectively. The known antipodal distance-regular covers with diameter 4 of these graphs are \(3.\Omega\kappa_3 \) and \(3.\Omega\tau_3 \), respectively. For \(p = 6, 15 \) and 21 we get the remaining three possible strongly regular graphs.

\[\square \]

Lemma 3.2. Let \(H \) be an antipodal distance-regular graph with diameter 4 and \(G \) its antipodal quotient. If \((n, k, \lambda, \mu) \) are parameters of \(G \) and if \(H \) is not tight, then \(\lambda < k/4 \).

Proof. Let us suppose that \(\lambda \geq k/4 \). Then we have \(\theta_1 + \theta_2 = \lambda \geq k/4 \), so \(\theta_1 \geq k/4 - \theta_2 > k/4 \). On the other hand, we have \(k = \theta_1(\theta_2) > k/4(\theta_2) \), so \(\theta_1 \in \{-1, -2, -3\} \). The first choice, \(\theta_2 = -1 \), is not good because of (2). Therefore, by (2) and the fact that \(H \) is not tight, we need to consider only the following cases separately: \(\theta_2 = -2, \theta_2 = -3 \) and \(\theta_2 = -3, \theta_4 \in \{-4, \ldots, -8\} \). Note, that \(\theta_1 = \lambda - \theta_2 \) and \(\theta_2 = (\theta_1 + 1)(\theta_3 + 1)/(\theta_4 + 1) \). If \(\ell = 1 \) we get the complement of triangular graph \(T(6) \) with \(\lambda < k/4 \). Cases \(\ell = 2 \) and 4 are not possible by integrality of \(m_1 \). The case \(\ell = 10 \) is ruled out by integrality of \(m_2 \).

(i) \(\theta_2 = -2, \theta_4 = -3 \). We have \(\theta_1 = \lambda + 2 \) and \(\theta_2 = (\lambda + 3)/2 - 1 \), thus \(\lambda = 2\ell - 1 \) for some positive integer \(\ell \). Furthermore, we have \(k = -\theta_1\theta_2 = 2(2\ell + 1), \mu = \lambda + 2\theta_4 = \ell + 2 \) and \(k(\lambda + 1)/\mu = 4(2\ell + 1)(\ell + 1)/\ell + 2 = 8\ell - 4 + 12/(\ell + 2) \). Thus \(\ell \in \{1, 2, 4, 10\} \). If \(\ell = 1 \) we get the complement of triangular graph \(T(6) \) with \(\lambda < k/4 \). Cases \(\ell = 2 \) and 4 are not possible by integrality of \(m_2 \). Thus \(\ell = 10 \) is the multiplicity \(m_2 \) an integer, but in these cases \(m_1 \notin \mathbb{N} \).

(ii) \(\theta_2 = -3, \theta_4 = -4 \). We obtain \(\theta_1 = \lambda + 3 \) and \(\theta_2 = (\lambda + 4)/3 - 1 \), thus \(\lambda = 3\ell - 1 \) for some positive integer \(\ell \). Furthermore, \(k = 9\ell + 6, \mu = \ell + 2 \) and \(k(\lambda + 1)/\mu = 18(3\ell - 1)/\ell + 2 = 54\ell - 18 + 72/(\ell + 2) \). So \(\ell \in \{1, 2, 4, 6, 7, 10, 16, 22, 34, 70\} \). Only for \(\ell \in \{2, 10\} \) is the multiplicity \(m_2 \) an integer, but in these cases \(m_1 \notin \mathbb{N} \).

(iii) \(\theta_2 = -3, \theta_4 = -5 \). Similarly as above we obtain \(k = 6\ell + 9, \lambda = 2\ell, \mu = \ell + 4 \) and \(k(\lambda + 1)/\mu = 12(\ell + 3)/\ell + 2 = 24\ell - 12 + 120/(\ell + 4) \) for some integer \(\ell \geq 0 \). Thus \(\ell \in \{0, 1, 2, 4, 6, 8, 11, 16, 20, 26, 36, 56, 116\} \). Only for \(\ell \in \{0, 6, 16\} \) is the multiplicity \(m_2 \) an integer. The case \(\ell = 0 \) is ruled out by the Krein condition (3). Cases \(\ell = 6 \) and 16 are ruled out by integrality of \(m_1 \) and condition (C).

(iv) \(\theta_2 = -3, \theta_4 = -6 \). We obtain \(k = 15\ell - 3, \lambda = 5\ell - 4, \mu = 3\ell + 3 \) and \(k(\lambda + 1)/\mu = 10(5\ell - 1)/\ell + 1 = 50\ell - 60 + 60/(\ell + 1) \) for some positive integer \(\ell \). So \(\ell \in \{1, 2, 3, 4, 5, 9, 11, 14, 19, 29, 59\} \). Only for \(\ell \in \{2, 5, 9, 11\} \) is the multiplicity \(m_2 \) an integer. For \(\ell = 2 \) we get a possible strongly regular graph with parameters \((88, 27, 6, 9) \) with \(\lambda < k/4 \). Cases \(\ell = 5, 9 \) and 11 are ruled out by integrality of \(m_1 \).

(v) \(\theta_2 = -3, \theta_4 = -7 \). We obtain \(k = 9\ell + 6, \lambda = 3\ell - 1, \mu = 2\ell + 6 \) and \(k(\lambda + 1)/\mu = 9(3\ell + 2)/\ell + 3 = 27\ell - 36 + 126/(\ell + 3) \). So \(\ell \in \{3, 4, 6, 11, 15, 18, 39, 60, 123\} \). Only for \(\ell \in \{3, 11, 18\} \) is the multiplicity \(m_2 \) an integer. These cases are ruled out by integrality of \(m_1 \) and condition (C).

(vi) \(\theta_2 = -3, \theta_4 = -8 \). We obtain \(k = 3(7\ell + 6), \lambda = 7\ell + 3, \mu = 5(\ell + 2) \) and \(k(\lambda + 1)/\mu = 42(7\ell + 6)/5(\ell + 2) \). For
some integer ℓ, $\ell \geq 0$. Thus $\ell \in \{2, 4, 12, 14, 19, 22, 54, 82, 334\}$. Only for $\ell = 4$ is the multiplicity m_2 an integer. But for $\ell = 4$ the multiplicity m_1 is not an integer.

Lemma 3.3. Let H be an antipodal distance-regular graph with diameter 4 and G its antipodal quotient. If (n, k, λ, μ) are parameters of G and $\mu < k$, then $\mu < k/2$, unless G is the complement of triangular graph $T(6)$, the complement of triangular graph $T(7)$ or the folded Johnson graph $J(8, 4)$.

Proof. Suppose $\mu \geq k/2$. If $\lambda \geq k/4$, then we get, by Lemma 3.1, the complement of triangular graph $T(7)$ and the folded $J(8, 4)$. Now assume $\lambda < k/4$. Because $-\theta_2\theta_4 = k - \mu$, we have $-\theta_2\theta_4 \leq k/2$. From $\theta_2 + \theta_4 = \lambda - \mu$, we conclude $2\theta_2 + 2\theta_4 < -k/2$. By summing these two inequalities we get

$$\theta_2 < -\frac{2\theta_4}{2 - \theta_4} = 2 - \frac{4}{2 - \theta_4}.$$

But the right-hand side of this inequality is always less than 2, so the eigenvalue θ_2 must be 1. The complement G of the graph G is again a strongly regular graph, and has eigenvalues $n - k - 1, -\theta_4 - 1$ and $-\theta_2 - 1 = -2$, see [2, Theorem 1.3.1]. By Seidel [10], [2, Theorem 3.12.4], G is one of the following graphs: a triangular graph $T(n)(n \geq 5)$, a lattice graph $L_2(n)(n \geq 3)$, a complete multipartite graph $K_{n \times 2}(n \geq 2)$, or one of the graphs of Petersen, Clebsch, Schlafli, Shrikhande or Chang. So G must be the complement of one of these graphs. We know that the complement G has parameters $k = n - k - 1$, $\lambda = n - 2k + \mu - 2$ and $\mu = n - 2k + \lambda$. We first rule out the graphs of Petersen, Schlafli, Shrikhande and Chang, because the eigenvalues θ_1 and θ_3 for their complements are not integral. The complement of the Clebsch graph is a folded 5-cube with $\mu < k/2$. Furthermore, the complete multipartite graphs $K_{n \times 2}$ are ruled out because their complements are not connected.

If G is isomorphic to the complement of the triangular graph $T(n)$, then G has no distance-regular antipodal covers for $n \geq 7$ according to Van Bon and Brouwer [1, Proposition 4.2]. If $n = 6$ or 7, then G has a unique distance-regular antipodal cover. If $n = 5$, then G is a Petersen graph. By Van Bon and Brouwer [1, Proposition 4.1], a Petersen graph has no antipodal distance-regular cover with diameter 4.

The case $G = L_2(n)$ has already been ruled out by Van Bon and Brouwer [1, p 148].

Proof of Theorem 1.1. If $\lambda \geq k/4$ or $\mu \geq k/2$, then we have nine possibilities for G: $T(6)$, $T(7)$, the folded Johnson graph $J(8, 4)$, the folded halved 8-cube, the strongly regular graph with parameters $(126, 45, 36, 36)$, or $(378, 117, 36, 36)$, or the possible strongly regular graph with parameters $(250, 81, 24, 27)$, $(638, 189, 60, 54)$ or $(900, 261, 84, 72)$. It is a straightforward calculation to check that, only for $T(7)$, the folded Johnson graph $J(8, 4)$ and folded halved 8-cube inequality $k \leq 2(n + 1)/5$ is not valid. Now if $\lambda < k/4$ and $\mu < k/2$, we have

$$n = 1 + k + \frac{k(k - \lambda - 1)}{\mu} > 1 + k + \frac{3k}{2} - 2 = \frac{5k}{2} - 1.$$

Therefore, $k < 2(n + 1)/5$. By integrality of k, we obtain the desired inequality.

It is easy to see that, for $T(7)$, the folded Johnson graph $J(8, 4)$ and the folded halved 8-cube the inequality $k \leq (n - 1)/2$ holds. Also, if $2(n + 1)/5 \geq (n - 1)/2$, then $n \leq 9$. But there is no antipodal quotient of antipodal distance-regular graph with diameter 4, for which $n \leq 9$ and $\mu < k$, see [2, p 421]. Thus, it is a trivial consequence of Theorem 1.1 that inequality $k \leq (n - 1)/2$ holds for all antipodal quotients of antipodal distance-regular graphs of diameter 4, for which $\mu < k$.

I would like to thank Aleksandar Jurišić who carefully read an earlier version of this paper and suggested many improvements. I would also like to thank Primož Potočnik who read an earlier version of this paper.

REFERENCES

Received 12 July 2001 and accepted 13 March 2002

ŠTEFKO MIKLAVIĆ
Nova Gorica Polytechnic,
Vipavska 13,
5001 Nova Gorica,
Slovenia
E-mail: stefko.miklavic@ses-ng.si