Two Spanning Disjoint Paths with Required length in Generalized Hypercubes

Yao-Chung Lin¹, Dyi-Rong Duh²*, Cheng-Nan Lai³, and Yue–Li Wang⁴

¹,²Department of Computer Science and Information Engineering
National Chi Nan University, Puli, Nantou Hsien 54561, Taiwan
{s97321523, drduh}@ncnu.edu.tw
³Department of Information Management
National Kaohsiung Marine University, Kaohsiung City, 81143 Taiwan
cnlai@mail.nkmu.edu.tw
⁴Department of Information Management
National Taiwan University of Science and Technology, Taipei City, 10607 Taiwan
ylwang@cs.ntust.edu.tw

Abstract

This work investigates 2RP-property of a generalized hypercube G. Given any four distinct vertices u, v, x and y in G, let l₁ and l₂ be two integers such that l₁ (l₂) is not less than the distance between u and v (x and y), and l₁+l₂ is equal to the number of vertices in G minus two. Then, there exist two vertex-disjoint paths P₁ and P₂ such that (1) P₁ is a path joining u and v with length of l₁; (2) P₂ is a path joining x and y with length of l₂, and (3) P₁ ⊙ P₂ spans G except some special conditions. This work shows that a G(m₁, m₂, ..., m_r) satisfies 2RP-property, where m_r ≥ 4 for all 1 ≤ r ≤ s.

1 Introduction

The topological structure of a multiprocessor system can be modeled by an interconnection network (or a graph), the interconnection network plays an important role in some issues such as communication performance [3], hardware cost [1], embedding and fault tolerant capabilities [16], and those are all driven by a mathematical model. Paths are suitable for designing simple algorithms with low communication costs. The path embedding problem is a very important issue for a network and is widely discussed in many researches [2], [5], [6], [12], [13], [14]. Generally, an interconnection network can be modeled by a graph, and edges (vertices) in the graph represent links (vertices) in the interconnection network.

An interconnection network is usually represented by an undirected simple graph G = (V, E). V(G) (E(G)) denotes the vertex (edge) set of G, where V(G) (E(G)) is a finite set. An edge between two vertices u and v in G is denoted by (u, v). For two distinct vertices u, v ∈ V(G), u and v are adjacent if (u, v) ∈ E(G). A path in G is a sequence of edges that connect adjacent vertices. A Hamiltonian path is a path that contains every vertex of G exactly once. A graph G is Hamiltonian-connected if every two distinct vertices of G are connected by a Hamiltonian path. A graph G is k-vertex fault-tolerant Hamiltonian-connected (k-Hamiltonian-connected for short) if it remains Hamiltonian-connected after removing no more than k vertices from G.

The interconnection network considered in this work is the generalized hypercube which has excellent topological properties, such as logarithmic diameter [9], vertex-symmetry [9], edge-symmetry [9], efficient communication [7], [9], [17] and high degree of fault tolerance [16]. Some basic properties of a generalized hypercube, such as diameter, wide diameter, and fault diameter have been determined in [4].

In [10], Lee et al. introduced an interesting property, called 2RP-property, as described below. Let l(P) denote the length of a path P, i.e. the number of edges which connect adjacent vertices in P. The distance between vertices u and v in G, denoted by d_G(u, v), is the minimum l(P) for every P joining u and v. Given any four distinct vertices u, v, x, and y in a graph G, let l₁ and l₂ be two integers such that l₁ ≥ d_G(u, v), l₂ ≥ d_G(x, y), and l₁+l₂ = |V(G)|−2. Then, there exist two vertex-disjoint (disjoint for short) paths P₁ and P₂ such that (1) P₁ is a path joining u and v with l(P₁) = l₁; (2) P₂ is a path joining x and y with l(P₂) = l₂, and (3) P₁ ⊙ P₂ spans G. Two paths are vertex-disjoint if they do not share any common vertex. The 2RP-property have been studied on various graphs, such as Hypercubes [10], augmented cubes [11], arrangement graphs [15]. Since a generalized hypercube is a generalization
of a hypercube, this work further shows that a
generalized hypercube satisfies the 2RP-property.

The rest of this paper is organized as follows.
Section 2 formally introduces the definition and some
properties of a generalized hypercube.
Section 3 defines the 2RP-property for the
generalized hypercube and proves that a
generalized hypercube satisfies the 2RP-property.
Conclusions are finally drawn in Section 4.

2 Background and Notations

This section discusses the structure and some
properties of a generalized hypercube. Some
notations frequently used in this work are also
presented.

2.1 Generalized Hypercube graphs

Generalized hypercubes are the generalization of
hypercubes [1] which were proposed for
building massively parallel computer systems. Let
\(G(m_0, m_1, \ldots, m_r) \) denote a \(r \)-dimensional
generalized hypercube of order \(\prod_{i=0}^{r} m_i \), where
\(r \geq 1 \) and \(m_i \geq 2 \) for all \(1 \leq i \leq r \). In other words, there
are \(m_0 \times m_1 \times \cdots \times m_r \) vertices in a
\(G(m_0, m_1, \ldots, m_r) \) and each vertex is assigned a \(r \)-digit
identifier \(x_0x_1\cdots x_r \), where \(x_i \in \{0, 1\} \) for all \(1 \leq i \leq r \). In a
\(G(m_0, m_1, \ldots, m_r) \), two vertices are adjacent if and
only if their identifiers differ at exactly one
digit position. Two adjacent vertices whose
identifiers differ at \(i \) position are connected by an
\(i \)-edge and they are \(i \)-neighbors, where \(1 \leq i \leq r \).
Each vertex in a \(G(m_0, m_1, \ldots, m_r) \) has degree
\(2^{m_i} \).

There exist \(m_i \) supernodes \(G_i[j] \) for \(0 \leq j \leq m_i - 1 \)
with the vertex sets \(V(G_i[j]) = \{x_i \ldots x_1 \mid 0 \leq x_i \leq m_i - 1 \} \) for
\(1 \leq i \leq r \) that form a partition of \(V(G(m_0, m_1, \ldots, m_r)) \). A
\(G(m_0, m_1, \ldots, m_r) \) is a complete graph of\(m_i \) vertices in \(G_i[j] \).

Let \(V(G_i[j]) = N_i \) for all \(0 \leq i \leq m_i - 1 \). Let \(x = x_0x_1\cdots x_r \) be a vertex in a
\(G(m_0, m_1, \ldots, m_r) \). \(\sigma(x) = x_i \), for \(1 \leq i \leq r \).
Also, let \(x' \) in \(G_i[j] \) be the \(i \)-neighbor of \(x \) in \(G_i[x_i] \) for
\(0 \leq j \leq m_i - 1 \) and \(i \neq x_r \). Notably, the order of
dimensions of a \(G(m_0, m_1, \ldots, m_r) \) can be exchanged without changing its structure. For instance, a \(G(4, 3, 2) \) is isomorphic to a \(G(2, 3, 4) \).

Figure 1 shows the structure of a \(G(4, 3, 2) \). Let \(N_u(u) \) denote the set of vertices adjacent to vertex
\(u \) in \(G \). For convenience, let \(\langle u, u_0, u_1, \ldots, u_m, v \rangle \) denote a path joining \(u \) and \(v \), where all the vertices \(u, u_0, u_1, \ldots, u_m \) and \(v \) are distinct.
Additionally, \(\langle u, u_0, u_1, \ldots, u_m, v \rangle = \langle u, P, v \rangle \) if \(P = \langle u, u_0, u_1, \ldots, u_m, v \rangle \).

2.2 Some properties of Generalized Hypercube graphs

This section addresses some properties of a
generalized hypercube, and proves that it is a
1-Hamiltonian-connected graph.

Lemma 1 [8]. A \(G(m_0, m_1, \ldots, m_r) \) is
Hamiltonian-connected, except \(m_i = 2 \) for all \(1 \leq i \leq r \).

Lemma 2. A \(G(m_0, m_1, \ldots, m_r) \) is
1-Hamiltonian-connected, where \(m_i \geq 3 \) for all \(1 \leq i \leq r \).

Proof. This lemma is proved by induction on
dimension \(r \). For \(r = 1 \), \(G(m_1) \) is a complete graph of
\(m_1 \) vertices and the lemma clearly holds.
Assume the lemma holds for any \(G(m_0, m_1, \ldots, m_r) \) with \(r < k \).

Let \(f \) be the faulty vertex in a \(G(m_0, m_1, \ldots, m_r) \),
and \(u, v \in V(G(m_0, m_1, \ldots, m_r)) \) be two
distinct vertices. Since \(uv \notin \sigma(v) \), there exists a digit
\(l \) such that \(\sigma^l(u) \neq \sigma^l(v) \), where \(1 \leq l \leq k - 1 \). Without loss of
generality, assume that \(l = k + 1 \). Since \(\sigma^l(u) \neq \sigma^l(v) \), we may assume that \(u \notin \sigma^l(V(G_{k+2}[1])) \) and
\(v \in \sigma^l(V(G_{k+2}[1])) \) without loss of generality. There are
two scenarios to be considered in the following.

Case 1. \(\sigma^k(u) \neq \sigma^k(v) \) and \(\sigma^l(u) \neq \sigma^l(v) \) : Without loss of
generality, assume that \(\sigma^k(u) = 2 \), and thus \(f \) is
included in \(G_{k+2}[2] \).

Case 1.1. \(N^l[1] \geq 4 \): Since \(|V(G_{k+2}[1])| \geq 4 \) for all \(1 \leq l \leq m_{k+1} \), there exists \(p^2 \) in \(G_{k+2}[2] \), such that
\(p^2 \neq v \) and \(q^2 \) in \(G_{k+2}[2] \), such that
\(q^2 \neq v \). By the induction hypothesis, there
exists a Hamiltonian path \(H_1 \) in \(G_{k+2}[2] \), joining
\(p^2 \) and \(q^2 \). By Lemma 1, there exists two
Hamiltonian paths \(H_2 \) in \(G_{k+2}[0] \) and \(H_3 \) in
\(G(m_{k+1}, m_{k+2}, \ldots, m_{k+2}) \), such that
\(H_2 \) joins \(p^2 \) and \(q^2 \), and \(H_3 \) joins \(q^2 \) and \(v \).

Obviously, \(\langle u, H_2, p^2, p^2, q^2, q^2, v \rangle \) is
a Hamiltonian path in \(G(m_{k+1}, \ldots, m_{k+2}) \). The
Hamiltonian path construction of Case
1.1 is illustrated in Figure 2.
Figure 2. The Hamiltonian path constructed by Case 1.1.

Case 1.2. ($N^3=3$): There exists a vertex p^2_1 in $G^{+1}[2] \setminus \{f\}$ such that $p^0p^2_u$ and q^2 is included in $G^{+1}[2] \setminus \{f, p^2\}$. The discussions depend on the locations of q^1 and q^2. When q^2uv, the proof is the same as that in Case 1.1. When $q^1=uv$ and q^0u, by Lemma 1, there exists a Hamiltonian path H in $(m_{k+1}, m_k, \ldots, m_1)G^{+1}[0]G^{+1}[2]$ joining p^1 and v. Hence, $(u, p^1, q^2, q^1, \cdots, m_1, v)$ is the Hamiltonian path in $G(m_{k+1}, m_k, \ldots, m_1)G^{+1}[0]G^{+1}[2]$ as shown in Figure 3(a). When $q^1=uv$ and q^0u, by Lemma 1, there exists a Hamiltonian path H in $(m_{k+1}, m_k, \ldots, m_1)G^{+1}[0]G^{+1}[2]$ joining p^1 and v. Hence, $(u, q^2, p^1, q^0, q^1, \cdots, m_1)G^{+1}[0]G^{+1}[2]$ as depicted in Figure 3(b).

Figure 3. Hamiltonian paths constructed by Case 1.2. (a) $q^1=uv$ and q^0u. (b) $q^1=uv$ and q^0u.

Case 2. $(f^+ \setminus \{f\}) \subseteq (f^+ \setminus \{u\})$; Without loss generality, assume that $f^+ \setminus \{f\} = f^+ \setminus \{u\}$, and then assume that both f and u are included in $G^{+1}[0]$. There exists a vertex p^0 in $G^{+1}[0] \setminus \{f, u\}$. By Lemma 1, there exists a Hamiltonian path H_1 in $G(m_{k+1}, m_k, \ldots, m_1)G^{+1}[0]G^{+1}[2]$ joining p^2 and v. By the induction hypothesis, there exist a Hamiltonian path H_2 in $G^{+1}[0] \setminus \{f\}$ joining u and p^2. Obviously, $(u, H_2, p^2, p^3, H_1, v)$ is the Hamiltonian path in $G(m_{k+1}, m_k, \ldots, m_1)G^{+1}[0]G^{+1}[2]$.

Lemma 3. Let P be a path in a $G(m_r, m_{r-1}, \ldots, m_1)$. If $|P| \geq m_r$, then P contains an m_r-edge where $m_r \neq r$.

Proof. Let $P=(u^0, u^1, \ldots, u^4)$ be a path in a $G(m_r, m_{r-1}, \ldots, m_1)$, where $k \geq m_r$, and any two vertices of P is connected by r-edges. In other words, $\sigma(u^i) \neq \sigma(u^j)$ where $0 \leq i, j \leq k$ and $i \neq j$. Thus, there should be $k+1\geq m_r$ distinct symbols. It is a contradiction because there are only m_r distinct symbols in r dimension. Therefore, this lemma follows.

Lemma 4. Let P be a path from u to v, and w and x be any two distinct vertices in a $G(m_r, m_{r-1}, \ldots, m_1)$, where $r \geq 2$ and $m_r=4$ for all $1 \leq s < r$. If $|P| \geq 4\cdot s$, then there exist two adjacent vertices y and z in P, such that $N_G(y, m_r, \ldots, m_1)(w) \cap N_G(m_r, \ldots, m)(x) \neq \emptyset$ and $\{w, x\} \cap \{y, z\} = \emptyset$.

Proof. Since $|N_G(y, m_r, \ldots, m_1)(w)| = 3r$, $|V(P)\setminus N_G(y, m_r, \ldots, m_1)(w)| = |\{u, v, w, x\}| \geq (4\cdot s-3) \cdot 4 \geq 1$. Thus, there exist a vertex y in $V(P)\setminus N_G(y, m_r, \ldots, m_1)(w)$ and $w \notin N_G(y, m_r, \ldots, m_1)(w)$, there exists a vertex $z \in N_P(y)$ in such that $z \notin \{w, x\}$. Therefore, there exist two adjacent vertices y and z in P such that $N_G(z, m_r, \ldots, m_1)(w) \cap N_G(m_r, m_{r-1}, \ldots, m_1)(x) \neq \emptyset$ and $\{w, x\} \cap \{y, z\} = \emptyset$.

3 2RP-property

This section demonstrates that a $G(m_r, m_{r-1}, \ldots, m_1)$ satisfies the 2RP-property, when $m_r \geq 4$ for all $1 \leq s < r$. Let u, v, x and y be any four distinct vertices of a $G(m_r, m_{r-1}, \ldots, m_1)$, and l_1 and l_2 be two integers with $l_1 \geq d_G(u, v) \geq d_G(x, y)$ and $l_1+l_2 = |V(G(m_r, m_{r-1}, \ldots, m_1))|$. Then, there exist two disjoint paths P_1 and P_2 such that (1) P_1 is a path joining u and v with $l(P_1) = l_1$; (2) P_2 is a path joining x and y with $l(P_2) = l_2$; and (3) $P_1 \cup P_2$ spans $G(m_r, m_{r-1}, \ldots, m_1)$, except the following two cases: (a) $l_1 = 2$ or $l_2 = 2$ and $|V(G(m_r, m_{r-1}, \ldots, m_1))| \neq 4$ with $d_G(u, v) \geq 1$ such that $N_G(m_r, m_{r-1}, \ldots, m_1)(u, v) = \{x, y\}$; (b) $l_1 = 2$ or $l_2 = 2$ and $|V(G(m_r, m_{r-1}, \ldots, m_1))| \neq 4$ with $d_G(u, v) \geq 2$ such that $N_G(m_r, m_{r-1}, \ldots, m_1)(u) \cap N_G(m_r, m_{r-1}, \ldots, m_1)(v) = \{x, y\}$.
Lemma 5. A $G(m_1, m_2, \ldots, m_l)$ satisfies
2RP-property, where $r \geq 2$ and $m_l=4$ for all $2 \leq s \leq r$.

Proof. This lemma is proved by induction on r.

With the aid of a computer program, the lemma holds for $r=2$. Suppose the lemma holds for any $G(m_1, m_2, \ldots, m_l)$ with $r=k+1$. To prove the lemma holds, let $r=k+1$ and G denote $G(m_1, m_2, \ldots, m_l)$ for simplicity. Without loss of generality, assume that $l_1 \leq s_2$, thus $l_1 \leq (4^{s_1-2})/2 = 2(4^r-1)$. Let u, v, x and y be 4 arbitrary distinct vertices in G. Since xy, there exists a dig l such that $d(x)v \notin d(y)$, where $1 \leq l \leq 4k+1$. Without loss of generality, assume $l = k+1$. Since $d(x)v \notin d(y)$, we may assume $x \in V(G^{k+1}[0])$ and $y \in V(G^{k+1}[1])$ without loss of
generality. Five cases should be considered as follows.

Case 1. $(d^{k+1}(u) \neq d^{k+1}(v))$ and $(d^{k+1}(u), d^{k+1}(v)) \cap$
$(d^{k+1}(x), d^{k+1}(y)) = \emptyset$. Without loss of generality, assume
that $d^{k+1}(u)=2$, $d^{k+1}(v)=3$, such that $u \in G^{k+1}[2]$, $v \in G^{k+1}[3]$. Three cases
are necessary to be discussed depending on the
values of $d(u,v)$ and l_i.

Case 1.1. $(d^{k+1}(u) \leq l_i \leq 4^r-1$ with $d(u,v) = 1$):

For $l_i=1$, we have $P_1 = (u,v)$. There is a vertex $a^1 \in G^{k+1}[0] \setminus \{v\}$ such that $a^1 \neq x$. By Lemma 1, there are two Hamiltonian paths H
in $G^{k+1}[0]$ and Q in $G^{k+1}[1]$ such that H joins x
and a^1, and Q joins a^1 and y. Since $l(Q) = 4^r-1$, $Q
$can be written as $(a^1, Q_1, b^1, c^1, Q_2, y)$ for
some vertices b^1 and c^1 such that $\{b^1, c^1\} \cap \{u\} = \emptyset$. According to Lemma 2, there is a
Hamiltonian path R in $G^{k+1}[2] \setminus \{u\}$ joining b^2
and c^2, and R can be written as $(b^2, R_1, d^2, c^2,$
$R_2, c^2)$ for some vertices d^2 and e^2. By Lemma
2, there is a Hamiltonian path S in $G^{k+1}[3] \setminus \{v\}$
joining d^3 and e^3. Hence, $P_2 = (x, H, a^1, Q_1,$
$b^1, b^2, R_1, d^2, d^3, S, e^2, R_2, e^2, c^2, Q_2, y)$,
and P_1 and P_2 are the required paths as shown in
Figure 4(a).

For $l_i=2$, only $N_d(u) \cap N_d(v) = \{x, y\}$ needs to be discussed. Since $N_d(u) \cap N_d(v) = \{u', u''\}$,
we have $\{u', u''\} \neq \{x, y\}$. Without loss of
generality, assume that $u' \neq x$. Hence, $P_1 = (u, u'', v)$. By Lemma 2, there is a Hamiltonian path H
in $G^{k+1}[0] \setminus \{u''\}$ joining x and a^2. Hence, $P_2 = (x,$
$H', a^2, a^1, Q_1, b^1, b^2, R_1, d^2, d^3, S, e^2, R_2, c^2,$
$c^1, Q_2, y)$, and P_1 and P_2 are the required paths
as shown in Figure 4(b).

For $3 \leq l_i \leq 4^r-1$, there are two vertices $a^2 \in
N_G^{k+1}[u]$ and $b^3 \in G^{k+1}[0] \setminus \{x\}$ such that $b^3 \neq x$.
By Lemma 1, there are two Hamiltonian paths H
in $G^{k+1}[0]$ and Q in $G^{k+1}[1]$ such that H joins
x and b^3, and Q joins b^3 and y. Since $l(Q) = 4^r-1$, Q
can be written as $(b^1, Q_2, c^1, d^2, Q_2, y)$ for
some vertices c^1 and d^2 such that $\{c^1, d^2\} \cap \{u, a^2\} = \emptyset$. By the induction hypothesis,
there exist two disjoint paths R_1 and R_2 such that
(1) R_1 is a path joining u and a^2 with
\[l(R_1) = 1; (2) R_2$ is a path joining c^2 and d^3 with
\[l(R_2) = 4^r-3; (3) R_3 \cap R_2$ spans $G^{k+1}[2]$. By

Lemma 4, R_2 can be written as $(c^2, R_2, c^1, d^2,
R_2, d^3)$. Hence, $P_1 = (u, R_1, a^1, v, R_2, a^2,$
$c^2, d^3)$, $P_2 = (x, H, b^1, b^2, R_1, d^2, d^3,$
$S, e^2, R_2, e^2, c^2, Q_2, y)$, and P_1 and P_2 are the required paths as shown in
Figure 4(c).

Figure 4. Paths P_1 and P_2 constructed by Case 1.1.
(a) $l_i=1.$ (b) $l_i=2.$ (c) $3 \leq l_i \leq 4^r-1.$

Case 1.2. $(d^{k+1}(u) \leq l_i \leq 4^r-1$ with $d^{k+1}(u,v) = 2$):

For $d^{k+1}(u,v) = l_i = 4^r-2$, there is a vertex
a^6 in $G^{k+1}[0]\{x\}$ such that $a^6\neq y$ and $a^6\notin \{u^3, v\}$. By Lemma 1, there are two Hamiltonian paths H in $G^{k+1}[0]$ and Q in $G^{k+1}[1]$ such that H joins x and a^6, and Q joins a^6 and v. Since $l(Q)=4^k-1$, Q can be written as $(b_1', Q_1, c_1', d_1', Q_2, y)$ for some vertices c_1' and d_1' such that $(c_1', d_1')\cap \{u, a^6\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths R_1 and R_2 such that (1) R_1 is a path joining u and a^6 with $l(R_1)=l-1$; (2) R_2 is a path joining c_1' and d_1' with $l(R_2)=4^k-3$, and (3) $R_1\cup R_2$ spans G^{k+2} [2]. By Lemma 2, there exists a Hamiltonian path S in $G^{k+2}[1]$ joining a^6 and v. Hence, $P_1=(u, R_1, a^6, S_1, v)$ and $P_2=(x, H, b_1', b_1, R_1, a^6, S_1, v)$ are the required paths as shown in Figure 6(a).

For $l=4^{k+1}$, there is a Hamiltonian path S of $G^{k+1}[3]\{a^6\}$ joining u^3 and v by Lemma 2. Hence, $P_1=(u, u', S, v)$ and $P_2=(x, H, a^6, a^6, a^6, Q_1, b_1, b_1, R, c^6, c^6, Q_2, y)$ are the required paths as shown in Figure 5(b).

Case 1.3. $(4^k \leq l \leq 2(4^k)-1)$

For $l=4^k$, there are two vertices $a^6 \in N_{G^{k+1}[1]}(u)$ and b^6 in $G^{k+1}[0]\{x\}$ such that $a^6\neq y$, $b^6\neq y$, and $b^6\notin \{v, a^6\}$. By Lemma 1, there are two Hamiltonian paths H in $G^{k+1}[0]$ and Q in $G^{k+1}[1]$ such that H joins x and b^6, and Q joins b^6 and v. Since $l(Q)=4^k-1$, Q can be written as $(b_1', Q_1, c_1', d_1', Q_2, y)$ for some vertices c_1' and d_1' such that $(c_1', d_1')\cap \{u, a^6\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths R_1 and R_2 such that (1) R_1 is a path joining u and a^6 with $l(R_1)=l-1$; (2) R_2 is a path joining c_1' and d_1' with $l(R_2)=4^k-3$, and (3) $R_1\cup R_2$ spans G^{k+2} [2]. By Lemma 2, there exists a Hamiltonian path S in $G^{k+2}[1]$ joining a^6 and v. Hence, $P_1=(u, R_1, a^6, S_1, v)$ and $P_2=(x, H, b_1', b_1, Q_1, c_1', c_1, R_2, d_1', d_1', Q_2, y)$ are the required paths as shown in Figure 6(b).

For $l=2(4^k)-2$, there is a Hamiltonian path R in $G^{k+2}[2]$ joining u and a^6 by Lemma 1. Hence, $P_1=(u, R, a^6, S, v)$ and $P_2=(x, H, b^6, b_1', Q_1, c^6, c_1', R_2, d^6, d_1', Q_2, y)$ are the required paths as shown in Figure 6(c).

For $l=2(4^k)-1$, $P_1=(u, R, a^6, S, v)$ and $P_2=(x, H, b^6, b_1', Q_1, c^6, c_1', R_2, d^6, d_1', Q_2, y)$ are the required paths as shown in Figure 6(d).

Case 2. $(\sigma^{d+1}(u)\cap \sigma^{d+1}(v)) \cap (\sigma^{d+1}(u), \sigma^{d+1}(v)) = \emptyset$: Without loss of generality, assume that $\sigma^{d+1}(u)\cap \sigma^{d+1}(v)=\emptyset$. $\sigma^{d+1}(v)=\emptyset$ such that u and v are included in $G^{k+1}[1]$ and $G^{k+2}[2]$, respectively. Three cases are necessary to be discussed depending on the values of $d(u, v)$ and l.

Case 2.1. $(d(u, v) \leq l \leq 4^k-1)$

For $l=1$, we have $P_1=(u, v)$. There is a vertex a^6 in $G^{k+1}[0]\{x\}$ such that $a^6\neq y$, u. By Lemma 1, there is a Hamiltonian path H in $G^{k+1}[0]$ joining x and a^6. By Lemma 2, there is a Hamiltonian path Q in $G^{k+1}[1]\{u\}$ joining a^6 and y. Besides, Q can be written as $(a^6, Q_1, b^6, c^6, Q_2, y)$ for some vertices b^6 and c^6. By Lemma 2, there exist a Hamiltonian path R in $G^{k+2}[2]\{v\}$ joining b^6 and c^6. Besides, R can be written as $(b^6, R_1, d_2, e_2, R_2, c^6)$ for some vertices d_2 and e_2.
$G^k[3]$ joining d^i and e^i. Hence, $P_2 = (x, H, d^i, a^i, Q_1, b^i, d^i, S, e^i, c^i, R_1, c^i, Q_2, y)$, and P_1 and P_2 are the required paths.

For $3 \leq l_1 \leq 4^k-1$, there are two vertices $a^i \in N_{G^k[1]}(u)$ and b^i in $G^k[0]\{x\}$ such that $a^i \not\in y$ and $b^i \not\in \{y, u, a^i\}$. By Lemma 1, there is a Hamiltonian path H in $G^k[0]$ joining x and b^i. By the induction hypothesis, there exist two disjoint paths Q_1 and Q_2 such that (1) Q_1 is a path joining u and a^i with $l(Q_1)=1$; (2) Q_2 is a path joining b^i and y with $l(Q_2)=4^{k-1}-3$, and (3) $Q_1 \cap Q_2$ spans $G^k[1]$. By Lemma 4, Q_2 can be written as $(b^i, Q_{21}, c^i, d^i, Q_{22}, y)$ for some vertices c^i and d^i such that $N_{G^k[1]}(b^i) \cap N_{G^k[1]}(c^i) \not\in \{c^i, d^i\}$ and $\{v, a^i\} \cap \{c^i, d^i\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths R_1 and R_2 such that (1) R_1 is a path joining a^i and v with $l(R_1)=l_1-2$; (2) R_2 is a path joining c^i and d^i with $l(R_2)=4^k-2-l(R_1)$, and (3) $R_1 \cup R_2$ spans $G^k[2]$. R_2 can be written as $(c^i, R_{21}, e^i, f^i, R_{22}, d^i)$ for some vertices e^i and f^i. If $l(R_2)=1$, then $e^i = c^i$ and $f^i = d^i$. By Lemma 1, there is a Hamiltonian path S in $G^k[3]$ joining e^i and f^i. Hence, $P_1 = (u, d^i, a^i, R_1, v)$ and $P_2 = (x, H, b^i, b^i, Q_{21}, e^i, c^i, R_{21}, e^i, S, f^i, f^i, R_{22}, d^i, d^i, Q_{22}, y)$ are the required paths.

Case 2.2. $(d(u, v) \leq l_1 \leq 4^k-1)$ with $d(u, v) \geq 2$.

For $d(u, v) \leq l_1 \leq 4^k-2$, there is a vertex a^i in $G^k[0]\{x\}$ such that $a^i \not\in \{y, u\}$. By Lemma 1, there is a Hamiltonian path H in $G^k[0]$ joining x and a^i. By Lemma 2, there is a Hamiltonian path Q of $G^k[1]\{u\}$ joining a^i and y. By Lemma 4, Q can be written as $(a^i, Q_{11}, b^i, c^i, Q_{22}, y)$ for some vertices b^i and c^i such that $N_{G^k[1]}(a^i) \cap N_{G^k[1]}(b^i) \not\in \{b^i, c^i\}$ and $\{v, a^i\} \cap \{b^i, c^i\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths R_1 and R_2 such that (1) R_1 is a path joining a^i and v with $l(R_1)=l_1-1$; (2) R_2 is a path joining b^i and c^i with $l(R_2)=4^k-2-l(R_1)$, and (3) $R_1 \cup R_2$ spans $G^k[2]$. Besides, R_2 can be written as $(b^i, R_{21}, e^i, f^i, R_{22}, d^i, d^i, d^i, Q_{22}, y)$ for some vertices e^i and f^i. If $l(R_2)=1$, then $e^i = b^i$ and $f^i = c^i$. By Lemma 1, there is a Hamiltonian path S in $G^k[3]$ joining d^i and e^i. Hence, $P_1 = (u, u^i, R_1, v)$ and $P_2 = (x, H, a^i, a^i, Q_{11}, b^i, b^i, Q_{21}, d^i, d^i, S, e^i, e^i, c^i, Q_{22}, y)$ are the required paths.

For $l_1 = 4^k-1$, there is a Hamiltonian path R in $G^k[2]\{c^i\}$ joining u^i and v by Lemma 2. By Lemma 1, there is a Hamiltonian path S in $G^k[3]$ joining b^i and c^i. Hence, $P_1 = (u, u^i, R, v)$ and $P_2 = (x, H, a^i, a^i, Q_{11}, b^i, b^i, b^i,$
Case 3. For $|u| = 1$, we have $P_1 = \langle u, v \rangle$. There is a vertex $a^1 \in G^{k[0]}[u]$, such that $a^1 \neq x$. By Lemma 2, there are two Hamiltonian paths H in $G^{k[0]}[u]$ and Q in $G^{k[1]}[v]$ such that H joins x and a^1, and Q joins a^1 and y. Q can be written as $\langle a^1, Q_1, b^1, c^1, Q_2, y \rangle$ for some vertices b^1 and c^1. By Lemma 1, there is a Hamiltonian path R in $G^{k[2]}$ joining b^1 and c^1, and R can be written as $\langle b^1, R_1, d^1, e^1, R_2, e^2, c^2, Q_2, y \rangle$, and P_1 and P_2 are the required paths.

For $l = 2$, by Lemma 1, there is a Hamiltonian path R in $G^{k[2]}[v]$ joining b^2 and c^2, and R can be written as $\langle b^2, R_1, R_2, d^2, e^2, e^2, c^2, c^2, Q_2, y \rangle$ for some vertices d and e. Hence, $P_1 = (u, u', v)$ and $P_2 = \langle x, H, a^1, a', Q_1, b^1, b', e^1, c^1, e^2, e^2, Q_2, y \rangle$ are the required paths.

For $3 \leq |u| \leq 4^k - 1$, there is a vertex $v' \in N_{G^{k[0]}[u]}(x)$ on $G^{k[0]}[u]$. Within $G^{k[0]}[u]$, we have $|N_{G^{k[0]}[u]}(x) \cap N_{G^{k[0]}[u]}(y)| \geq 2k - 2 \geq 4$. Thus, there is a vertex $v' \in N_{G^{k[0]}[u]}(x) \cap N_{G^{k[0]}[u]}(y)$ in $G^{k[0]}[u]$. Again, by the induction hypothesis, there exist two disjoint paths Q_1 and Q_2 such that (1) H_1 is a path joining u and v' with $l(H_1) = l_1 - 2$; (2) H_2 is a path joining x and v' with $l(H_2) = 4^k - 2 - l(H_1)$, and (3) $H_1 \cup H_2$ spans $G^{k[0]}[u]$. Again, by the induction hypothesis, there exist two disjoint paths Q_1 and Q_2 such that (1) Q_1 is a path joining f^1 and v with $l(Q_1) = 1$; (2) Q_2 is a path joining g^1 and v with $l(Q_2) = 4^k - 3$, and (3) $Q_1 \cup Q_2$ spans $G^{k[1]}[v]$, besides Q_1. Q_1 can be written as $\langle a', Q_1, b^1, c^1, Q_2, y \rangle$ for some vertices b and c. Hence, $P_1 = (u, u', v)$ and $P_2 = \langle x, H, a^1, a', Q_1, b^1, b', c^1, e^1, c^2, e^2, e^2, Q_2, y \rangle$ are the required paths.

Case 3. \(d_3(u, v) \leq l_1 \leq 4^k - 1\) with $d_3(u, v) = 1$:

For $l_1 = l_2$, we have $P_1 = \langle u, v \rangle$, and $P_2 = \langle x, H, x \rangle$. Since $N_{G^{k[0]}[u]}(v) = \{u, v\}$, we have $\{u, v^0\} = \{x, y\}$. Without loss of generality, assume $u \neq y$. There are two vertices $a', a'' \in N_{G^{k[0]}[u]}(x) \cap N_{G^{k[0]}[v]}(y)$ in $G^{k[0]}[x, y, x']$, and b^1 in $G^{k[2]}[a']$. By the induction hypothesis, there exist two disjoint paths Q_1 and Q_2 such that (1) Q_1 is a path joining u and v with $l(Q_1) = l_1 - 1$; (2) Q_2 is a path joining x and y with $l(H_2) = 4^k - 2 - l(Q_1)$, and (3) $Q_1 \cup Q_2$ spans $G^{k[1]}[v]$. By Lemma 2, there is a Hamiltonian path H in $G^{k[0]}[u]$.
joining and a^0. By Lemma 1, there are two Hamiltonian paths R in $G^{k+1}[2]$ and S in $G^{k+1}[3]$ such that R joins a^0 and b^0, and S joins a^0 and b^0. Hence, $P_1 = \{u, u^1, Q_1, v\}$ and $P_2 = \{x, H, a^0, b^0, S, b^0, R, a^0, Q_2, y\}$ are the required paths.

For $I = d_0(u, v) = d_0(u, v) + 3$. If $u^1 \not\in y$ or $v^1 \not\in x$, then the proof is the same as the situation that $I = d_0(u, v)$ with $d_0(u, v) = 2$. On the other hand, when $u^1 \not\in y$ and $v^1 \not\in x$, there are four vertices a^0, b^0, c^0, and d^0 such that $a^0 \not\in N_{G^{k+1}[0]}(u)$ and $d^0(u, v) = d_0(u, v) + 1$, $b^0 \not\in N_{G^{k+1}[0]}(u) \cap N_{G^{k+1}[0]}(v)$ is included in $G^{k+1}[0]$, where a^0, d^0, v, $c^0 \not\in N_{G^{k+1}[0]}(a^0) \cap N_{G^{k+1}[0]}(v)$ is included in $G^{k+1}[1]$, and d^0 is included in $G^{k+1}[2]$.

By the induction hypothesis, there exist two disjoint paths H_1 and H_2 such that (1) H_1 is a path joining u and d^0 with $l(H_1) = 1$; (2) H_2 is a path joining a^0 and d^0, and (3) $H_1 \cup H_2$ spans $G^{k+1}[0]$. Again, by the induction hypothesis, there exist two disjoint paths Q_1 and Q_2 such that (1) Q_1 is a path joining a^0 and c^0 with $l(Q_1, v) = 1$; (2) Q_2 is a path joining c^0 and $l(Q_2) = 1$; and (3) $Q_1 \cup Q_2$ spans $G^{k+1}[1]$. By Lemma 1, there are two Hamiltonian paths R in $G^{k+1}[2]$ and S in $G^{k+1}[3]$ such that R joins c^0 and d^0, and S joins b^0 and d^0. Hence, $P_1 = \{u, H, a^0, b^0, Q_1, v\}$ and $P_2 = \{x, H, a^0, b^0, S, b^0, Q_1, c^0, R, a^0, d^0, Q_2, y\}$ are the required paths.

For $4^1 \leq 4^1 \leq 2^4$, there exists a Hamiltonian path Q' in $G^{k+1}[1] \{v\}$ joining b^0 and v by Lemma 2. By Lemma 4, Q' can be written as $(b^0, Q', b^0, c^0, Q', y)$, and y are the required paths. By the induction hypothesis, there exist two disjoint paths R_1 and R_2 such that (1) R_1 is a path joining u and d^0 with $l(R_1) = 1$; (2) R_2 is a path joining c^0 and d^0, and (3) $R_1 \cup R_2$ spans $G^{k+1}[2]$. Hence, $P_1 = \{u, H, a^0, b^0, Q_1, v\}$ and $P_2 = \{x, H, a^0, b^0, Q_1, c^0, R, a^0, d^0, Q_2, y\}$ are the required paths.
$Q_2, y)$ are required paths.

For $l=4^2 - 2$, there is a Hamiltonian path R in $G^{4^2}[2]\{\alpha_1, a\}$ joining u and v by Lemma 2. Hence, $P_1 = (u, R, v)$ and $P_2 = (x, H_1, b, b', b, S, c, c', H_2, a, d, a', a', Q, y)$ are the required paths.

For $l=4^2 - 1$, there is a Hamiltonian path R' in $G^{4^2}[2]$ joining u and v by Lemma 1. Hence, $P_1 = (u, R, v)$ and $P_2 = (x, H_1, b, b', b, S, c, c', H_2, a, d, a', a', Q, y)$ are the required paths.

For $4^2 ≤ l ≤ 2(4^2) - 4$, obviously, path R can be written as $\langle u, R, f', g', R, v \rangle$ for some vertices f' and g'. By Lemma 4, H can be written as $\langle u, H_1, b, b', b', S, a', c, c, H_2, a, d, a', a', Q, y \rangle$ for some vertices b' and c' such that $N_{G^{k+1}}[1][f'] ∩ N_{G^{k+1}}[1][g'] ≠ \{b', c'\}$ and $\{f', g'\} ∩ \{b', c'\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths S_1 and S_2 such that (1) S_1 is a path joining f' to g' with $l(S_1) - l_1 = 4^2 - 1$, (2) S_2 is a path joining b' to c' with $l(S_2) = 4^2 - 2 - l(S_1)$, and (3) $S_1 ∪ S_2$ spans $G^{k+1}[3]$. Hence, $P_1 = (u, R, f', f', S_1, a, c, g', R_2, v)$ and $P_2 = (x, H_1, b, b', b', S, b', c, c', H_2, a, d, a', a', Q, y)$ are the required paths.

For $l=2(4^2) - 3$, there is a Hamiltonian path S' in $G^{k+1}[3]\{\alpha_1, \alpha_2\}$ joining f' and g' by Lemma 2. Hence, $P_1 = (u, R, f', f', S, g', g', R_2, v)$ and $P_2 = (x, H, a, d, a, a', Q, y)$ are the required paths.

For $l=2(4^2) - 2$, there exist a Hamiltonian path S'' in $G^{k+1}[3]$ joining f' and g' by Lemma 1. Hence, $P_1 = (u, R, f', f', S, g', g', R_2, v)$ and $P_2 = (x, H, a, d, a, a', Q, y)$ are the required paths.

For $l=2(4^2) - 1$, obviously, path R can be written as $\langle u, R, f', g', R_2, v \rangle$ for some vertices f' and g'. Hence, $P_1 = (u, R, f', f', S, g', g', R_2, v)$ and $P_2 = (x, H, a, d, a', a', Q, y)$ are the required paths.

Case 5: $(\sigma^{k+1}(u) - \sigma^{k+1}(v)) ∩ (\sigma^{k+1}(x), \sigma^{k+1}(y)) = \emptyset$. Without loss of generality, assume that $\sigma^{k+1}(u) - \sigma^{k+1}(v) ∩ \{u, v\}$ are both included in $G^{k+1}[0]$.

For $d_\delta(u, v) ≤ l ≤ 4^2 - 3$. Since $|N_{G^{k+1}[0]}(x) - N_{G^{k+1}[1]}(u) ∩ N_{G^{k+1}[1]}(v)| ≥ 4$, there is a vertex $a^1 \in N_{G^{k+1}[1]}(x) - N_{G^{k+1}[1]}(u) ∩ N_{G^{k+1}[1]}(v)$ in $G^{k+1}[0](u, v)$ such that $a^1 ∉ N_{G^{k+1}[1]}(u)$ and $N_{G^{k+1}[1]}(u) ∩ N_{G^{k+1}[1]}(v) = \{x, a^1\}$. By the induction hypothesis, there exist two disjoint paths H_1 and H_2 such that (1) H_1 is a path joining u to v with $l(H_1) = l_1$; (2) H_2 is a path joining x to a^1 with $l(H_2) = 4^2 - 2 - l(H_1)$, and (3) $H_1 ∪ H_2$ spans $G^{k+1}[1]$. By Lemma 1, there is a Hamiltonian path Q in $G^{k+1}[1]$ joining a' and y, and Q can be written as $\langle a', Q, b, b', Q, y \rangle$ for some vertices b' and c'. By Lemma 1, there is a Hamiltonian path R in $G^{k+1}[2]$ joining b' and c', and R can be written as $\langle b', R_1, d', e', c', d, R_2, v \rangle$ for some vertices d' and c'. Again, by Lemma 1, there is a Hamiltonian path S in $G^{k+1}[3]$ joining d' and e'. Hence, $P_1 = (u, H_1, v)$ and $P_2 = (x, H_2, a, d', Q, b, b', R_1, d', e', c', R_2, c', e', Q_2, y)$ are the required paths.

For $l=4^2 - 2$, there is a Hamiltonian path H in $G^{k+1}[0]\{x\}$ joining u to v by Lemma 2. By Lemma 1, there exists a Hamiltonian path S' in $G^{k+1}[3]$ joining x' and a'. Hence, $P_1 = (u, H, v)$ and $P_2 = (x, x', S', a', a', Q_1, b, b', R, c, c', Q_2, y)$ are the required paths.

For $4^2 - 1 ≤ l ≤ 2(4^2) - 5$, (H_1) and (H_2) can be reset as $4^2 - 3$ and 1, and H_1 can be written as $\langle u, H_1, f, f', g', H_2, d \rangle$ for some vertices f' and g'. By Lemma 4, R can be written as $\langle b', R_1, d', e', c', R_2, c' \rangle$ for some vertices d' and e' such that $N_{G^{k+1}[1]}(f') ∩ N_{G^{k+1}[1]}(g') ≠ \{d', e'\}$ and $\{f', g'\} ∩ \{d', e'\} = \emptyset$. By the induction hypothesis, there exist two disjoint paths S_1 and S_2 such that (1) S_1 is a path joining f' and g' with $l(S_1) = l_1 - 4^2 + 2$, (2) S_2 is a path joining d' and e' with $l(S_2) = 4^2 - 2 - l(S_1)$, and (3) $S_1 ∪ S_2$ spans $G^{k+1}[3]$. Hence, $P_1 = (u, H_1, f, f', S_1, g', g', H_2, v)$ and $P_2 = (x, H_2, d', a', a', Q_1, b, b', R, c, c', Q_2, y)$ are the required paths.

For $l=2(4^2) - 3$, there is a Hamiltonian path S'' in $G^{k+1}[3]$ joining f' to g' by Lemma 1. Hence, $P_1 = (u, H_1, f', f', S', g', g', H_2, v)$ and $P_2 = (x, H_2, a', d', a', Q_1, b, b', R, c, c', Q_2, y)$ are the required paths.

For $l=2(4^2) - 2$, Since $(H) = 4^2 - 2$, path H can be written as $\langle u, H, f, f', g', H_2, v \rangle$ for some vertices f' and g' such that $g' ∉ N_{G^k}(x')$. By Lemma 1, there is a Hamiltonian path R' in $G^{k+1}[2]$ joining x' and a'. Hence, $P_1 = (u, H_1, f, f', S', g', g', H_2, v)$ and $P_2 = (x, x', R', a', a', Q, y)$ are the required paths.

For $l=2(4^2) - 1$, there is a Hamiltonian path R'' in $G^{k+1}[2]\{g'\}$ joining x' and a' by Lemma 1. Hence, $P_1 = (u, H_1, f, f', S', g', g', H_2, v)$ and $P_2 = (x, x', R', a', a', Q, y)$ are the required paths.

Lemma 6. If $G(4, m_1, ..., m_l)$ satisfies the 2RP property, then $G(m_1, m_2, ..., m_l)$ satisfies the 2RP property, where $r ≥ 2$ and $m_2 ≥ 4$ for all $1 ≤ r ≤ l$.

Proof. This lemma is proved by induction on m_r. Obviously, the lemma holds for $m_r = 4$. Suppose that $G(m_1, m_2, ..., m_l)$ satisfies the 2RP property for all $4 ≤ m_r ≤ 5k$. In the following, we prove that $G(k + 1, m_1, ..., m_l)$ satisfies the 2RP property. Let G denote $G(k + 1, m_1, ..., m_l)$ for brevity. Without loss of generality, assume that $l ≤ k$ and thus $l_1 ≤ (k + 1)N^k - 2)/2$. Moreover, $l_1 ≤ ...
(k×N^2−2)−max{k, d_δ(x, y)}, as explained below. If k ≥ d_δ(x, y), then l_1 ≤ (k×N^2−2)−k because ((k+1)×N^2−2)/2 ≤ (k×N^2−2)−k can be assured by k≥4, N′≥4, and r≥2. On the other hand (k < d_δ(x, y)), we have l_1 ≤ (k×N^2−2)−d_δ(x, y) because ((k+1)×N^2−2)/2 ≤ (k×N^2−2)−d_δ(x, y) can be assured by k≥4, N′≥4, d_δ(x, y)≤r, and r≥2.

Let u, v, x, and y be four distinct vertices in G. Since G'[j], G'[k] are vertex-disjoint to each other, there exists a G'[j] such that none of u, v, x, and y is included in G'[j], where 0≤j≤k. Without loss of generality, assume that j=k.

Since d_δ(u, v) ≤ l_1, d_δ(u, v) ≤ l_1 ≤ (k×N^2−2)−max{k, d_δ(x, y)}. The following discussions first exclude the situation that l_1=2 with N_{G'[k]}(u)∩N_{G'[k]}(v) = {x, y} and N_{G'[k]}(u)∩N_{G'[k]}(v) ≠ {x, y}. Since G′[k] \cong G(k, m_1,…, m_4), by the induction hypothesis, there exist two disjoint paths H_1 and H_2 such that (1) H_1 is a path joining u and v with l(H_1) = l_1; (2) H_2 is a path joining x and y with l(H_2) = (k×N^2−2)−l_1, (3) H_1 ∪ H_2 spans G′[k]. Since l(H_2) ≥ 2k, by Lemma 3, there exists an m-edge in H_2 where m≠r. Thus, H_2 can be written as (x, H_2, a, b, H_2, y) for some vertices a, b such that a and b is connected by m-edge and a≠b. By Lemma 1, there is a Hamiltonian path Q in G′[k] joining a and b. Hence P_1 = (u, H_1, v) and P_2 = (x, H_2, a, d, Q, b, H_2, y) are the required paths as shown in Figure 7(a).

The rest of this proof considers the situation that l_1=2 with N_{G'[k]}(u)∩N_{G'[k]}(v) = {x, y} and N_{G'[k]}(u)∩N_{G'[k]}(v) ≠ {x, y}. Since N_{G'[k]}(u)∩N_{G'[k]}(v) \subset N_{G'[k]}(u)∩N_{G'[k]}(v) and v is not in G′[k], there is a vertex r ∈ N_{G'[k]}(u)∩N_{G'[k]}(v) in G′[k], such that u(v) ∈ N_{G'[k]}(r); u and v are r-neighbors, and u and v are r-neighbors. Therefore, u^2 = v^2 = r and d_δ(u, v)=1. Since N_{G'[k]}(u)∩N_{G'[k]}(v) = {x, y} and u and v are r-neighbors, only four vertices u, v, x, and y are connected by r-edge in G′[k] such that d_{r}(u)=d_{r}(v)=d_{r}(x)=d_{r}(y) and k≠4. Without loss of generality, assume that d_{r}(x)=0, d_{r}(y)=1, d_{r}(u)=2, and d_{r}(v)=3, such that u, v, x, and y are included in G′[0], G′[1], G′[2], and G′[3], respectively. There is a vertex d in G′[0]\{x\} such that d≠x.

By Lemma 1, there are two Hamiltonian paths H in G′[0] and Q in G′[1] such that H joins x and d^2, and Q joins a and y. Since l(Q) ≥ 4^{k−1}, Q can be written as (a, Q_1, b, c, v_2, y) for some vertices b and c such that \{b, c\} \subset Q_1 = \varnothing. By Lemma 2, there is a Hamiltonian path R in G′[2]\{u\} joining b and c, and R can be written as (b, R_1, d, e, R_2, c^2) for some vertices d and e. By Lemma 2, there is a Hamiltonian path S in G′[3]\{v\} joining d and e^2, and S can be written as (d_5, S_1, f, g, S_2, e^3) for some vertices f and g. Hence, P_1 = (u, t, v) and P_2 = (x, H, a^2, a^3, Q_1, b, R_1, d, S_1, e^3, f, T, g, S_2, e^3, R_2, Q_2, y) are the required paths as shown in Figure 7(b).

Theorem 1. A G(m_1,…, m_4) satisfies 2RP-property, where m_2≥4 for all 1≤s≤r.

Proof. If r=1, then G(m_1) is a complete graph of m_1 vertices and thus this theorem holds. Let 4(a) represent 4, 4,…, 4 of length x. On the other hand (r≥2), by Lemma 5, G(4^q) satisfies 2RP-property. According to Lemma 6, G(m_1, 4^{r−1}) satisfies 2RP-property. Since G(m_1, 4^{r−1}) \cong G(4^{r−1}, m_1), G(4^{r−1}, m_1) = G(4^{r−1}, m_1) \cong G(m_1, 4^{r−1}) satisfies 2RP-property, where m_2=m_4=4. Again, by Lemma 6, G(m_1, 4^{r−2}) satisfies 2RP-property, where m_2=m_4≥4. By repeating the deduction above r times, we have that G(m_1, m_2,…, m_r) satisfies 2RP-property, where m_2=m_4≥4 for all 1≤s≤r.

4 Conclusion

The 2RP-property of an interconnection network indicates the path embedding capability of the network. This work first demonstrates that a G(m_1, m_2,…, m_r) is 1-Hamiltonian-connected, where m_2≥3 for all 1≤s≤r. Then, by the aids of this
property, our study shows that a $G(m_r, m_{r-1}, \ldots, m_1)$ satisfies 2RP-property, where $m_i \geq 4$ for all $1 \leq i \leq r$.

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan for financially supporting this research under Contract No. NSC-99-2221-E-260-010-.

References