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ABSTRACT: Due to global population aging and modern lifestyle changes, the incidence of central nervous 

system (CNS) disorders, such as neurodegenerative diseases, neuropsychiatric disorders, and cerebrovascular 

diseases, is increasing and has become a major public health challenge. Current medications commonly used 

in the clinic are far from satisfactory and may cause serious side effects. Therefore, the identification of novel 

drugs for the effective management of CNS diseases is very urgent. Puerarin, a highly bioactive ingredient 

isolated from Pueraria lobata, is known to possess a broad spectrum of pharmacological properties including 

anti-diabetic, anti-inflammatory, anti-antioxidant, neuroprotective, and cardioprotective features. However, 

its clinical application is limited due to its poor water solubility. Since puerarin has demonstrated a wide range 

of neuroprotective functions in various CNS diseases, such as Alzheimer’s disease, Parkinson’s disease, cerebral 

ischemia, depression, and spinal cord injury, it has been attracting increasingly intense attention worldwide. 

In this review, we intend to extensively summarize the research progress on neuroprotective mechanisms of 

puerarin in recent years and discuss the future directions of its application in CNS disease treatment. 
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1. Introduction 

 

Puerarin is the main active constituent isolated from the 

root of the Pueraria lobata (Willd.) Ohwi (Fabaceae), 

which is native to Southeast Asia and widely known as 

Gegen in traditional Chinese medicine. As one of the 

earliest known Chinese medicinal herbs in China, Gegen 

is frequently used to treat a wide range of conditions 

including fever, pain, diabetes, gastrointestinal diseases, 

cerebrovascular disorders, and cardiac dysfunctions [1]. 

Among various compounds isolated from Gegen, puerarin 

is considered to be the major active ingredient responsible 

for exerting its pharmacological effect [2]. In recent 

decades, numerous studies have demonstrated that 

puerarin possesses significant therapeutic effects for 

various kinds of central nervous system (CNS) diseases, 

such as Alzheimer’s disease (AD), Parkinson’s disease 

(PD), cerebral ischemia, depression, and spinal cord 

injury. In the current review, to provide insights into the 

discovery and development of novel neuroprotective 

agents, we discuss the structural features of puerarin and 

comprehensively summarize the current knowledge on its 

pharmacological mechanisms of action against CNS 

diseases.  

 

2. Chemico-Structural Characteristics of Puerarin 

 

Puerarin is chemically known as 7,4’-dihydroxy-8-C-

glucosylisoflavone (Fig. 1), with a molecular formula of 

C21H20O9 [2]. Puerarin has a glucopyranose attached to the 
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8-position and a hydroxyl group to each of the 7,4'-

positions, which are the chemical structures related to its 

pharmacological actions. However, the 7-position 

hydroxyl group is less active than one at the 4-position 

due to the site blocking effect of the 8-position glucosyl 

group. The glucosyl group is considered to be the 

structural basis for water solubility of puerarin. 

Alternatively, the two hydroxyl groups and the carbonyl 

group at the 4-position may constitute sites for interaction 

with the co-solvent. This chemico-structural property of 

puerarin contributes to its poor water-solubility and 

liposolubility, thus leading to poor oral absorption and 

low bioavailability, which eventually restricts its wider 

clinical application. Besides, the pH also has an impact on 

the solubility of puerarin, which is 0.46 mg/mL in an 

aqueous solution and can reach a maximum of 

7.56 mg/mL at a pH of 7.4 in phosphate buffers [3, 4]. To 

improve the solubility of puerarin, co-solvents such as 

ethylene glycol, polyvinylpyrrolidone, and propylene 

glycol, are usually added to the clinical formulation. In 

addition to the design of new injection formulations, the 

bioavailability of puerarin can be ameliorated by applying 

specific drug delivery systems that include 

microemulsions, nanoparticles, and nanocrystals [5]. 

Moreover, structural modifications to increase the water 

solubility and liposolubility are also considered. 

Currently, structural modifications of puerarin mainly 

include modifications on the phenolic hydroxyl group at 

position 4' and 7,4', the alcohol hydroxyl group at position 

6', and a modification at the 3',5' position [6]. 

 

 
 
Figure 1. The chemical structure of puerarin. In the ball and stick model, grey, red, and white balls represent 

carbon, oxygen, and hydrogen atoms, respectively. 

3. Bioactivity of Puerarin in Central Nervous System 

Disorders 

 

Since the therapeutic potential of puerarin for CNS 

disorders has recently attracted considerable attention, it 

is essential to understand its bioactivity and determine its 

pharmacological action. 

 

3.1 Alzheimer’s Disease 

 

AD is the most common neurodegenerative disease and is 

a major form of dementia. AD is characterized by 

progressive cognitive impairment and memory loss [7], 

however, the etiology and pathogenesis of AD are not yet 

fully understood. Typical pathological features of AD 

consist of extracellular senile plaques resulting from 

dysregulation of amyloid-beta (Aβ) metabolism and 

intracellular neurofibrillary tangles formed by 

hyperphosphorylated microtubule-associated protein tau 

[8, 9]. In addition, synaptic and neuronal loss [10], 

neuroinflammation [11], altered brain glucose 

metabolism [12], mitochondrial dysfunction [13], 

oxidative stress [10], and dysregulated neural circuits [14, 

15] have also been observed in human patients and animal 

models of AD. So far, there has been no effective 

intervention to block or reverse AD progression [16]. 

Although sodium oligomannate (GV-971), shown 

previously to restore gut microbiota and alleviate 

neuroinflammation [17], has recently been approved in 

China for the treatment of mild to moderate AD [18], 

further experimental and clinical evidence is needed to 

confirm its pharmacological activity. 

Accumulating evidence suggests that puerarin exerts 

substantial neuroprotective effects through various 

mechanisms in AD models. Anukulthanakorn et al. 

demonstrated that treatment with 7 mg/kg puerarin for 

120 days ameliorated cognitive impairment in 

ovariectomized rats. The mechanism of action could be 

partly associated with the inhibition of amyloid precursor 

protein (APP), β-Secretase 1 (BACE1) and tau4, which 
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are associated with the formation of amyloid plaques and 

tau hyperphosphorylation [19]. Similar results were also 

observed in a Drosophila melanogaster AD model, where 

Ahuja et al. demonstrated that puerarin may serve as a 

potential BACE1 inhibitor to rescue cognitive decline 

[20]. Moreover, it was also reported that both Puerariae 

radix aqueous extract and puerarin alleviated cognitive 

impairment in an Aβ25-35-induced AD model by 

decreasing the levels of Aβ deposition and 

hyperphosphorylated tau protein, as well as by preventing 

neuroinflammation and the loss of noradrenergic and 

serotonergic neurons [21]. In addition, puerarin markedly 

rescued cognitive deficits and reduced phosphorylation 

levels at the Thr231, Ser396, and Ser 195/198/199/202 

sites of tau via the inhibition of glycogen synthase kinase-

3β (GSK-3β) in several AD animal models [22-24]. These 

findings imply that puerarin could alleviate cognitive 

dysfunction in AD animal models by reducing the Aβ 

burden and the level of tau hyperphosphorylation. 

Since synaptic injury strongly correlates with 

cognitive dysfunction in AD, maintaining synaptic 

homeostasis is a promising approach for AD treatment 

[25]. A recent study reported that puerarin increased 

synaptic thickness, density, and length, and relieved the 

calcium overload in the hippocampus and cortical neurons 

in Aβ25-35-induced AD rats. This effect could possibly be 

attributed to the increased levels of calcium/calmodulin-

dependent protein kinase IIα (CaMKIIα) and the 

activation of the p38 mitogen activated protein kinase-

cyclic-adenosine monophosphate (cAMP) response 

element-binding protein (MAPK-CREB) signaling 

pathway, which is essential for synaptic plasticity and 

memory formation [26]. In addition, puerarin was able to 

enhance the extension of axons and dendrite lengths, the 

numbers of neuronal arbors, and synapse formation due to 

upregulation of a number of proteins involved in neurite 

or synaptic development, including dynein light chain 2, 

elongation factor 2, and actin-related protein 2 [27, 28].  

Of note, altered iron metabolism also plays a 

significant role in the pathogenesis of AD [29]. Since 

increased iron content was observed in the brains of AD 

animals and patients, achieving iron homeostasis may 

provide a promising perspective in the development of 

novel medications against AD [30]. In fact, Yu et al. 

demonstrated that puerarin ameliorated cognitive and 

memory deficits in APP/PS1 mice by affecting the 

changes of the expression level of iron metabolism-related 

proteins. On the one hand, puerarin downregulated the 

expression of iron uptake proteins, including divalent 

metal transporter 1 with or without iron response element, 

transferrin, transferring receptor 1, iron storage protein, 

ferrtin, and iron regulated hormone, hepcidin. On the 

other hand, it upregulated the expression of iron release 

protein, including ferroportin 1, ceruloplasmin, and 

hephaestin [31]. Furthermore, puerarin could alleviate 

iron overload in the cerebral cortex in APP/PS1 transgenic 

mice by reducing inflammation and oxidative stress as 

evidenced by the reduced level of interleukin 1β, 

interleukin 6, and tumor necrosis factor α (TNF-α), as well 

as that of glutathione peroxidase (GSH-Px), superoxide 

dismutase (SOD), and malondialdehyde (MDA) [32]. 

Additionally, puerarin inhibited Aβ1-40-induced NOD-like 

receptor family, pyrin domain containing 3(NLRP3) 

inflammasome activation, which was triggered by 

reactive oxygen species (ROS)-dependent oxidative stress 

through the activation of the nuclear factor E2-related 

factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant 

signaling pathway [33]. 

Apoptosis, a biological process referring to 

preprogrammed cell death, plays a vital role in tissue 

homeostasis, the elimination of damaged cells, and aging 

[34]. In particular, hyperactive neuronal apoptosis, being 

a result of various cellular events, such as Aβ deposition, 

tau hyperphosphorylation, Bcl2, Bax, and caspases 

activation, neuroinflammation, and oxidative stress, can 

also lead to deleterious neurodegenerative disorders such 

as AD or PD [35]. Mounting evidence supports the fact 

that puerarin can attenuate cognitive impairment in AD 

mouse models through the suppression of apoptosis via 

activation of the phosphatidylinositol 3-kinase 

(PI3K)/Aktsignaling pathway [36-38], down-regulation 

of the Bax/Bcl-2 ratio, inhibition of c-Jun N-terminal 

Kinase (JNK), p38, and caspase-3 [39, 40], and activation 

of estrogen receptor β [41]. A recent proteomics study 

revealed that inhibition of extracellular signal-regulated 

kinases 1 and 2 (ERK1/2), cyclase-associated protein 1, 

and Bax also mediated the anti-apoptotic activity of 

puerarin [42]. Besides, oxidative stress has also been 

recognized as a contributing factor in the progression of 

AD. Increased production of ROS can directly impair 

synaptic plasticity, thus leading to cognitive dysfunction 

[43]. Several studies reported that puerarin treatment 

reversed cognitive deficits in AD models by preventing 

excessive ROS production and neuronal death via the 

inhibition of the GSK-3β/Nrf2 and inducible nitric oxide 

synthase (iNOS)/ nitric oxide (NO) pathways [44, 45], as 

well as activation of the PI3K/Akt/eNOS pathway [46].  

Taken together, these findings support the hypothesis 

that puerarin exerts its neuroprotective effects in AD 

through multiple pathways (Fig. 2) and can potentially be 

a novel drug candidate for AD treatment. However, the 

existing studies are mainly limited to observational 

research regarding the effects of puerarin on well-known 

AD pathologies, such as β-amyloid plaques formation, tau 

hyperphosphorylation, apoptosis, oxidative stress or glia 

activation, and are much less focused on the investigation 

of its underlying mechanisms. Thus, more advanced 

approaches that include transcriptomics, proteomics, and 
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metabonomics should be applied to validate the biological 

and pharmacological activity of puerarin in AD. Finally, 

since puerarin also exhibits a positive effect on glucose 

metabolism and gastrointestinal functions [1], it should be 

further investigated whether it could rescue cognitive 

deficits in AD by ameliorating a dysregulated cerebral 

glucose metabolism or remodeling altered gut microbiota. 

 

 
 

Figure 2. Schematic representation of neuroprotective effects of puerarin in AD. Red downward arrow represents inhibitory 

effects, while red upward arrow represents stimulative effects. 

3.2 Parkinson's Disease 

   

PD is the second most common neurodegenerative 

disease affecting approximately 0.3% of the overall 

population worldwide [47]. The defining 

neuropathological features of PD are intracellular 

misfolding and aggregation of α‑synuclein and neuronal 

loss in the substantia nigra (SN), which results in striatal 

dopamine deficiency [48]. PD manifests with the presence 

of bradykinesia together with either rest tremor or rigidity, 

and other non-motor symptoms such as rapid eye 

movement sleep behavior, depression, cognitive 

impairment, anosmia, or constipation [49]. The 

underlying pathogenesis of PD involves multiple 
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mechanisms, including the disruption of α‑synuclein 

proteostasis, neuroinflammation, altered brain glucose 

metabolism, mitochondrial dysfunction, oxidative stress, 

dysfunction of calcium homeostasis and axonal transport, 

which are in part similar to those of AD. Treatment of PD 

includes pharmacological substitution of deficient striatal 

dopamine and non-dopaminergic approaches for both 

motor and non-motor symptoms, however, a potential 

disease-modifying therapy still remains a challenge [50]. 

There is accumulating evidence indicating that 

puerarin could be a promising candidate for PD treatment 

due to its neuroprotective properties. Results from Zhao 

et al. demonstrated that puerarin effectively ameliorated 

motor abnormalities in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-lesioned mice (commonly 

used PD neurotoxin model), promoted neurite outgrowth, 

and enhanced the survival of dopaminergic neurons 

against MPTP neurotoxicity by increasing progesterone 

receptor signaling-mediated transcriptional activity [51]. 

In addition, puerarin attenuated dopaminergic neuronal 

degeneration in the lesioned SN that was induced by 6-

hydroxydopamine (6-OHDA) through the regulation of 

endogenous brain-derived neurotrophic factor (BDNF) 

expression [52]. Aside from this, Zhao et al. found that 

puerarin could potentiate nerve growth factor-mediated 

neuritogenesis by more than 10-fold by activating the 

ERK1/2, PI3K/Akt, and Nrf2/ HO-1 pathways [53].  

 
Figure 3. Schematic representation of neuroprotective effects of puerarin in PD. Red downward 

arrow represents inhibitory effects, while red upward arrow represents stimulative effects. 

Growing evidence suggests that neuroinflammation 

is an important contributor to the progressive 

degeneration of dopaminergic neurons in PD [54]. Jiang 

et al. reported that after puerarin treatment the expression 

level of glial fibrillary acidic protein (GFAP, a marker for 

astrocyte activation) and iNOS was decreased, and that 

dopaminergic neuron loss in the SN was rescued in an 

MPTP-induced PD mouse model, indicating that puerarin 

may be a promising dopaminergic neuroprotective drug 

[55]. Moreover, it was shown that acetylpuerarin inhibited 

astrocyte activation by downregulating group V secretory 

phospholipase A2 (sPLA2), cytosolic PLA2 alpha 

(cPLA2α), nuclear factor-κB (NF-κB), and 

phosphorylation of ERK1/2, thus preventing the 
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production of prostaglandin E2 and leukotriene C4 in 

astrocytes [56]. Further studies demonstrated that 

puerarin effectively suppressed microglia activation by 

inhibiting the expression of iNOS, and the production of 

NO and ROS, which were mediated by O-linked-N-

acetylglucosaminylation (O-GlcNAcylation), MAPK 

phosphorylation, and NF-κB translocation [57]. 

In addition to anti-neuroinflammatory potential, 

puerarin also displays anti-oxidative activity. It is 

commonly accepted that mitochondrial dysfunction and 

oxidative stress contribute to the molecular pathogenesis 

of PD [58]. Since mitochondria are the main sites of ROS 

production and are particularly susceptible to oxidative 

stress-induced damage [59], the disrupted balance 

between the production and elimination of ROS results in 

cellular dysfunction and, ultimately, in the death of 

dopaminergic neuron in PD. Several studies have reported 

that a protective role of puerarin against oxidative stress 

injury exists. In particular, this role is likely due to 

increasing SOD and glutathione (GSH) activities, 

decreasing MDA activity, reducing ROS and LDH 

generation [60], preserving mitochondrial membrane 

potential, and preventing cytochrome c release [61]. Zhu 

et al. proved that puerarin alleviated MPTP-induced 

dopaminergic neuron degeneration and depletion by 

upregulating glial cell line-derived neurotrophic factor 

(GDNF) expression, and activating the PI3K/Akt pathway 

and GSH, which subsequently reduced MPTP-induced 

ROS production [62]. Besides, puerarin could suppress 

nuclear exclusion of Nrf2 by inhibiting the GSK-3β/Fyn 

pathway, which in turn, induced antioxidant response 

element (ARE)-driven glutamate cysteine ligase gene 

transcription and increased its in vitro and in vivo 

synthesis, thus attenuating MPP+/MPTP-induced 

oxidative stress [63]. Similarly, activation of the 

Nrf2/ARE signaling pathway was also shown to be 

involved in the anti-oxidative effect of puerarin [52]. 

Moreover, Zhao et al. demonstrated that puerarin 

attenuated 6-OHDA-induced NO production and 

neurotoxicity by increasing mitochondrial enzyme 

arginase-2 expression in midbrain neurons [64].  

Additionally, puerarin was found to prevent 

dopaminergic neuron loss through the inhibition of 

apoptosis. This anti-apoptotic effect could be attributed to 

the inhibition of the JNK signaling pathway [65], 

activation of the PI3K/Akt pathway [66], and 

upregulation of G protein-coupled receptor 30 and GDNF 

[67]. Cheng et al. found that puerarin could protect MPP+-

induced SH-SY5Y cells from apoptosis by attenuating the 

dysfunction of ubiquitin proteasome system [68]. 

In summary, experimental evidence indicates that 

puerarin could prevent dopaminergic neuron degeneration 

by exerting anti-inflammatory, anti-oxidative, anti-

apoptotic, and pro-neurogenic effects (Fig. 3). As was the 

case with AD, certain challenges should be addressed to 

validate the bioactivity of puerarin in PD. 

 

3.3 Cerebral Ischemia 

 

Cerebral ischemia triggers cellular bioenergetic failure as 

a result of focal cerebral hypoperfusion, followed by 

blood-brain barrier (BBB) dysfunction [69], oxidative 

stress injury [70], neurovascular unit injury [71], 

excitotoxicity [72], post-ischemic neuroinflammation, 

and finally the death of neurons and glia [73, 74]. 

Experimental evidence suggests that puerarin can protect 

the brain from cerebral ischemia injury through multiple 

mechanisms. For instance, Kong et al. investigated the 

distribution kinetics of puerarin in the rat hippocampus 

after cerebral ischemia and found that the area under the 

curve (AUC0-120min) and the maximum concentration 

(Cmax) of puerarin in the embolic hippocampus were 

higher than those of the normal hippocampus [75], 

indicating that puerarin accumulation was selective 

towards ischemic areas. In addition, delayed puerarin 

treatment (starting 24 hours after focal ischemic stroke) 

demonstrated long‑term therapeutic effects, which could 

be partially explained by enhanced vascular remodeling 

[76]. Besides, the elimination rate of puerarin in a cerebral 

ischemia reperfusion rat model was slower than that in a 

healthy rat [77]. 

It is well-known that cerebral ischemia mainly 

induces bioenergetic failure [73], oxidative stress [70], 

calcium overload and neuronal apoptosis [78]. It was 

found that puerarin could improve cerebral blood 

perfusion by p42/44 MAPKs-mediated angiogenesis [79]. 

Lyophilized powder of puerarin and catalpol (the 

bioactive component isolated from Rehmannia glutinosa) 

not only increased regional cerebral blood flow, reduced 

infarct volume and protected vessel integrity in cerebral 

artery occlusion rats, but also inhibited brain vascular 

endothelial cell apoptosis by upregulating hypoxia-

inhibitory factor-1α(HIF-1α) that was dependent on the 

ERK and PI3K/Akt/mammalian target of rapamycin 

(mTOR) signaling pathways [80]. Furthermore, acidosis 

is a common feature in cerebral ischemia, which can 

aggravate ischemic brain injury [81]. It has been 

demonstrated that puerarin protected the rat brain against 

acidosis-induced injury after cerebral ischemia by 

inhibiting acid sensing ion channel 1a, which was 

activated by extracellular acidosis, and could facilitate the 

activation of voltage-gated Ca2+ channels and intracellular 

Ca2+ accumulation [82]. Additionally, cognitive 

impairment and anxiety-like behavior induced by cerebral 

ischemia could be alleviated by puerarin due to the 

activation of the PI3K/Akt1/GSK-3β/ myeloid cell 

leukemia-1 (MCL-1) signaling pathway, and the 

reduction of MDA, GSH-Px and thiol levels in the 
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hippocampus and frontal cortex [83]. Nrf2, Forkhead 

boxO1(FoxO1), Forkhead box O3(FoxO3), and Forkhead 

box O1(FoxO4) involved in antioxidant effects were 

also upregulated, thus decreasing ROS production [84]. 

Zhao, et al. confirmed the antioxidant effect of puerarin 

in several cerebral ischemia-reperfusion injury (CI-CR) 

animal models, which was supported by reduced levels of 

lactic acid (LA), lipid peroxide, and increased levels of 

GSH-Px and Na+-K+-ATPase [85]. Moreover, calcium 

overload, leading to continuous NO production, has been 

reported to trigger neuronal death following cerebral 

ischemia [86]. Zhang et al. showed that puerarin repressed 

calcium overload in a rat model of transient focal ischemia 

[87]. Another study indicated that puerarin decreased the 

level of excitatory neurotransmitter glutamate and NO, 

downregulated oxygen-glucose deprivation-induced Ca2+ 

influx and the intracellular Ca2+ peak, thus inhibiting the 

apoptotic cascade [88]. Multiple studies also 

demonstrated the role of puerarin against cerebral 

ischemia injury by attenuating autophagy through the 

activation of the APMK-mTOR-Unc-51-like kinase 1 

(ULK1) signaling pathway [89, 90]. It has also been 

shown that puerarin reduced cerebral edema in CI-CR in 

part through the suppression of HIF-1α and activation of 

TNF-α, followed by the inhibition of iNOS and caspase-3 

[91].  

 

 
Figure 4. Schematic representation of neuroprotective effects of puerarin in cerebral ischemia. Red 

downward arrow represents inhibitory effects, while red upward arrow represents stimulative effects. 

Moreover, the anti-inflammatory effect of puerarin in 

CI-RI has been investigated. Puerarin (at a dose of 100 

mg/kg) reduced the brain infarct volume and improved 

neurological deficits by suppressing astrocyte and 

microglia activation, as well as multiple inflammatory 

factors such as cyclooxygenase-2 [92], TNF-α andToll-

like receptor 4 (TLR4)/Myeloid differentiation primary 

response 88 (MyD88), and the silent information 
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regulator 1 (SIRT1) /NF-κB pathway [93, 94]. 

Importantly, astrocytes provide structural, trophic, and 

metabolic support for neurons, and play a significant role 

in neuronal survival and plasticity after cerebral ischemia 

injury [95]. Wang et al. reported that puerarin protected 

the brain from cerebral ischemia injury by inhibiting 

astrocyte apoptosis and enhancing BDNF secretion by 

astrocytes, which was associated with activation of the 

PI3K/Akt and MAPK/ERK signaling pathways [96]. In 

addition, intravenous injection of puerarin attenuated the 

inflammatory response in CI-RI rats by activating the 

α7nAchR-mediated Janus kinase 2 (JAK2)/signal 

transducer and activator of transcription 3 (STAT3) 

cholinergic anti-inflammatory pathway [97].  

In conclusion, these findings indicate that puerarin 

may protect the brain from cerebral ischemia injury by 

enhancing neurogenesis, increasing cerebral blood 

perfusion, and by exerting anti-apoptotic, anti-

inflammatory, anti-oxidative, and anti-autophagic 

properties, as well as alleviating excitotoxicity (Fig. 4). 

 

 

 
Figure 5. Schematic representation of neuroprotective effects of puerarin in depression. Red downward arrow represents 

inhibitory effects, while red upward arrow represents stimulative effects. 

3.4  Depression 

 

Depression is a common chronic mental disorder that 

affects a growing population across the globe. Clinically, 

depression is characterized by persistent and recurrent low 

self-esteem, low mood, diminished interests, impairments 

in cognition, and even suicidal ideation. Current 

medication-based therapies consist of antidepressants that 

include selective serotonin reuptake inhibitors, tricyclics 

tetracyclics, and monoamine oxidase inhibitors. However, 

their long-term use may cause a wide range of adverse 

events such as autonomic dysfunction, serotonin 

syndrome, liver toxicity, and cardiovascular diseases [98]. 

In recent years, puerarin has gained increasing 

attention for its antidepressant properties, and can thus be 

regarded as a promising candidate for the treatment of 

depression. Various studies have demonstrated that 

puerarin exerts anti-depressive effect by inhibiting 

apoptosis, decreasing ROS production, increasing 

expression levels of AKT1 and FOS, and reducing 
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expression of caspase-3, STAT3, and TNF-α, which 

correlated with depression signaling pathways [99]. In 

addition, puerarin ameliorated spared nerve injury-

induced depression and pain in mice by activating the 

ERK1/2, CREB, and BDNF pathways [100]. A recent 

study demonstrated that puerarin could promote 

neurogenesis and attenuate microglia activation by 

triggering fibroblast growth factor-2 (FGF-2)/ fibroblast 

growth factor receptor (FGFR) signaling [101]. Similarly, 

it has also been shown that puerarin ameliorated 

ovariectomy-induced depressive-like behavior possibly 

through enhancing neurogenesis in the dentate gyrus of 

the hippocampus, and upregulating BDNF and the 

transcription of various estrogen receptors (ERα and ERβ) 

[102]. Similarly, activation ofα-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid receptors (AMPAR)/ 

mTOR signaling, together with an increased release of 

BDNF [103], upregulation of BDNF and activation of 

ERK signaling in the prefrontal cortex in diabetic rats 

[104], contributed to the anti-depressive effects of 

puerarin. 

It is commonly accepted that altered gut microbiota 

homeostasis correlates with depression [105, 106]. A very 

recent study investigated the changes in the gut 

microbiota composition in chronic unpredictable mild 

stress mice upon puerarin treatment [107]. Puerarin 

alleviated depression-like behavior in mice, and 

importantly, decreased the abundance of pro-

inflammatory bacteria such as Proteobacteria, Flexispira, 

and Desulfovibrio. Interestingly, the abundance of anti-

inflammatory bacteria such as Firmicutes, Bacillales, and 

Lactobacillus was increased, indicating that puerarin 

could ameliorate depressive behavior by remodeling 

dysregulated gut microbiota [107]. Putative puerarin 

mechanisms of action in depression are illustrated in the 

Fig. 5. 

 

3.5  Spinal Cord Injury 

 

In addition to the potential therapeutic effects in AD, PD, 

and CI-RI, puerarin has been found to promote spinal cord 

injury repair. It was demonstrated that the optimal timing 

for puerarin treatment in spinal ischemic damage was 

within 4 hours of spinal ischemia-reperfusion injury, 

which resulted in an increase in thioredoxin transcription 

and inhibition of the apoptosis [108]. Glutamate 

dysregulation plays a central role during spinal ischemic 

injury and subsequent reperfusion, triggering damage and 

death of nerve cells [109]. Tian et al. reported that 

puerarin reduced acute spinal cord injury by 

predominantly inhibiting metabotropic glutamate receptor 

transcription and glutamate release [110]. In line with this, 

puerarin showed neuroprotective effects in rats against 

acute spinal cord injury through the suppression of glial 

activation and apoptosis, which might be associated with 

activating the PI3K/Akt signaling pathway [111]. 

Moreover, the inhibition of cyclin-dependent kinase 

5(Cdk5) and p25, which play a prominent role in 

apoptosis, also contributed to the neuroprotective activity 

of puerarin in acute ischemia/reperfusion-induced spinal 

injury [112]. In addition, anti-oxidative and anti-apoptotic 

properties of puerarin exhibited protective effects on 

secondary spinal cord injury, as was evidenced by an 

increase in SOD activity and the Bcl/Bax ratio, as well as 

decreased MDA expression [113]. Furthermore, 

suppressing oxidative stress by inhibiting the p38 MAPK 

pathway was shown to occur in response to puerarin and 

resveratrol-loaded nanoparticles [114]. 

 

4. Conclusion and Future Perspectives 

 

As summarized and discussed in this review article, 

puerarin demonstrated neuroprotective effects through 

multiple pathways in various CNS disorders, including 

AD, PD, cerebral ischemia, depression, and spinal cord 

injury. The underlying mechanisms of action of puerarin 

are associated with anti-apoptotic, anti-oxidative, anti-

autophagic, anti-inflammatory, and pro-neurogenic 

mechanisms. This scientific evidence indicates that 

puerarin could be a promising candidate compound for the 

treatment of various CNS diseases. Nevertheless, 

previous research aimed at investigating the 

neuroprotective mechanisms of puerarin mainly focused 

on a single signaling pathway without considering 

broader associations with other biological processes, 

leading to potentially incomplete evidence. To broaden 

the understanding of the potential mechanisms associated 

with puerarin neuroprotection, bioinformatics analyses 

and multi-omics technologies, including genomics, 

transcriptomics, proteomics, and metabolomics should be 

employed. Besides, the clinical use of puerarin is limited 

due to its low solubility in water and lipids, which may 

impair its permeability through the BBB and its 

pharmacological activity. Therefore, identification of 

puerarin derivatives with improved penetration and 

bioavailability should be considered. For instance, Ji et al. 

reported that puerarin derivatives with improved log P 

values were more lipophilic, and hence passed more 

efficiently through the BBB, which led to a stronger 

inhibition of the inflammatory responses and enhanced 

Ca2+-Mg2+-ATPase activity in CI-RI [115]. Additionally, 

drug delivery and transportation systems technology, such 

as nanoparticles and liposomes, hold great potential to 

facilitate new formulations. Specifically, puerarin-loaded 

hydroxypropyl beta cyclodextrin nanoparticles not only 

increased and prolonged puerarin concentration in the 

brain, but also markedly decreased the infarction volume 

after the administration of puerarin-derived nanoparticles 
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in CI-RI rat brain [116]. Moreover, puerarin-loaded 

poly(butylcyanoacrylate) nanoparticles coated with 

polysorbate 80 fabricated by Zhao et al. showed higher 

concentrations and exhibited stronger neuroprotective 

effects against CI-RI than free puerarin [117]. These 

findings indicate that drug delivery and transportation 

systems possess great potential for the clinical application 

of puerarin. Of note, the optimization of drug carrier 

materials for better penetration through the BBB and 

bioavailability of puerarin requires collaborative 

multidisciplinary approaches between neuroscience, 

toxicology, pharmacology, and material science. 

Results from a recent clinical trial showed that the 

combined treatment of puerarin and naloxone exhibited 

better efficacy in patients with traumatic cerebral 

infarction than a conventional therapy [118]. Another trial 

also reported that dual therapy with puerarin and aspirin 

improved neurological functions in patients with acute 

cerebral infarction, along with decreased levels of von 

Willebrand factor and thrombomodulin, indicating 

damaged vascular endothelial cells present in the blood 

serum [119]. However, the evidence supporting the 

therapeutic efficacy of puerarin on survival or dependency 

in people with ischaemic stroke is still inconclusive [120, 

121]. Therefore, well-designed and large-scale 

randomised controlled trials with long-term follow-ups 

are required to validate the efficacy of puerarin in cerebral 

ischemia. Since puerarin-based mechanisms of action are 

not fully elucidated and because of the lack of standard 

dosing, its clinical efficacy in other CNS diseases has not 

yet been validated. In addition, only few studies have so 

far been performed to evaluate the toxicity of puerarin 

[122], and in the future it will be crucial to examine in 

more detail its potential hepatic and renal toxicity. Thus, 

future investigation should focus on the exploration of the 

pharmacological mechanisms of action of puerarin, its 

toxicity and high-quality clinical research. The extensive 

neuroprotective properties of puerarin, the bioactive 

ingredient isolated from Pueraria lobata, provide new 

insights and perspectives for the discovery and 

development of novel medications for the management of 

CNS disorders. 
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