Simplified Low-Voltage CMOS Syllabic Companding Log Domain Filter

Ippei Akita, Kazuyuki Wada, and Yoshiaki Tadokoro

Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, 441–8580, Japan
Email: iakita@signal.ics.tut.ac.jp

Abstract—This paper proposes a low-voltage syllabic companding log domain filter without state variable correction circuits, which is needed for externally linear and time-invariant operation of conventional filters. The proposed filter is simplified and has wide input range under low-supply voltage by varying a nodal voltage adaptively. The simulation results show 60-dB input range for over 40-dB signal to noise plus distortion ratio at a power supply of 0.6 V in a 0.18-μm CMOS process.

I. INTRODUCTION

The technique of low-voltage CMOS analog integrated circuit design is indispensable for implementing several portable applications such as sensing and telecommunication circuits because of requirement of low power consumption and degradation of device breakdown voltage. In the design of low voltage analog circuits, low headroom of an internal voltage makes difficult to achieve a required specification of dynamic range. Syllabic companding technique, especially dynamically adjustable biasing (DAB) technique combining with log domain circuits, is useful to realize wide dynamic range characteristic [1,2]. Although the DAB technique is modified for low voltage operation in Ref. [3], the complexity of the circuit increases compared with a filter based on the DAB technique of Ref. [2] because a state variable correction (SVC) circuit is needed to keep externally linear, time-invariant (ELTI) operation in the low-voltage version.

In this paper a novel syllabic companding log domain filter with no SVC circuit is proposed. Although an SVC circuit is not used, ELTI characteristic of the proposed filter is kept. Its circuit scale is comparable to that of the conventional DAB filter, while the dynamic range is higher than the DAB one at low supply voltage. Simulation results show the proposed filter is effective for dynamic range at low supply voltage.

II. LOW-VOLTAGE INTEGRATOR WITH NO STATE VARIABLE CORRECTION CIRCUIT

A schematic of an integrator based on the DAB technique is shown in Fig. 1(a). In this circuit it is assumed that all MOSFETs are in weak inversion region where a drain current I_D is expressed as an exponential function of its gate-to-source voltage V_{gs}: $I_D = I_S \exp(V_{gs}/nU_T)$. A current I_S is dependent on a fabrication process and proportional to the aspect ratio of the MOSFET, and n and U_T are a slope factor and the thermal voltage, respectively. The diode-connected MOSFETs M_{inp} and M_{imm} logarithmically convert input currents I_{inp} and I_{imm} into voltages V_{ip} and V_{im}, respectively, which are inputs of a log-domain integrator core composed of a log-domain operational transconductance amplifier (OTA) shown in Fig. 1(b) and a capacitor C. An output voltage V_o of the log-domain integrator core is exponentially converted to an output current I_{out} through M_{out} as an expander. Since a bias current I_{bias} and a bias voltage V_b are constant, a source potential V_C of M_o is also fixed. A control current I_g is dynamically varied according to an envelop of the input current to achieve wide-dynamic range characteristic [1–3]. Furthermore, since I_g is a common-mode current of I_{inp} and I_{imm}, the differential structure eliminates the influence of this current for I_{out} [2].

In Fig. 1(a), nevertheless, changing the bias current of M_{inp} and M_{imm} with I_g, the common-mode voltages of V_{ip} and V_{im} also change, leading to narrower dynamic range under low supply voltage because the input range of the log-domain OTA is limited.

Figure 1(c) shows a modified version of a DAB-based integrator for low voltage operation [3]. In this configuration, since the common-mode voltages of V_{ip} and V_{im} is kept constant by varying the source potential V_C of M_o with I_g, a required input range of the log-domain OTA may be narrower than that of the previous DAB-based integrator. Therefore, the schematic of Fig. 1(c) is suitable for low-voltage circumstances. However, a current $nU_TC I_g^2/I_g$, which is generated by an SVC circuit, is required in parallel with a capacitor C in order to ensure ELTI relation between I_{in} and I_{out}. In Ref. [3], the device size of two MOSFETs in an SVC circuit should be large due to limitation of its topology at a low supply voltage. Parasitic components of large devices in an SVC circuit make difficult to accurately obtain a required SVC current and then an output error arises. On the other hand, the integrator shown in Fig. 1(a) needs no SVC circuit. Therefore, the schematic of Fig. 1(a) is suitable from the viewpoint of complexity of circuits.

For the problem discussed above about both of low voltage and small circuit, a solution is proposed in Fig. 1(d). The proposed configuration is also a modified version of a DAB-based one in Fig. 1(a) where a terminal of C is connected with the source terminal of M_o and I_{bias} in Fig. 1(a) is replaced with I_g. ELTI relation between I_{in} and I_{out} can be proved as follows. First, log-compression function of I_{inp} at M_{inp} and
M gives

Hence, Kirchhoff’s current law at the gate terminal of

respectively. An output current

Fig. 1(b) is given as

expansion function of V_o at M_{out} can be expressed as

$V_{ip} = nU_T \ln \left(1 + \frac{I_{inp}}{I_g} \right) + V_b$ \hspace{1cm} (1)

and

$V_o = nU_T \ln \left(\frac{I_{outp}}{I_g} \right) + V_b$, \hspace{1cm} (2)

respectively. An output current I_1 of the log-domain OTA in

Fig. 1(b) is given as

$I_1 = I_0 \left(\frac{V_{ip} - V_o}{nU_T} - \frac{V_{im} - V_o}{nU_T} \right)$. \hspace{1cm} (3)

Hence, Kirchhoff’s current law at the gate terminal of M_{out} gives

$I_0 \left(\frac{V_{ip} - V_o}{nU_T} - \frac{V_{im} - V_o}{nU_T} \right) = C \frac{d}{dt} (V_o - V_C)$. \hspace{1cm} (4)

Substituting Eqs. (1), (2), and

$V_C = nU_T \ln \left(\frac{I_s}{I_g} \right) + V_b$ \hspace{1cm} (5)

into Eq. (4), a differential equation

$\Omega I_{in} = \frac{dI_{out}}{dt}$ \hspace{1cm} (6)

is obtained where $\Omega = I_g/(nU_TC)$ and $I_{in} = I_{inp} - I_{im}$. It is known that the proposed circuit of Fig. 1(d) is an ELTI integrator and does not require an SVC current. Furthermore, the common-mode voltages of V_{ip} and V_{im}, which are input voltages of the log-domain OTA, can be kept constant by appropriately biasing M_{inp}, M_{im}, and M_S with I_g Therefore, the proposed integrator in Fig. 1(d) can operate at low supply voltage.

III. FILTER IMPLEMENTATION

The modification for simple low-voltage log-domain integrators is applicable to the log-domain filters. As an example of this proposed modification, the third-order Butterworth low-pass filter with a 100-kHz cutoff frequency is designed. In this example, a pseudo differential form of log-domain filter cores is employed to eliminate an influence of I_g biasing M_{inp} and M_{im} [2]. A half pseudo differential log-domain filter core is synthesized in the log domain by leap frog simulation as shown in Fig. 2(b) [4]. The bottom terminals of the capacitors C_1, C_2, and C_3 are connected with the source terminal of M_s to keep ELTI relation between I_{in} and I_{out} as expressed in the previous section. Letting all bias current I_1, I_2, and I_3 be 1.0 μA, the capacitances are set as $C_1 = C_3 = 50$ pF and $C_2 = 100$ pF for the desired cutoff frequency. All aspect ratios (width/length) of M_{inp}, M_{im}, M_{outp}, M_{outm}, and M_S are set as 384 μm/0.42 μm, and that of M_0 is as 300 μm/0.18 μm. This filter is designed using a 0.18- μm CMOS process and a 0.6-V supply voltage V_{DD}.

A control circuit in Fig. 2(a) generates I_g which determines dynamic range of the filter and must be designed for a wide dynamic range. A control circuit shown in Fig. 3 is used here [3] and I_g takes any one of three discrete values I_{ref1}, I_{ref2}, or I_{ref3} at a time by switching S_1 to S_3 according to an amplitude of input signal [5]. If $I_{ref1} < I_{ref2} < I_{ref3}$ is satisfied, for example, I_g is set to I_{refi} ($i = 1, 2, \text{ or } 3$) when the amplitude $|I_{in}|$ of an input current is in the region as $I_{ref(i-1)} < |I_{in}| \leq I_{refi}$ where $I_{ref0} = 0$. A circuit controlling the switches can be implemented by use of a peak detector, several comparators, and some reference current sources as described in Ref. [3]. The number of current sources in the control circuit is not limited to only three and this circuit can be easily extended according to a filter specification. A resistor R_L and a capacitor C_L compose a simple low-pass filter to avoid large disturbance at the input stage comprised of M_{inp}, M_{im}, and M_S. Here those values are chosen as $R_L = 100$ kΩ and $C_L = 50$ pF.

The number of current sources and their values are determined as follows. Figure 4 shows simulation results of
signal to noise plus distortion ratios (SNDRs) in multiples from 100-nA to 208-μA I_g.

Fig. 3. Control circuit.

Fig. 4. Signal to noise plus distortion ratios (SNDRs) in multiples from 100-nA to 208-μA I_g.

IV. SIMULATION RESULTS

The proposed syllabic-companding log domain filter is simulated to confirm the characteristics. The parameters determined in the previous section are used in this simulation.

First of all, frequency response of the proposed filter is verified. Figure 5 shows the simulation results where a control circuit used in Fig. 2(a) is replaced with a 3-output constant current source of Fig. 3. The filter has a 96.5-kHz cutoff frequency each I_g as seen from Fig. 5.

Figure 6(a) shows the fundamental component of I_{out}, total harmonic distortion, and an RMS output current noise from DC to 400 kHz during one period, versus amplitude of a 100-kHz sinusoidal input current I_{in}. In Fig. 6(a), the fundamental output current increases in proportion to an input current, while output noise does stepwise. Figure 6(b) shows an SNDR characteristic obtained from results of Fig. 6(a). As seen from Fig. 6(b) the proposed filter can satisfy the specification of a 60-dB input range over 40-dB SNDR.

Figure 7(a) shows a 100-kHz sinusoidal input current I_{in} with an envelope changed, and a control current I_g. In Fig. 7(b) waveform of the log-compressed voltage V_{inp} of the proposed
filter is depicted. It is verified that the bias voltage of V_{inp} keeps almost constant. Figure 7(c) shows the output current I_{out} of the proposed filter. Table I shows summary of the filter characteristics. The proposed filter operates well for low voltage such as a 0.6-V V_{DD}. In addition, when I_g changes from 400 nA to 50 μA, the current consumption is observed as 75 to 330 μA which corresponds to 45- to 198-μW power consumption. Finally, the proposed filter has 100-dB dynamic range, which is calculated from the ratio of the input current over 40-dB SNDR to minimum noise floor.

V. Conclusion

A low-voltage syllabic-comanding log domain filter with no state variable correction circuits has been proposed. The proposed filter is easily simplified by varying a terminal voltage of capacitors adaptively and still has wide dynamic range even at a low supply voltage. Simulation results show 60-dB input range and an over 40-dB signal to noise plus distortion ratio at a power supply of 0.6 V in a 0.18-μm CMOS process. Future works are fabrication and measurement.

ACKNOWLEDGMENT

This study was supported by the 21st Century COE Program “Intelligent Human Sensing” from the ministry of Education, Culture, Sports Science and Technology of Japan and VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Cadence Design Systems, Inc.

REFERENCES