
Pyramidal Implementation of the AÆne Lucas Kanade Feature Tracker

Description of the algorithm

Jean-Yves Bouguet

Intel Corporation

Microprocessor Research Labs

jean-yves.bouguet@intel.com

1 Problem Statement
Let I and J be two 2D grayscaled images. The two quantities I(x) = I(x; y) and J(x) = J(x; y) are then the

grayscale values of the two images at the location x = [x y]T , where x and y are the two pixel coordinates of a generic
image point x. The image I will sometimes be referenced as the �rst image, and the image J as the second image.
For practical issues, the images I and J are discret function (or arrays), and the upper left corner pixel coordinate
vector is [0 0]T . Let nx and ny be the width and height of the two images. Then the lower right pixel coordinate
vector is [nx � 1 ny � 1]T .
Consider an image point u = [ux uy]

T on the �rst image I . The goal of feature tracking is to �nd the location
v = [ux + dx uy + dy]

T on the second image J such as I(u) and J(v) are \similar". The vector d = [dx dy]
T is the

image velocity at u, also known as the optical
ow at u. In addition to a translation component d, let us assume that
the image undergoes an aÆne deformation between I and J in the vicinity of the two image feature points u and v.
Following this assumption, let us introduce the aÆne transformation matrix A:

A =

�
1 + dxx dxy
dyx 1 + dyy

�
; (1)

where the four coeÆcients dxx, dxy, dyx and dyy characterize the aÆne deformation of the image patch. The objective
of aÆne tracking is then to �nd the vector d and the matrix A that minimize the residual function � de�ned as
follows:

�(d;A) = �(dx; dy; dxx; dxy; dyx; dyy) =

!xX
x=�!x

!yX
y=�!y

(I(x+ u)� J (Ax+ d+ u))
2
; (2)

where two integers !x and !y set the size of the integration window to (2!x + 1)� (2!y + 1). Typical values for !x
and !y are 7,8,10,20 pixels (signi�cantly larger than for translation tracking, since we need to estimate local image
deformation).

2 Description of the tracking algorithm
The two key components to any feature tracker are accuracy and robustness. The accuracy component relates to

the local sub-pixel accuracy attached to tracking. Intuitively, a small integration window would be preferable in order
not to \smooth out" the details contained in the images (i.e. small values of !x and !y). That is especially required
at occluding areas in the images where two patchs potentially move with very di�erent velocities.

The robustness component relates to sensitivity of tracking with respect to changes of lighting, size of image
motion,... In particular, in oder to handle large motions, it is intuively preferable to pick a large integration window.
Indeed, considering only equation 2, it is preferable to have dx � !x and dy � !y (unless some prior matching
information is available). There is therefore a natural tradeo� between local accuracy and robustness when choosing
the integration window size. In attempt to provide a solution to that problem, we propose a pyramidal implementation
of the tracking algorithm.

2.1 Image pyramid representation
Let us de�ne the pyramid representation of a generic image I of size nx � ny. Let I0 = I be the \zeroth" level

image. This image is essentially the highest resolution image (the raw image). The image width and height at that
level are de�ned as n0x = nx and n0y = ny. The pyramid representation is then built in a recursive fashion: compute

I1 from I0, then compute I2 from I1, and so on... Let L = 1; 2; : : : be a generic pyramidal level, and let IL�1 be
the image at level L� 1. Denote nL�1x and nL�1y the width and height of IL�1. The image IL�1 is then de�ned as

1

follows:

IL(x; y) =
1

4
IL�1(2x; 2y) +

1

8

�
IL�1(2x� 1; 2y) + IL�1(2x+ 1; 2y) + IL�1(2x; 2y � 1) + IL�1(2x; 2y + 1)

�
+

1

16

�
IL�1(2x� 1; 2y � 1) + IL�1(2x+ 1; 2y + 1) + IL�1(2x� 1; 2y + 1) + IL�1(2x+ 1; 2y + 1)

�
:

(3)

For simplicity in the notation, let us de�ne dummy image values one pixel around the image IL�1 (for 0 � x � nL�1x �1
and 0 � y � nL�1y � 1):

IL�1(�1; y)
:
= IL�1(0; y);

IL�1(x;�1)
:
= IL�1(x; 0);

IL�1(nL�1x ; y)
:
= IL�1(nL�1x � 1; y);

IL�1(x; nL�1y)
:
= IL�1(x; nL�1y � 1);

IL�1(nL�1x ; nL�1y)
:
= IL�1(nL�1x � 1; nL�1y � 1):

Then, equation 3 is only de�ned for values of x and y such that 0 � 2x � nL�1x �1 and 0 � 2y � nL�1y �1. Therefore,

the width nLx and height nLy of IL are the largest integers that satisfy the two conditions:

nLx �
nL�1x + 1

2
; (4)

nLy �
nL�1y + 1

2
: (5)

Equations (3), (4) and (5) are used to construct recursively the pyramidal representations of the two images I and
J :

�
IL
	
L=0;:::;Lm

and
�
JL
	
L=0;:::;Lm

. The value Lm is the height of the pyramid (picked heuristically). Practical

values of Lm are 2,3,4. For typical image sizes, it makes no sense to go above a level 4. For example, for an
image I of size 640 � 480, the images I1, I2, I3 and I4 are of respective sizes 320 � 240, 160 � 120, 80 � 60 and
40 � 30. Going beyond level 4 does not make much sense in most cases. The central motivation behind pyramidal
representation is to be able to handle large pixel motions (larger than the integration window sizes !x and !y).
Therefore the pyramid height (Lm) should also be picked appropriately according to the maximum expected optical

ow in the image. The next section describing the tracking operation in detail we let us understand that concept
better. Final observation: equation 3 suggests that the lowpass �lter [1=4 1=2 1=4] � [1=4 1=2 1=4]T is used for
image anti-aliasing before image subsampling. In practice however it is preferable to use a larger anti-aliasing �lter
kernel [1=16 1=4 3=8 1=4 1=16]� [1=16 1=4 3=8 1=4 1=16]T . This kernel is used in the C-code.

2.2 Pyramidal Feature Tracking
Recall the goal of aÆne feature tracking: for a given point u in image I , �nd its corresponding location v = u+d

in image J , and the local image aÆne transformation matrix A relating image I and image J in the vicinity of u and
v (see equation 2).

For L = 0; :::; Lm, de�ne u
L = [uLx uLy], the corresponding coordinates of the point u on the pyramidal images

IL. Following our de�nition of the pyramid representation equations (3), (4) and (5), the vectors uL are computed
as follows:

uL =
u

2L
: (6)

The division operation in equation 6 is applied to both coordinates independently (so will be the multiplication
operations appearing in subsequent equations). Observe that in particular, u0 = u.

The overall pyramidal tracking algorithm proceeds as follows: �rst, the optical
ow and aÆne transformation
matrix are comptuted at the deepest pyramid level Lm. Then, the result of the that computation is propagated to
the upper level Lm � 1 in a form of an initial guess for the pixel displacement and the aÆne transformation (at level
Lm � 1). Given that initial guess, the re�ned optical
ow and aÆne transformation are computed at level Lm � 1,
and the result is propagated to level Lm � 2 and so on up to the level 0 (the original image).

Let us now describe the recursive operation between two generics levels L+1 and L in more mathematical details.
Assume that an initial guess for optical
ow at level L, gL = [gLx gLy]

T is available from the computations done

from level Lm to level L + 1. In addition, call GL = [1 + gLxx gLxy; g
L
yx 1 + gLyy] the associated initial guess for the

2

aÆne transformation matrix. Then, in order to compute the optical
ow and aÆne transformation matrix at level
L, it is necessary to �nd the residual pixel displacement vector dL = [dLx dLy]

T and the residual 2 � 2 aÆne matrix

AL = [1 + dLxx dLxy; 1 + dLyx dLyy]
T that minimize the new image matching error function �L:

�L(dL;AL) = �L(dLx ; d
L
y ; d

L
xx; d

L
xy; d

L
yx; d

L
yy) =

!xX
x=�!x

!yX
y=�!y

�
ILcomp (x)� JLcomp

�
AL x+ dL

��2
; (7)

where the images JLcomp and J
L
comp are the centered compensated images computed based on the initial guess

�
gL;GL

	
:

ILcomp (x) = IL
�
x+ uL

�
; (8)

JLcomp (x) = JL
�
GL x+ gL + uL

�
: (9)

Observe that according to equation 7 the window of integration is of constant size (2!x+1)�(2!y+1) for all values
of L. It is possible however to set di�erent values for !x and !y at each level in the pyradmid. This is particularly
useful when the residual translation vector is known to be small (the current guess for displacement is very close to
the actual optical
ow).

The details of computation of the residual optical
ow dL and the aÆne transformation matrixAL will be described
in the next section 2.3. For now, let us assume that this vector and matrix are computed (to close the main loop of
the algorithm). Then, the result of this computation is propagated to the next level L� 1 by passing the new initial
guesses gL�1 and GL�1 of expression:

gL�1 = 2
�
gL +GL dL

�
; (10)

GL�1 = GLAL: (11)

The two expressions are derived by substituting equation 9 into equation 7. The factor two in equation 10 comes from
the subsampling ratio used in the pyramid decomposation (two). There is no such scaling involved in the update of the
aÆne transformation matrix guess because both image coordimates are subsampled using the same ratio. The next
level residual optical
ow

�
dL�1;AL�1

	
is then computed through the same procedure. This vector, computed by

optical
ow computation (decribed in Section 2.3), minimizes the functional �L�1(dL�1;AL�1) (substitute L by L�1
in equations 7, 8 and 9). This procedure goes on until the �nest image resolution is reached (L = 0). The algorithm
is initialized by setting the initial guess for optical
ow vector at level Lm to zero (no initial guess is available at the
deepest level of the pyramid), and the aÆne transformation matrix to the identity matrix:

gLm =

�
0
0

�
) gLmx = gLmy = 0; (12)

GLm =

�
1 0
0 1

�
) gLmxx = gLmxy = gLmyx = gLmyy = 0: (13)

The �nal solution for optical
ow and aÆne transformation matrix fd;Ag (refer to equation 2) is then available after
the �nest optical
ow computation:

d = g0 +G0 d0; (14)

A = G0A0: (15)

The clear advantage of a pyramidal implementation is that each residual optical
ow vector dL can be kept very small
while computing a large overall pixel displacement vector d.

2.3 Iterative AÆne Optical Flow Computation (Iterative AÆne Lucas-Kanade)
Let us now describe the core optical
ow computation. At every level L in the pyramid, the goal is �nding the

vector dL and the matrix AL that minimize the matching function �L de�ned in equation 7. Since the same type
of operation is performed for all levels L, let us now drop the superscripts L and de�ne the new images I and J as
follows (equations 8 and 9):

8x 2 [�!x � 1; !x + 1]� [�!y � 1; !y + 1],

I(x)
:
= ILcomp(x) = IL

�
x+ uL

�
; (16)

8x 2 [�!x; !x]� [�!y; !y],

J (x)
:
= JLcomp(x) = JL

�
GL x+ gL + uL

�
: (17)

3

Observe that the domains of de�nition of I(x) and J (x) are slightly di�erent. Indeed, I(x) is de�ned over a
window of size (2!x + 3) � (2!y + 3) instead of (2!x + 1) � (2!y + 1). This di�erence will become clear when
computing spatial derivatives of I(x) using the central di�erence operator (eqs. 28 and 29). For clarity purposes, let
us change the name of the displacement vector � = [�x �y]

T = dL, as well as the aÆne image deformation matrix
A = [1+ �xx �xy; �yx 1+ �yy] = AL. Following that new notation, the goal is to �nd the displacement vector � and
the matrix A that minimize the matching function:

"(�;A) = "(�x; �y; �xx; �xy; �yx; �yy) =

!xX
x=�!x

!yX
y=�!y

(I (x)�J (Ax+ �))2 : (18)

Let D be the derivative matrix (Jacobian) of the error matching function " with respect to the unknown variables �x,
�y, �xx, �xy, �yx and �yy:

D =
h

@"
@�x

@"
@�y

@"
@�xx

@"
@�xy

@"
@�yx

@"
@�yy

i
: (19)

At the optimimum, the matrix D vanishes:

Doptimum =
�
0 0 0 0 0 0

�
: (20)

Let us expand the expression of the derivative matrix D:

D = �2

!xX
x=�!x

!yX
y=�!y

(I (x)�J (Ax+ �)) D2(x); (21)

where the 1� 6 row vector D2(x) is:

D2(x) =
h

@J
@x

@J
@y

x @J
@x

y @J
@x

x @J
@y

y @J
@y

i
: (22)

Let us now substitute J (Ax+ �) by its �rst order Taylor expansion about the point [�x �y �xx �xy �yx �yy] =
[0 0 0 0 0 0]T (this has a good chance to be a valid approximation since we are expecting a small displacement
vector, thanks to the pyramidal scheme):

J (Ax+ �) � J (x) +D2(x) �; (23)

where � is the extended vector of unknowns:

� =

2
6666664

�x
�y
�xx
�xy
�yx
�yy

3
7777775

(24)

After substitution of expression 23 into equation 21, the Jacobian matrix D takes the new expression:

D � �2

!xX
x=�!x

!yX
y=!y

(I (x) �J (x)�D2(x) �) D2(x): (25)

Observe that the quatity I (x)�J (x) can be interpreted as the temporal image derivative at the point x:

8x 2 [�!x; !x]� [�!y; !y],

ÆI(x)
:
= I (x)� J (x) : (26)

The matrix D2(x) is merely a matrix function of the image gradient (in x and y) and the image coordinate vector
x. Although equation 22 says that the matrix D2(x) should computed from the second image J , it is possible to
perform that computation from the �rst image I. That assumption is valid since the residual motion between the

4

two images is expected to be small. The computational advantage of such a choice will become clear when describing
the iterative version of the algorithm. Following this strategy, let us make a slight change of notation:

rI =

2
6666664

Ix
Iy
x Ix
y Ix
x Iy
y Iy

3
7777775

:
= D2(x)

T : (27)

where the image derivstives Ix and Iy are computed directly from the �rst image I(x) in the (2!x + 1)� (2!y + 1)
neighborhood of the point x = [0 0]T independently from the second image J (x). If a central di�erence operator is
used for derivative, the two derivative images have the following expression:

8x 2 [�!x; !x]� [�!y; !y],

Ix(x) =
@I(x)

@x
=
I(x+ 1; y)� I(x � 1; y)

2
; (28)

Iy(x) =
@I(x)

@y
=
I(x; y + 1)� I(x; y � 1)

2
: (29)

In practice, the Sharr operator should used for computing image derivatives (very similar to the central di�erence
operator).
Following this new notation, equation 25 may be written:

1

2
D �

!xX
x=�!x

!yX
y=�!y

�
rIT� � ÆI

�
rIT ; (30)

or:

1

2
DT �

!xX
x=�!x

!yX
y=�!y

��
rI rIT

�
� �rI ÆI

�
: (31)

Denote

G
:
=

!xX
x=�!x

!yX
y=�!y

rI rIT =

!xX
x=�!x

!yX
y=�!y

2
6666664

I2x Ix Iy x I2x y I2x x Ix Iy y Ix Iy
Ix Iy I2y x Ix Iy y Ix Iy x I2y y I2y
x I2x x Ix Iy x2 I2x x y I2x x2 Ix Iy x y Ix Iy
y I2x y Ix Iy x y I2x y2 I2x x y Ix Iy y2 Ix Iy

x Ix Iy x I2y x2 Ix Iy x y Ix Iy x2 I2y x y I2y
y Ix Iy y I2y x y Ix Iy y2 Ix Iy x y I2y y2 I2y

3
7777775
; (32)

and

b
:
=

!xX
x=�!x

!yX
y=�!y

rI ÆI =

!xX
x=�!x

!yX
y=�!y

2
6666664

Ix ÆI
Iy ÆI
x Ix ÆI
y Ix ÆI
x Iy ÆI
y Iy ÆI

3
7777775
: (33)

Then, equation 31 becomes:

1

2
DT � G � � b: (34)

Following equation 20, the optimimum solution for optical
ow vector + aÆne transformation matrix is:

�opt =
�
�optx �opty �optxx �optxy �optyx �optyy

�T
= G�1 b: (35)

This expression is valid only if the matrix G is invertible. In particular, this means that the image I(x) must contain
enough gradient information in both x and y directions in the neighborhood of the point x = [0 0]T . Notice that

5

in order to capture the aÆne deformation of the image patch, it is often necessary to choose a large window of
integration. This makes the two variables x and y span a large interval of values, and therefore makes the matrix G
better conditioned (invertible).

Once the vector �opt is computed, the optimal solution f�;Ag = f�opt;Aoptg that minimizes the matching function
"(�;A) (eq. 18) is:

�opt =

�
�optx

�opty

�
; (36)

Aopt =

�
1 + �optxx �optxy

�optyx 1 + �optyy

�
: (37)

This is the standard AÆne Lucas-Kanade optical
ow equation, which is valid only if the pixel displacement is
small (in order to validate the �rst order Taylor expansion). In practice, in order to obtain an accurate solution, it is
necessary to iterate multiple times on this scheme (in a Newton-Raphson fashion).

Now that we have introduced the mathematical background, let us give the details of the iterative version of the
algorithm. Recall the goal: �nd the vector � and the matrix A that minimize the error functional "(�) introduced in
equation 18.

Let k be the iterative index, initialized to 1 at the very �rst iteration. Let us describe the algorithm recursively:
at a generic iteration k � 1, assume that the previous computations from iterations 1; 2; : : : ; k � 1 provide an ini-
tial guess �k�1 = [�k�1x �k�1x]T for the pixel displacement � and Ak�1 = [1 + �k�1xx �k�1xy ; �k�1yx 1 + �k�1yy] for the

aÆne transformation matrixA. Let Jk(x) be the new compensated image according to that initial guess f�k�1;Ak�1g:

8x 2 [�!x; !x]� [�!y; !y],

Jk(x) = J
�
Ak�1 x+ �k�1

�
: (38)

The goal is then to compute the residual pixel motion vector �k = [�kx �ky] and the residual aÆne transformation

matrixMk = [1 + �kxx �kxy; �
k
yx 1 + �kyy] that minimize the error function

"k(�k;Mk) = "k(�kx; �
k
y ; �

k
xx; �

k
xy; �

k
yx; �

k
yy) =

!xX
x=�!x

!yX
y=�!y

�
I(x)�Jk

�
Mk x+ �k

��2
: (39)

The solution of this minimization may be computed through a one step AÆne Lucas-Kanade optical
ow computation
(equation 35):

2
6666664

�kx
�ky
�kxx
�kxy
�kyx
�kyy

3
7777775
= G�1 bk)

8>><
>>:

�k =

�
�kx
�ky

�

Mk =

�
1 + �kxx �kxy
�kyx 1 + �kyy

� ; (40)

where the 6� 1 vector bk is de�ned as follows (also called image mismatch vector):

bk =

!xX
x=�!x

!yX
y=�!y

2
6666664

Ix(x) ÆIk(x)
Iy(x) ÆIk(x)
x Ix(x) ÆIk(x)
y Ix(x) ÆIk(x)
x Iy(x) ÆIk(x)
y Iy(x) ÆIk(x)

3
7777775
; (41)

where the kth image di�erence ÆIk(x) is de�ned as follows:

8x 2 [�!x; !x]� [�!y; !y],

ÆIk(x) = I(x) �Jk(x): (42)

Observe that the spatial derivatives Ix and Iy (at all points in the neighborhood of [0 0]T in the �rst image I) are
computed only once at the beginning of the iterations following equations 28 and 29. Therefore the 6 � 6 matrix

6

G also remains constant throughout the iteration loop (expression given in equation 32). That constitutes a clear
computational advantage. The only quantity that needs to be recomputed at each step k is the vector bk that really
captures the amount of residual di�erence between the image patches after translation by the vector �k�1 and aÆne
deformation by the matrix Ak�1. Once the residual optical
ow and aÆne matrix f�k;Mkg are computed through
equation 40, a new aÆne tracking guess f�k;Akg is computed for the next iteration step k + 1:

�k = �k�1 +Ak�1 �k; (43)

Ak = Ak�1Mk: (44)

The iterative scheme goes on until the computed pixel residual �k is smaller than a threshold (for example 0.01 pixel),
or a maximum number of iteration (for example 100) is reached, or when the error matching function " does not
decrease signi�cantly. Other intuitive convergence criteria may be used. It is worth noticing that it may take as
many as 30 or 40 iterations before reaching convergence, depending on the amplitude of displacement between the
two images. At the �rst iteration (k = 1) the initial guess is initialized to zero in pixel translation, and identidy in
aÆne transformation:

�0 =

�
0
0

�
) �0x = �0y = 0; (45)

A0 =

�
1 0
0 1

�
) �0xx = �0xy = �0yx = �0yy = 0: (46)

Assuming that K iterations were necessary to reach convergence, the �nal solution for the optical
ow vector � = dL

is:

� = dL = �K ; (47)

A = AL = AK : (48)

The vector dL and matrix AL minimize the error functional described in equation 18 (or equation 7). This ends the
description of the iterative aÆne Lucas-Kanade optical
ow computation. The solution fdL;ALg is fed to equations
10 and 11 and this overall procedure is repeated at all subsequent levels L� 1; L� 2; : : : ; 0 (see section 2.2).

2.4 Reducing the number of variables - Simplifying the notation
It is possible to reduce the number of variables in order to make the overall algorithm more \compact". Let:

vLk = GL �k + gL + uL; (49)

AL
k = GLAk: (50)

The vector vLk is then the best known location of the corresponding point on image IL at iteration k, and the matrix
AL
k is the associated aÆne transformaion matrix (at level L, iteration k). Given this new notation, the update rule

given by equations 43 and 44 becomes:

vLk = vLk�1 +AL
k�1 �

k; (51)

AL
k = AL

k�1M
k: (52)

Observe that the variables �k and Ak may be dropped. In addition, observe that from equations 10,11,47,48,49 and
50, we have:

gL�1 = 2
�
vLK � u

L
�
; (53)

GL�1 = AL
K ; (54)

assuming a total of K iterations in the inner loop (over k), at the pyramid level L. Notice that it is then possible
to drop the four variables gL, GL, dL and AL. Indeed, the rule of propagation from pyramid level to pyramid level
given originally by equations 10 and 11 becomes:

vL0 = 2vL+1K ; (55)

AL
0 = AL+1

K ; (56)

still assumingK iterations at pyramid level L+1. This equation also replaces the initialization step before the iterative
loop (over k) at level L (equations 45 and 46). Observe that this notation is valid at all pyramid levels L = Lm; : : : ; 0
only if we assume the new notation for the global initialization of the algorithm (substituting equations 12 and 13):

vLm+1
K = u=2Lm+1; (57)

ALm+1
K =

�
1 0
0 1

�
: (58)

7

Observe that if a global initial guess fvg;Agg for fv;Ag is known prior to computation, then it is possible to account
for it by replacing the global initialization step by:

vLm+1
K = vg=2

Lm+1; (59)

ALm+1
K = Ag : (60)

Finally, following this new notation, the �nal tracking solution becomes:

v = v0K ; (61)

A = A0
K ; (62)

still assuming K iterations at pyramid level L = 0. Observe that it is now suÆsant to only keep the two variables vLk
and AL

k .

2.5 Making tracking more robust with respect to changes in illumination
In practice, when tracking features on long sequences, changes in illumination may very often induce changes in

brightness and contrast of the feature patches. To make tracking more robust with respect those changes due to
illumination, it is preferable to make a slight modi�cation to the global cost function � to minimize:

�(d;A; �; Æ) = �(dx; dy; dxx; dxy; dyx; dyy; �; Æ) =

!xX
x=�!x

!yX
y=�!y

(I(x+ u)� (�J (Ax+ d+ u) + Æ))
2
; (63)

where � and Æ are two additional scalar coeÆcients accounting for changes in image contrast and image brightness
respectively. The set of coeÆcients that minimize that new cost function give then the solution for tracking. Of
course, a new set of optimization equations could be expanded by adding the two new variables � and Æ to the global
set of unknowns. That would naturally lead to a new Jacobian iteration scheme with a matrix G of size 8�8 (instead
of 6� 6). However, we believe that step of formally expanding the vector of unknowns is not necessary. In e�ect, the
values � and Æ can be easily computed in a closed form way if the remaining tracking coeÆcients fd;Ag are known.
Therefore, one approach to include illumination changes to tracking is to insert an image normalization step within
the iteration process, just before updating the set of tracking coeÆcients. More precisely, this normalization must
take place right after warping of the second image J , or right after Equation (17). This normalization step consists
of scaling (by �) and translating (by Æ) the second warped image J so that I and J have same mean brightness
and variance. Of course, since this step is done independently from the computation of d and A, the normalization
coeÆcients � and Æ are easily computable in a closed form fashion.

8

2.6 Summary of the pyramidal aÆne tracking algorithm
Let is now summarize the entire aÆne tracking algorithm in a form of a pseudo-code. Since vLk and AL

k are the only
two variables that are continuously updated throughout the algorithm, we take the liberty of dropping the indices L
and k and substitute them by the (varying) variables v and A. The �nal value of fv;Ag (after the iterations at level
L = 0) is the solution of the tracking problem. In addition, for clarity purposes, we drop the index k in the iterative
loop. Following these �nal changes, the overall algorithm may be summarized by the following compact pseudo-code
(note that 0 is the 1� 2 row vector of zero entries, and I2 is the 2� 2 identity matrix):

Goal: Let u be a point on image I. Find its corresponding location v on image J, and the matrix A
describing the aÆne transformation between the two images, in the vicinity of u (on image I) and v (on image J).

Global initial guess for fA;vg:
vg u (or other if speci�ed)

Ag I2 (or other if speci�ed)

Build pyramid representations of I and J: fILgL=0;::: ;Lm and fJLgL=0;::: ;Lm (eqs. 3,4,5)

Initialization of aÆne tracking:
v vg=2Lm+1

A Ag

(eqs. 59,60)

for L = Lm down to 0 with step of -1

Translation of �rst image: I(x) IL
�
x+ u=2L

�
(eq. 6,16)

Derivative of I with respect to x: Ix(x)
I(x+ 1; y)� I(x� 1; y)

2
(eqs. 28,16)

Derivative of I with respect to y: Iy(x)
I(x; y + 1) � I(x; y � 1)

2
(eqs. 29,16)

Spatial gradient matrix: G

!xX
x=�!x

!yX
y=�!y

2
64

I2x � � � y Ix Iy
...

. . .
...

y Ix Iy � � � y2 I2y

3
75 (eq. 32)

Initial guess from previous level L+ 1: v 2v (eq. 55,56)

Repeat:

Warping of second image: J (x) JL (Ax+ v) (eqs. 17,38,49,50)

Image normalization (optional): J �J + Æ, such that I and J have same mean and variance (sec. 2.5)

Image di�erence: ÆI(x) I(x)� J (x) (eq. 42)

Image mismatch vector: b

!xX
x=�!x

!yX
y=�!y

2
64

Ix ÆI
.
..

y Iy ÆI

3
75 (eq. 41)

AÆne Lucas-Kanade: [�x �y �xx �xy �yx �yy]
T G�1 b (eq. 40)

Update of tracking solution:

�
A v

0 1

�

�
A v

0 1

�
2
6664

1 + �xx �xy �x

�yx 1 + �yy �y

0 0 1

3
7775 (eq. 40,51,52)

Until
q
�2x + �2y < resolution threshold (or other intuitive convergence criteria). Better criteria: Check that

all the four corners of the window of integration do not move by more than the resolution threshold.

end of for-loop on L

Solution: The corresponding point is at location v on image J, and the matrix A describes the aÆne transformation
between the two images, in the vicinity of u (on image I) and v (on image J).

9

2.7 Re-parameterization of the aÆne matrix to enable reduced tracking models
In some cases of aÆne tracking, not all the aÆne parameters dxx, dxy, dyx, dyy can be estimated. When this

happens, it is useful to re-parameterize the aÆne transformation matrix A such that a subset of the parameters can
always be estimated. This is also known as model reduction. One possible parameterization is:

A =

�
1 + dxx dxy
dyx 1 + dyy

�
=

�
cos � � sin �
sin � cos �

� �
1 s
0 1

� �
1 + a 0
0 1 + b

�
; (64)

where four variables a, b, s and � are the new aÆne parameters. The angle � accounts for the change in orientation
of the feature patch, the scalars a and b account for change in scale, and the scalar s accounts for skew. This new
parameterization has the advantage of being very
exible in the sense that tracking can be achieved while estimated
only a subset of the parameters (for example only � while enforcing a = b = s = 0). First, observe that the mapping
between the two parameter spaces is straight forward:

dxx = cos � (1 + a)� 1 (65)

dxy = (1 + b) (s cos � � sin �) (66)

dyx = sin � (1 + a) (67)

dyy = (1 + b) (s sin � + cos �)� 1 (68)

The tracking equations can easily be adapted to this new parameterization. Let H be the derivative of the \old"
parameter vector [dx dy dxx dxy dyx dyy]

T with respect to the \new" parameter vector [dx dy � s a b]T :

H(�; s; a; b) =

2
6666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 �(1 + a) sin � 0 cos � 0
0 0 �(1 + b) (s sin � + cos �) (1 + b) cos � 0 s cos � � sin �
0 0 (1 + a) cos � 0 sin � 0
0 0 (1 + b) (s cos � � sin �) (1 + b) sin � 0 s sin � + cos �

3
7777775

(69)

Since each tracking iteration is done under the assumption of small motion, only the derivative matrix at the \no-
motion" point [dx dy � s a b]T = [0 0 0 0 0 0]T needs to be considered:

H0 = H(0; 0; 0; 0) =

2
6666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 �1 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

3
7777775

(70)

At each tracking iteration, the residual motion vector v0 = [Ædx Ædy Æ� Æs Æa Æb]T in the parameter space fdx; dy; �; s; a; bg
is given by:

v0 =
�
HT

0 GH0

��1
HT

0 b (71)

which is an alternate expression to Eq. (40). The 6� 6 matrix G and the 6� 1 vector b are given by Equations (32)
and (33) respectively. Before going to the next tracking iteration, the aÆne matrix A and the position vector v
needs to be updated following the same procedure as described in the summary algorithm presented in Section 2.6
(Eq. 40, 51, 52). For that purpose, the residual 2� 2 aÆne matrix is computed using Equation (64):

�
A v

0 1

�

�
A v

0 1

� 2
4 1 0 Ædx

0 1 Ædy
0 0 1

3
5
2
4 cos Æ� � sin Æ� 0

sin Æ� cos Æ� 0
0 0 1

3
5
2
4 1 Æs 0

0 1 0
0 0 1

3
5
2
4 1 + Æa 0 0

0 1 + Æb 0
0 0 1

3
5 (72)

There is no real advantage of using this formalism if all six parameters dx, dy , �, s, a and b are always estimated.
Indeed, in that case, the tracking equation (71) reduces to v0 = H�1

0 G
�1 b. In e�ect, in the limit, both parameteri-

zations converge to the same numerical solution. The real advantage comes when one wants to use a reduced aÆne
model for tracking. For example, if only rotation and skew can be estimated, then the two scale variables a and b may
be taken out of the aÆne model, e�ectively taking the last two columns of H0 out, and assuming a = b = 0. The real
advantage comes from the fact that the resulting matrix to invert HT

0 GH0 is of dimension less than 6 � 6, making
the estimation potentially more robust. Any combination of reduced models is then possible (such as rotation and
scale only).

10

